• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic A* path finding algorithm and 3D lidar based obstacle avoidance strategy for autonomous vehicles

    2020-11-27 09:17:10WangXiaohua王小華MaPinWangHuaLiLi
    High Technology Letters 2020年4期

    Wang Xiaohua (王小華), Ma Pin, Wang Hua, Li Li

    (*Shanghai Key Laboratory of Power Station Automation Technology, Shanghai 200444, P.R.China)(**School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, P.R.China)

    Abstract

    Key words: autonomous navigation, local obstacle avoidance, dynamic A* path finding algorithm, point cloud processing, local obstacle map

    0 Introduction

    Obstacle avoidance is one of the most important tasks during vehicle’s autonomous navigation. From sensor’s aspects, lidars and cameras are commonly used for this purpose. 3D muliti-line lidar has a detection range of about 100 m with 1 cm resolution, while the range for a single line 2D lidar is 3-15 m[1]. Comparatively, 3D lidar is more reliable and now adopted by a large amount of autonomous vehicles[2,3].

    After obstacles are captured in 3D lidar point cloud, it is critical to process the sensor data and design a proper local obstacle free path planning algorithm. Many local path planning algorithms have been developed. Popular local path planning algorithms are mainly the artificial potential field (APF) method, the dynamic window approach (DWA), and variants of these 2 algorithms.

    The APF method was proposed by Khatib[4], where the local path is planned by artificially defined virtual forces. However, local equilibrium point may occur with this algorithm, where balanced forces keep the vehicle unmovable. In order to solve this problem, Gilbert and Johnson[5]added a special state constraint using distance functions. To apply APF method on a wheeled mobile robot, a new method based on fuzzy rules has been proposed by Zhu et al.[6]to solve this problem by modifying the control pattern or parameters in different situations. The DWA was proposed by Fox et al.[7]. DWA samples multiple sets of velocities in real time in the velocity(ν,ω) space. The vehicle trajectory at the next moment is then simulated according to each set of velocities. Each trajectory corresponding to each set of velocities is evaluated by an objective function. The trajectory corresponding to the highest score is then selected as its local path. Seder et al.[8]avoided moving obstacles by utilizing DWA considering their trajectory prediction. Gerkey et al.[9]directly searched the space of the feasible controls rather than that of the feasible trajectories. Application of DWA usually requires an accurate kinematic vehicle model.

    Hart et al.[10]proposed A*algorithm in 1968. A*algorithm is a path finding method based on grid maps and it can avoid most of the unnecessary searches. In general, A*algorithm and its variants[11,12]are global path finding algorithms based on static occupied grid maps. Herein, a lidar based dynamic A*algorithm is proposed, which could find the local obstacle free path in real time.

    A scenario is described as follows. An autonomous vehicle moves from a starting position to a target location with a preset global path and obstacles are detected and avoided using 3D lidar. A dynamic A*path finding method is employed and a local obstacle free path is generated in real time to guide the vehicle to avoid obstacles. The rest of the paper is organized as follows. Section 1 explains the scenario details. Section 2 focuses on the local path planning and explains the point cloud processing, the construction of the local occupied grid map, and the local path generation using dynamic A*algorithm. Vehicle hardware setup is then introduced and the experimental results are presented in Section 3. Finally, Section 4 concludes this paper and presents future perspectives.

    1 Autonomous navigation scenarios

    The vehicle’s autonomous navigation is usually composed of 2 parts: global path tracking and local obstacle avoidance. To test the proposed local obstacle avoiding dynamic A*algorithm, the global path tracking is not the concern of this paper. Therefore a global path is preset between the starting point and target position. Current positions of the vehicle are obtained in real time. And without obstacles, the vehicle is able to track the preset global path. Note that the effect of obstacle avoiding algorithm is closely connected with vehicle speeds. Usually, the higher the speed, the heavier the hardware’s calculation load, which deteriorates the algorithm effectiveness. For normal city vehicles, when an obstacle is detected in the way, its speed can be lower to an operational range. The vehicle speed during obstacle avoiding is considered as 2- 4 m/s.

    Once an obstacle appears in the way of the global path and is within the 3D lidar detecting range, its information would be in the point cloud data outputted by the lidar. Lidar’s output is processed and the obstacle grid map is precisely calculated. The relative distance between the obstacle and the vehicle is confirmed. To be conservative and to increase the safety margin, the obstacle shape is properly expanded. After the obstacle free path is generated, it would be marked on the grid map. The first grid along this path is set as its current target and the tracking would be executed. This process is repeated until there are no obstacles. If there is no obstacle in the range, the vehicle tracks back to its global path. The flow chart of vehicle autonomous navigation is shown in Fig.1.

    Fig.1 Autonomous navigation flow chart

    2 Local obstacle avoidance

    If an obstacle is detected along the vehicle’s global path by the equipped 3D lidar, the vehicle’s obstacle avoiding mode is activated. The local obstacle avoidance algorithm is composed of 4 parts: point cloud data processing, local occupied grid map construction, dynamic A*based local path planning, and vehicle states update.

    2.1 Point cloud processing

    Raw lidar data size is generally large, for example, about 300 kB/s for a VLP-16 lidar(Velodyne LiDAR Puck). Amount of raw sensor data is processed before applied in the obstacle avoidance algorithm. Point cloud processing is the following 3 steps.

    First of all, in order to collect the information around the vehicle, the original 3D point cloud is filtered by a range filter and then a statistical outlier removal algorithm[13,14]. Secondly, in order to further relief the load on hardware, the filtered 3D point cloud is downsampled by a voxel grid filter[15,16]. At last, the processed 3D point cloud is converted to the 2D point cloud prepared for the dynamic A*path finding algorithm.

    The flow chart of point cloud processing is shown in Fig.2.

    Fig.2 Point cloud processing flow chart

    2.1.1 Point cloud filtering

    Point clouds around the vehicles are selected using a range filter. The point cloud outside the spatial range is then discarded. The practical space range in the experiments is as follows:

    (1)

    Point cloud data are further filtered using a statistical outlier removal algorithm. Those points that do not satisfy a specific statistical property are removed. In actual experiment, the statistical property is the average distance in a neighborhood. Points that deviate too much from the distance average are removed. The number of neighbors used for the average computation can be chosen by the users.

    2.1.2 Point cloud downsampling

    The downsampling algorithm is used to further reduce the amount of the 3D point cloud. Through downsampling, the density of the 3D point cloud is decreased while the main 3D point cloud shape is kept.

    In experiments, the voxel grid filter is used as the downsampling algorithm. Voxel grid filter algorithm partitions the 3D point cloud into voxels, i.e. subclouds, or a 3D grid as is named. All of the points contained in each voxel are replaced with the centroid of that subcloud. The size of each voxel can be specified by the users. Once the size of a voxel is specified, the density of the 3D point cloud is determined.

    2.1.3 Point cloud conversion

    In order to design the A*algorithm, 3D lidar data are to be presented on a 2DXOYplane for the vehicle obstacle avoidance. A conversion method specified as follows.

    Firstly, 3D point cloud is projected to a 2DXOYplane by setting the height valuezof the 3D point cloud to zero. Secondly, a central angleφof each point in the point cloud is calculated as follow formulas:

    (2)

    Fig.3 Point cloud 2D processing

    In Fig.3, the 2DXOYplane is divided into 360/ρsectorial regions. The circular dots and triangle dots represent the points of the point cloud in 2DXOYplane. They are assigned to the corresponding sectorial region according to their central angleφ. The triangle dots are the closest points to the origin in each sectorial region. Therefore, they are retained while the circular dots are discarded.

    In actual experiments, 0.2 ° is selected as the value ofρsince 0.2 ° is the angle resolution of the VLP-16 lidar used. The 2DXOYplane is divided into 1 800 sectorial regions. So there are maximum 1 800 points in each processed point cloud. As a result, the significant information is captured and the amount of the points of the cloud is reduced through the series of processing.

    2.2 Local obstacle map construction

    The next step is to create a local obstacle map based on the obtained 2D point cloud. The local obstacle map is essentially an occupied grid map, and is mathematically represented by a 2D binary matrix.

    Fig.4 illustrates a local obstacle map, where the occupied grid map with a matrix size of 5×5 is shown as an example. A 5 m×5 m area is represented by this matrix and its grid resolution is 1 m. The parameters here are adjustable according to different road scenarios.

    Fig.4 Illustration of local obstacle map construction

    In Fig.4,Xmax,Xmin,YmaxandYminare the boundaries of the occupied grid map. Note thatXminandYminare on the negative half of the coordinate axis, and thus have negative values. The row values and column values of the grid map are represented by the index numbers on the left and the top of the grid map, respectively. The black dots represent the points of the obtained 2D point cloud. Whenever there is an obstacle detected, the number in the corresponding grid is set to ‘1’, as seen in the Fig.4 (denoted by the black dots). The value of the grid without obstacles (without black dots) is set to ‘0’. And the corresponding 2D binary matrix is as follows. This matrix is not practically produced, just for explanation.

    (3)

    From this 2D binary matrix, the real position (xandycoordinates) of a point in the grid map can be retrieved, and so is the real distance range of the obstacle.MxandMyrepresent the size of the grid map. The value ofMxandMyis 5 in this example.xresandyresrepresent the side length of the grid, i.e. the resolution of the grid map. The resolution is calculated by

    (4)

    Note that the size and the resolution of the grid map are adjustable according to the actual scene. The higher the resolution is, the larger the size of grid map matrix is. The origin of the grid map in the 2DXOYcoordinate can also be adjusted.

    2.3 Dynamic A* path finding algorithm based local obstacle avoidance

    Dynamic A*algorithm is used as the online local path planning algorithm for obstacle avoidance. The implementation of the obstacle avoidance process is mainly divided into the following 3 steps.

    2.3.1 Obstacle area expansion

    Once an obstacle is detected and the obstacle map is built as stated, the obstacle area is expanded considering the safety and kinematics of the vehicle. The expansion width and length is set by the safe distance between the vehicle and the obstacle considering the vehicle size. The expansion shape is chosen to smooth the planned local path. The expansion method shown in Fig.5 is then selected.

    Fig.5 Obstacle area expansion

    As shown in Fig.5, the obstacle area expansion is realized by assigning ‘1 s’ around the existing ‘1 s’ in the occupied grid. In Fig.5, the small square box in the right figure represents the original obstacle area, and the interior two pentagon boxes represent the result of the expansion of the original obstacle area. The outermost box represents the overlapped obstacle expansion area. The obstacle’s expanded size and shape can be adjusted according to the user needs. For example, if the length of the vehicle is equivalent to the length of the 3 grids and the width is equivalent to the width of the 2 grids, then the grids of the outermost circle of the pentagon box boxed expansion area in Fig.5 are removed. The experiment can be carried out with the shape and size of the adjusted obstacle expansion area.

    2.3.2 Setting of the starting point and end point of the A*path planning algorithm

    The starting point of dynamic A*path planning algorithm is set at the location of the vehicle. And the end point is set in the traveling direction of the vehicle. In actual experiment, lidar is rigidly amounted at the top of the vehicle, so lidar location is actually the vehicle position. Lidar is at the origin of the local planeXOYcoordinate system, so the position of the vehicle in the local coordinate system is also the origin. The grid in which the lidar is located is set as the starting point of the A*path planning algorithm, namely the center grid of the occupied grid map. A grid located at a certain distance in front of the starting point is set as the end point of the A*path planning algorithm.

    As long as the sampling time is short enough, the end point of the A*path planning algorithm is in front of the starting point along the travelling direction, and the vehicle will not deviate away from the global path in a fast way. This facilitates vehicle tracking back to the global path when the vehicle has avoided obstacles.

    2.3.3 Real-time local path planning

    The local path generated by the A*algorithm is based on the local obstacle map in real time and the planning is updated at each sampling point. After the path is planned online, the vehicle tracks the planned obstacle free path and avoids the obstacles accordingly.

    3 Experiment

    Experiments are performed outdoors. First of all, an obstacle is placed on its global path of the vehicle tracking. The vehicle is then tested whether it is possible to autonomously avoid obstacles based on the dynamic A*obstacle avoidance method proposed herein. Finally, the vehicle is tested whether it is able to track back to the global path when the obstacle has been avoided.

    3.1 Experimental platform with hardwares and software

    The robot operation system (ROS) is available as open source software[17]and is used as the upper control software system of the vehicle. The experiment platform (front-wheel drive four-wheeled mobile vehicle) and hardware setups are shown in Fig.6. The size of the vehicle used in the experiment is 70 cm×42 cm×155 cm. There is a 130 cm height bracket to support the lidar on the vehicle. Velodyne’s VLP-16 is used as the 3D lidar sensor in the experiment. The localization information of the vehicle is acquired by the combination of RTK-GPS (real-time kinematic global positioning system) sensor and IMU (inertial measurement unit) sensors.

    Fig.6 Experiment platform and an obstacle

    3.2 Local obstacle avoidance experiment

    Before the experiment, a sweeper is placed on the global path of the vehicle tracking in advance to represent an obstacle, as shown in Fig.6. The vehicle tracks the planned global path when the experiment begins. Until the obstacle is detected in the obstacle detection area in front of the lidar, the vehicle enters the obstacle avoidance initial state.

    The left part of Fig.7 shows the raw 3D point cloud in the initial obstacle avoidance state, and the point cloud in the box is the detected obstacle. The right part of Fig.7 is a portion of the local obstacle map generated based on the processed 2D point cloud data in real time, which includes a local path for guiding the vehicle to avoid the obstacle. The practical local obstacle map is a lidar-centric occupied grid map, whose size is 65 m×65 m and resolution is 35 cm. In the right part of Fig.7, the number ‘1’ denotes the obstacle, ‘2’ is the starting point of the A*path finding algorithm, ‘3’ is the found local path grid, ‘4’ is the end point of the A*path finding algorithm.

    Fig.7 Raw point cloud and local obstacle map of the obstacle avoidance initial state

    Fig.8 shows the raw 3D point cloud information in the state where the vehicle is avoiding the obstacle and the corresponding local obstacle map containing the local path. The meaning of the contents shown in Fig.8 is the same as that of Fig.7.

    Fig.8 Raw point cloud and local obstacle map of the obstacle avoidance state

    The vehicle performs local path planning for the obstacle avoidance under the guidance of a local path generated in real time. Once there is no obstacle in the lidar detecting range, the vehicle tracks back to its global path. The vehicle actual running path is obtained by recording the localization information collected by RTK-GPS. The planned global path and the obtained vehicle’s actual running path are shown in Fig.9.

    Fig.9 Planned global path and actual running path

    As shown in Fig.9, the global path point is represented by symbol ‘×’, the vehicle actual running path is represented by dots. Based on the comparison of the 2 paths, it can be found that the vehicle can autonomously avoid obstacles and track back to the global path.

    4 Conclusions

    A dynamic A*path finding algorithm based local obstacle avoidance method is proposed by this paper. A 2D local obstacle map of the 3D environment around the vehicle is constructed in real time using 3D lidar. The vehicle uses the A*algorithm to perform local path planning in real time in the constructed local obstacle map to avoid obstacles. Experiments show that the vehicle can autonomously avoid obstacles using the obstacle avoidance method, and the feasibility of this obstacle avoidance method is verified. Some limitation remains and some work still have to be done in order to be able to use this method in most of the actual scenarios. In future work, the constraints of the actual road need to be considered to prevent the vehicle from driving out of the safe driving area during the obstacle avoidance process.

    女同久久另类99精品国产91| 久久国产精品男人的天堂亚洲| 国产精品99久久99久久久不卡| 亚洲专区国产一区二区| 亚洲午夜精品一区,二区,三区| 黑人巨大精品欧美一区二区mp4| 成人特级黄色片久久久久久久| 亚洲成人免费电影在线观看| 午夜福利18| 日本五十路高清| 亚洲欧美日韩无卡精品| 久久人人精品亚洲av| 色在线成人网| 婷婷精品国产亚洲av在线| 欧美日韩黄片免| 精品电影一区二区在线| 亚洲熟女毛片儿| 国产高清视频在线播放一区| 麻豆成人av在线观看| 亚洲电影在线观看av| 成人国产一区最新在线观看| 国产av在哪里看| 国产男靠女视频免费网站| av免费在线观看网站| 身体一侧抽搐| 美女午夜性视频免费| 神马国产精品三级电影在线观看 | 欧美久久黑人一区二区| 亚洲国产中文字幕在线视频| 国产单亲对白刺激| 免费在线观看日本一区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩一级在线毛片| 国产97色在线日韩免费| 91麻豆av在线| 成年女人毛片免费观看观看9| 国产v大片淫在线免费观看| 正在播放国产对白刺激| 久久热在线av| 好看av亚洲va欧美ⅴa在| 国产人伦9x9x在线观看| 亚洲男人的天堂狠狠| 精品国产乱子伦一区二区三区| 激情在线观看视频在线高清| 国产一级毛片七仙女欲春2 | 国产成人欧美在线观看| 制服人妻中文乱码| 怎么达到女性高潮| 特大巨黑吊av在线直播 | 一a级毛片在线观看| 在线av久久热| 日韩有码中文字幕| 日本三级黄在线观看| 国产伦在线观看视频一区| 欧美不卡视频在线免费观看 | 999久久久精品免费观看国产| 午夜福利高清视频| 免费看a级黄色片| 亚洲第一av免费看| 午夜a级毛片| 色综合亚洲欧美另类图片| 亚洲中文av在线| 国产精品自产拍在线观看55亚洲| 男女床上黄色一级片免费看| 午夜老司机福利片| 在线观看午夜福利视频| 黄频高清免费视频| 在线观看午夜福利视频| 18禁黄网站禁片午夜丰满| 性欧美人与动物交配| 一级毛片精品| 手机成人av网站| 国产爱豆传媒在线观看 | 国产真人三级小视频在线观看| 久久久水蜜桃国产精品网| 国产伦人伦偷精品视频| 最近最新中文字幕大全免费视频| 国产熟女午夜一区二区三区| 成人国语在线视频| 亚洲欧美精品综合久久99| 亚洲人成网站高清观看| 中文字幕高清在线视频| 成人国产综合亚洲| 动漫黄色视频在线观看| 亚洲自拍偷在线| 久久久久久大精品| 母亲3免费完整高清在线观看| 在线观看免费午夜福利视频| 亚洲男人的天堂狠狠| 黄色a级毛片大全视频| 日日摸夜夜添夜夜添小说| 国产精品免费视频内射| 999久久久国产精品视频| 人人妻人人澡欧美一区二区| 色综合亚洲欧美另类图片| 欧美黑人精品巨大| 日韩精品青青久久久久久| 91字幕亚洲| 国产av一区二区精品久久| 亚洲av第一区精品v没综合| 久久九九热精品免费| 国产成人欧美在线观看| 精品国产国语对白av| 精品国产亚洲在线| 久久狼人影院| 两个人免费观看高清视频| 国产一区二区三区在线臀色熟女| 丝袜人妻中文字幕| 97超级碰碰碰精品色视频在线观看| 国产激情欧美一区二区| 亚洲电影在线观看av| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| 日本a在线网址| bbb黄色大片| 午夜成年电影在线免费观看| 国产激情欧美一区二区| 999久久久精品免费观看国产| 午夜影院日韩av| 久久中文看片网| 亚洲欧美一区二区三区黑人| 国产熟女午夜一区二区三区| 99久久精品国产亚洲精品| √禁漫天堂资源中文www| 少妇熟女aⅴ在线视频| 精品国产亚洲在线| 亚洲精品久久成人aⅴ小说| 19禁男女啪啪无遮挡网站| 欧美激情高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合久久99| 午夜免费鲁丝| 热re99久久国产66热| 亚洲av五月六月丁香网| 身体一侧抽搐| 99国产极品粉嫩在线观看| 亚洲男人天堂网一区| 国产精品久久视频播放| 少妇的丰满在线观看| 午夜日韩欧美国产| 亚洲国产精品合色在线| 亚洲国产毛片av蜜桃av| 免费高清在线观看日韩| 在线观看午夜福利视频| 亚洲第一欧美日韩一区二区三区| 怎么达到女性高潮| 一区二区三区激情视频| 巨乳人妻的诱惑在线观看| 天堂动漫精品| a在线观看视频网站| 老司机午夜福利在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| 十八禁网站免费在线| 久久久精品欧美日韩精品| 久久久精品国产亚洲av高清涩受| 伦理电影免费视频| 白带黄色成豆腐渣| 国产亚洲精品久久久久久毛片| 日韩精品青青久久久久久| 亚洲激情在线av| 制服丝袜大香蕉在线| 可以免费在线观看a视频的电影网站| 看片在线看免费视频| 国产午夜福利久久久久久| 一a级毛片在线观看| 亚洲久久久国产精品| 国产成人精品久久二区二区91| 禁无遮挡网站| 制服人妻中文乱码| 亚洲国产欧美网| 在线观看www视频免费| 一区福利在线观看| 久久精品91无色码中文字幕| 成人国语在线视频| 国内精品久久久久精免费| 少妇 在线观看| 99re在线观看精品视频| 欧美黄色片欧美黄色片| 色精品久久人妻99蜜桃| 狂野欧美激情性xxxx| 国产精品乱码一区二三区的特点| 伊人久久大香线蕉亚洲五| 啦啦啦 在线观看视频| 男女视频在线观看网站免费 | 国产成人av教育| 久久青草综合色| 麻豆成人av在线观看| 国产高清激情床上av| 日日干狠狠操夜夜爽| 久久久久久亚洲精品国产蜜桃av| 窝窝影院91人妻| 好男人电影高清在线观看| 一区福利在线观看| 大型av网站在线播放| 高清在线国产一区| 亚洲av五月六月丁香网| 久久国产乱子伦精品免费另类| 哪里可以看免费的av片| 精品高清国产在线一区| 免费无遮挡裸体视频| 欧美在线黄色| 亚洲av电影在线进入| 后天国语完整版免费观看| 黄色丝袜av网址大全| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精华国产精华精| 国内精品久久久久久久电影| 免费观看精品视频网站| 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| 色av中文字幕| 精品人妻1区二区| 国产精品久久视频播放| 日韩国内少妇激情av| 亚洲精品色激情综合| www国产在线视频色| 亚洲中文字幕一区二区三区有码在线看 | 成人国产一区最新在线观看| 久久九九热精品免费| 欧美 亚洲 国产 日韩一| 久久中文看片网| 国产麻豆成人av免费视频| 黄色成人免费大全| а√天堂www在线а√下载| 国产成人av激情在线播放| 亚洲国产毛片av蜜桃av| 精品一区二区三区四区五区乱码| 丝袜在线中文字幕| 十八禁人妻一区二区| 国产精品亚洲美女久久久| 日本精品一区二区三区蜜桃| 国产精品 欧美亚洲| 成人国产一区最新在线观看| 真人一进一出gif抽搐免费| 国产精品乱码一区二三区的特点| 免费高清在线观看日韩| 丁香六月欧美| 在线免费观看的www视频| 十分钟在线观看高清视频www| 亚洲精品在线美女| 欧美黑人巨大hd| 黑人操中国人逼视频| 日韩欧美一区二区三区在线观看| 1024视频免费在线观看| 一进一出抽搐动态| 一区二区三区激情视频| 一区二区三区国产精品乱码| 午夜福利在线在线| 亚洲精品美女久久久久99蜜臀| 日韩av在线大香蕉| xxxwww97欧美| xxxwww97欧美| www.www免费av| 亚洲精品国产一区二区精华液| 午夜日韩欧美国产| 一边摸一边做爽爽视频免费| 少妇被粗大的猛进出69影院| 高清毛片免费观看视频网站| 欧美不卡视频在线免费观看 | 男女视频在线观看网站免费 | 村上凉子中文字幕在线| 午夜激情福利司机影院| 身体一侧抽搐| 在线观看免费日韩欧美大片| 精品福利观看| av视频在线观看入口| 久久久久久久久中文| 国产91精品成人一区二区三区| 精品久久蜜臀av无| 国产野战对白在线观看| 日韩有码中文字幕| 精品国产超薄肉色丝袜足j| 大型av网站在线播放| 中文字幕高清在线视频| 亚洲熟妇中文字幕五十中出| xxx96com| 亚洲激情在线av| 精品午夜福利视频在线观看一区| 亚洲真实伦在线观看| 一本一本综合久久| 动漫黄色视频在线观看| 十八禁人妻一区二区| 免费在线观看视频国产中文字幕亚洲| 国产三级黄色录像| 免费观看精品视频网站| 99热只有精品国产| 午夜成年电影在线免费观看| av在线播放免费不卡| 午夜激情福利司机影院| 欧美亚洲日本最大视频资源| 国产精品二区激情视频| 美女高潮到喷水免费观看| 亚洲,欧美精品.| 亚洲成a人片在线一区二区| 又紧又爽又黄一区二区| 久久久久久久午夜电影| e午夜精品久久久久久久| 一级黄色大片毛片| videosex国产| 国产精品久久电影中文字幕| 中文亚洲av片在线观看爽| 久久久精品欧美日韩精品| 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女| 美女大奶头视频| 国产成人精品无人区| 伦理电影免费视频| 精品国产超薄肉色丝袜足j| 免费av毛片视频| 嫁个100分男人电影在线观看| 91在线观看av| av在线天堂中文字幕| 一级毛片精品| 亚洲中文av在线| 怎么达到女性高潮| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 亚洲精品久久成人aⅴ小说| 老司机午夜福利在线观看视频| 伊人久久大香线蕉亚洲五| www.www免费av| 国产精品99久久99久久久不卡| 狠狠狠狠99中文字幕| 日日夜夜操网爽| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| 哪里可以看免费的av片| bbb黄色大片| 看黄色毛片网站| av在线播放免费不卡| 禁无遮挡网站| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 亚洲人成电影免费在线| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 男女视频在线观看网站免费 | 可以免费在线观看a视频的电影网站| 变态另类成人亚洲欧美熟女| 久久久久久大精品| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 成人欧美大片| 国产真人三级小视频在线观看| 好男人在线观看高清免费视频 | 久久精品国产亚洲av高清一级| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品999在线| 国产av又大| 久久久久国产精品人妻aⅴ院| 久久精品影院6| 欧美成人免费av一区二区三区| 免费在线观看影片大全网站| 欧美成人性av电影在线观看| 看免费av毛片| 日韩精品免费视频一区二区三区| 日本一区二区免费在线视频| 此物有八面人人有两片| 亚洲国产精品sss在线观看| av视频在线观看入口| 午夜免费鲁丝| 在线视频色国产色| 欧美日韩乱码在线| 一本精品99久久精品77| 日韩欧美国产一区二区入口| 免费人成视频x8x8入口观看| 麻豆一二三区av精品| www日本黄色视频网| 操出白浆在线播放| 又黄又爽又免费观看的视频| 亚洲第一青青草原| 制服诱惑二区| 欧美国产精品va在线观看不卡| 久久精品影院6| 校园春色视频在线观看| 韩国精品一区二区三区| 一本久久中文字幕| 色婷婷久久久亚洲欧美| 免费电影在线观看免费观看| 久久久久九九精品影院| 亚洲国产日韩欧美精品在线观看 | 亚洲avbb在线观看| 草草在线视频免费看| 日本在线视频免费播放| 婷婷六月久久综合丁香| 欧美久久黑人一区二区| 国产午夜精品久久久久久| 久久 成人 亚洲| 国产精品日韩av在线免费观看| 精品高清国产在线一区| 91av网站免费观看| 超碰成人久久| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 青草久久国产| 男人舔女人的私密视频| 国产麻豆成人av免费视频| 人人妻,人人澡人人爽秒播| 免费在线观看成人毛片| 国产成人系列免费观看| 欧美中文综合在线视频| 日韩欧美三级三区| 国产激情偷乱视频一区二区| 香蕉丝袜av| 757午夜福利合集在线观看| 国产精品久久久久久人妻精品电影| 婷婷亚洲欧美| 在线观看午夜福利视频| 亚洲成人久久性| 国产色视频综合| 国产黄片美女视频| 黄频高清免费视频| 国产精品 欧美亚洲| 成人精品一区二区免费| 久久99热这里只有精品18| 精品日产1卡2卡| 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 亚洲午夜理论影院| 黄片小视频在线播放| 国产亚洲欧美精品永久| 亚洲美女黄片视频| 日韩有码中文字幕| 国产av一区在线观看免费| 女人高潮潮喷娇喘18禁视频| 香蕉国产在线看| 亚洲熟女毛片儿| 18禁裸乳无遮挡免费网站照片 | 久久婷婷人人爽人人干人人爱| 国内精品久久久久久久电影| 亚洲全国av大片| 99在线视频只有这里精品首页| 久久国产精品影院| 人成视频在线观看免费观看| 亚洲午夜精品一区,二区,三区| 日日干狠狠操夜夜爽| 精品国产国语对白av| 淫秽高清视频在线观看| 成人一区二区视频在线观看| 免费电影在线观看免费观看| 一本一本综合久久| 一二三四在线观看免费中文在| 18禁美女被吸乳视频| 波多野结衣巨乳人妻| 99热只有精品国产| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 老鸭窝网址在线观看| 少妇熟女aⅴ在线视频| 精品国产乱码久久久久久男人| 人人妻人人看人人澡| 国产黄a三级三级三级人| 精品第一国产精品| 一区福利在线观看| 人人妻人人澡人人看| 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| 久久亚洲精品不卡| xxxwww97欧美| 欧美三级亚洲精品| 国产伦人伦偷精品视频| 黑人欧美特级aaaaaa片| 2021天堂中文幕一二区在线观 | 一本综合久久免费| 天堂动漫精品| 亚洲avbb在线观看| 国产高清视频在线播放一区| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 麻豆国产av国片精品| 白带黄色成豆腐渣| 国产精品爽爽va在线观看网站 | 搡老熟女国产l中国老女人| 黄色女人牲交| aaaaa片日本免费| 国产亚洲av高清不卡| 免费高清在线观看日韩| 成人18禁在线播放| 成人国产一区最新在线观看| 成人手机av| 在线观看免费视频日本深夜| 亚洲黑人精品在线| 好看av亚洲va欧美ⅴa在| 美女高潮到喷水免费观看| 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 校园春色视频在线观看| 亚洲精品一区av在线观看| 99精品久久久久人妻精品| 久久香蕉精品热| 给我免费播放毛片高清在线观看| 又紧又爽又黄一区二区| 免费搜索国产男女视频| 99国产精品一区二区三区| 黑丝袜美女国产一区| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 成人三级做爰电影| 午夜影院日韩av| x7x7x7水蜜桃| 欧美又色又爽又黄视频| 99久久国产精品久久久| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 老汉色∧v一级毛片| 18美女黄网站色大片免费观看| 亚洲专区国产一区二区| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 色播亚洲综合网| 久久精品亚洲精品国产色婷小说| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 亚洲成人国产一区在线观看| 日本在线视频免费播放| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| av福利片在线| 一区二区三区激情视频| 久久久久国内视频| 亚洲国产精品合色在线| 久久中文字幕人妻熟女| 中文字幕高清在线视频| 国产精品九九99| 亚洲 欧美一区二区三区| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 国产一区二区在线av高清观看| 免费观看精品视频网站| 国产成年人精品一区二区| 国产人伦9x9x在线观看| 1024香蕉在线观看| 欧美大码av| 哪里可以看免费的av片| 一级毛片高清免费大全| 露出奶头的视频| 中文资源天堂在线| 亚洲性夜色夜夜综合| 真人做人爱边吃奶动态| 久久久久久久午夜电影| 看黄色毛片网站| videosex国产| 黄色毛片三级朝国网站| 久久久久久久午夜电影| 看黄色毛片网站| 男女做爰动态图高潮gif福利片| 亚洲avbb在线观看| 男人舔女人下体高潮全视频| 特大巨黑吊av在线直播 | 一本久久中文字幕| 老司机在亚洲福利影院| 男女之事视频高清在线观看| 中文字幕精品免费在线观看视频| 久久久精品欧美日韩精品| 中文字幕高清在线视频| 啦啦啦 在线观看视频| 一级毛片女人18水好多| 国产欧美日韩一区二区三| 午夜久久久在线观看| 国产又爽黄色视频| 国产亚洲欧美精品永久| avwww免费| √禁漫天堂资源中文www| 色综合亚洲欧美另类图片| 日本在线视频免费播放| 日韩欧美三级三区| 国产激情欧美一区二区| 久久久久久久午夜电影| 91在线观看av| 午夜福利在线在线| 久久精品成人免费网站| 黑人巨大精品欧美一区二区mp4| 两性夫妻黄色片| 人人妻,人人澡人人爽秒播| 久久久久国产一级毛片高清牌| 国产精品香港三级国产av潘金莲| 美女扒开内裤让男人捅视频| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 久久国产乱子伦精品免费另类| 国产亚洲欧美98| 欧美又色又爽又黄视频| bbb黄色大片| 男人舔奶头视频| 亚洲成a人片在线一区二区| 国内少妇人妻偷人精品xxx网站 | 亚洲国产高清在线一区二区三 | 人人澡人人妻人| 亚洲精品国产精品久久久不卡| 搡老熟女国产l中国老女人| 69av精品久久久久久| 国产一区二区三区视频了| aaaaa片日本免费| 国产成人系列免费观看| 一卡2卡三卡四卡精品乱码亚洲| 久久天堂一区二区三区四区| 久久热在线av| 亚洲精品国产精品久久久不卡| 一级毛片精品| 露出奶头的视频| 亚洲国产日韩欧美精品在线观看 | 99热只有精品国产| xxx96com| 在线天堂中文资源库| 可以在线观看毛片的网站| 成人免费观看视频高清|