• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fraudulent phone call recognition method based on convolutional neural network

    2020-11-27 09:17:08XingJianWangShupengDingYu
    High Technology Letters 2020年4期

    Xing Jian (邢 劍), Wang Shupeng, Ding Yu

    (*Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, P.R.China)(**School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100093, P.R.China)(***Xinjiang Branch of National Computer Network Emergency Response Technical Team/Coordination Center of China, Urumqi 830000, P.R.China)

    Abstract

    Key words: fraudulent phone call recognition, convolutional neural network (CNN), calling detail records (CDR), deep learning (DL), telephone fraud

    0 Introduction

    The recognition of fraudulent phone call is an important task to guard against and combat telephone fraud. The traditional crowdsourcing methods of labeling fraudulent phone number have achieved good recognition results. In recent years, with the continuous transfer of telephone fraud to overseas countries and the widespread use of VoIP and phone number modification software, fraudulent phone numbers are constantly changing and becoming more covert[1]. The traditional methods based on blacklist are no longer effective as a result of these changes. With the behavior statistical features of fraudulent phone call, many machine learning algorithms are proposed on the field of fraudulent phone call recognition, such as random forest (RF)[2], support vector machine (SVM)[3], and so on. However, the accuracy of the algorithms is not high. Therefore, the precise recognition of fraudulent phone call has become a challenge.

    Based on the simulation of a hierarchical structure existing in human brain, deep learning can establish the mapping between the low-level signals and the high-level semantics for achieving the hierarchical expression of data characteristic[4]. It has been widely used for image recognition and classification. In this paper, a new method based on convolutional neural network (CNN) is proposed for fraudulent phone call recognition. It has the ability of learning phone number and call behavior features of telephone fraud automatically and outperforms the state-of-the-art approaches. The phone number and call behavior features of telephone fraud are usually one-dimension vector. So, 1D-CNN (one-dimensional convolutional neural network) is used to process feature vectors to obtain abstract features.

    The key contributions of this work are summarized as follows:

    This paper designs and constructs a classifier that combines non-statistical features with statistical features for fraudulent phone call recognition. The classifier only utilizes calling detail records (CDR) in data processing, classification training and evaluation processing, so it can be constructed easily, conveniently, and efficiently.

    This study provides the first preliminary exploration of state-of-the-art deep learning (DL) algorithm applied to fraudulent phone call recognition, namely CNN. This paper designs, tunes and evaluates the model which is capable of automatically learning phone number and call behavior features of telephone fraud. It demonstrates that CNN-based fraudulent phone call recognition method achieves high accuracy, more than the state-of-the-art classification methods.

    The rest of this paper is structured as follows. Section 1 describes the related work. Section 2 presents the proposed method in details. Section 3 displays the experimental result. Finally, Section 4 concludes with discussion.

    1 Related work

    Scam call activity regularity and behavior features analysis report 2016[5]released by 360 Internet Security Center shows that the survival period of fraudulen phone number is about 57.6 days, the continuous active period is 7.6 days, the average number of calls for a single number in a single day is 185, the average number of calls required for a successful fraud is 1 000, and the average time to complete a successful fraud is 5.4 days.

    This indicates that there are some differences between fraudulent phone call and normal phone call in call frequency, call time, long-distance call rate and other behavior features[6]. At the same time, although fraudulent phone number has randomness and variability, the phone number itself also has certain regularity[7], such as non-standard number, international number, short number or fake number.

    Previous studies have shown that fraudulent phone call can be effectively recognized through cognitive learning of the above phone number and call behavior features. Zhou et al.[6]made a statistical analysis of the call behavior of users and found that the call time frequency, call time interval, call frequency of the same object, call cycle and call interval had obvious regularity. However, due to the limited number of samples, it failed to extract the behavior features of fraudulent phone call. Wang et al.[8]proposed a recognition method of nuisance calls based on the random forest. It preliminarily found that phone numbers had features that could be used to identify them. However, the accuracy of the algorithm was only 84.30%. Ji et al.[3]proposed a recognition method of fraudulent phone call based on SVM. It only constructed a classifier for the call behavior feature of fraudulent phone call, but did not analyze the phone number features of fraudulent phone call and the accuracy of the algorithm was only 76%. Other researchers[9-11]chose to use the decision tree and naive Bayesian models to classify and analyze call behavior features. This paper constructs a classifier for fraudulent phone call recognition, explores one deep learning method and finally achieves a higher classification accuracy than the state-of-the-art machine learning algorithms.

    2 Proposed method

    2.1 The constructed classifier

    In this paper, an easy, convenient, and efficient classifier is designed. Fig.1 shows the overview of constructed classifier. It consists of feature extraction & data preprocessing phase and training & evaluation phase.

    Fig.1 Overview of the classifier

    In the first phase, it extracts non-statistical features and statistical features from CDR, and then preprocesses the above data for next stage. In the second phase, it utilizes special algorithms to train the model and complete the evaluation task.

    (1) Feature extraction and data preprocessing

    Seven features are extracted from 6 fields of CDR, which result in 176 dimensions. The 6 fields are START_TIME, END_TIME, CALLING_NUMBER, CALLED_NUMBER, CALL_DURATION, and CALLED_LOCATION.

    Non-statistical feature:CALLING_NUMBER is extracted from all records as non-statistical feature. Meanwhile, duplicate CALLING_NUMBER in one day is removed.

    The main operation of data preprocessing is to complete the length of the CALLING_NUMBER to 17 digits with zero and use One-Hot Encoding for digital conversion. Finally, a length-170 array is constructed, which represents a non-statistical feature, namely, CALLING_NUMBER.

    Statistical feature: Based on the above CALLING_NUMBER, six features are extracted from all records as statistical features. They are the number of CALLED_NUMBER, the number of CALLED_NUMBER (de-duplication), the maximum similarity of CALLED_NUMBER, the average similarity of CALLED_NUMBER, the average CALL_DURATION, and the number of CALLED_LOCATION. The statistical period is one day.

    The main operation of data preprocessing is to Min-Max Normalization of all statistical features except the maximum similarity of the CALLED_NUMBER and the average similarity of the CALLED_NUMBER. The Min-Max Normalization is calculated according to Eq.(1). Finally, all statistical features are converted in the range of [0,1], and a length-6 array is constructed, which represents the 6 statistical features.

    x′=(x-X_min) / (X_max-X_min)

    (1)

    (2) Training and evaluation

    Two types of features are concatenated together and used as input to this layer. They jointly optimize the same category target.

    Multiple supervised machine learning algorithms, such as k-nearest neighbors (KNN), decision tree (DT), RF, SVM and some DL algorithms, are utilized to train the model and evaluate whether the phone call is fraudulent.

    2.2 The proposed algorithm

    Convolutional neural network is extension of traditional multi-layer perception, based on local receive fields, shared weights and spatial or temporal sub-sampling. A CNN consists of an input layer and an output layer, as well as multiple hidden layers. The hidden layers include convolutional layers, pooling layers, fully connected layers and normalized layers. Convolutional layers apply a convolution operation to the input, passing the result of the next layer. Pooling layers combine the outputs of neural clusters at one layer into a single neuron in the next layer. Fully connected layers connect every neuron in one layer to every neuron in another layer. The above 7 feature vectors can be reshaped into one-dimensional structure. They are reshaped into 1×176. A 1D-CNN is used to process these feature vectors.

    The architecture of network is imported from Alexnet, and summarized in Fig.2. The net contains 8 layers. The first 2 layers are convolutional, the third layer is pooling, the fourth and fifth layers are convolutional, the sixth layer is pooling, and the remaining 2 are fully-connected. The output of the last fully-connected layer is fed to a 2-way softmax which produces a distribution over the 2 class labels.

    Fig.2 The structure of convolutional neural network model

    The ReLU (rectified linear) is applied to the output of every convolutional and fully-connected layer. The first convolutional layer filters the 1×176 input data with 64 kernels of size 1×3 with a stride of 1 step. The second convolutional layer takes the output of the first convolutional as input and filters it with 128 kernels of size 1×3. The maximum pooling function is used in the third layers, and its pool size is 1×2. The fourth to sixth layers are the same as the first 3 layers. The first fully-connected layer has 512 neurons. The cross entropy is selected as the loss function. Dropout is deployed to reduce the over-fitting. After the third and sixth layers, 25% of the neuron information is discarded. After the first fully-connected layer, 50% of the neuron information is discarded. All neurons are used in the test.

    3 Experiments

    3.1 Datasets

    The data collected includes all CDR (from BICC/ISUP and SIP signaling) for 6 months from September 2018 to February 2019. There are more than 6 million normal phone calls and 8 284 fraudulent phone calls. In real-world environments, the proportion of fraudulent phone call samples to normal phone call samples is very small.

    The experiment is conducted in 4 datasets, which are summarized in Table 1. All samples are randomly divided into 2 parts: training set and test set. The training set consists of 5 000 normal phone call samples and 5 000 fraudulent phone call samples. The test set consists of 3 000 normal phone call samples and 3 000 fraudulent phone call samples. The proportion of normal phone call samples to fraudulent phone call samples is 1:1. In the remainder of the text, this dataset is referred to as SC1. Similarly, for datasets that the proportion of normal phone call samples to fraudulent phone call samples is 10:1, 100:1, and 200:1 are referred to as SC10, SC100,and SC200accordingly.

    Table 1 The datasets overview

    3.2 Experimental setting

    Several classic and popularly used machine learning algorithms are used for comparison including KNN, SVM (linear kernel) and SVM (RBF kernel).

    In KNN classification, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among itsknearest neighbors.

    Support vector machine is a kind of generalized linear classifier which classifies data by supervised learning. Its decision boundary is the maximum-margin hyperplane for solving learning samples. The selection of SVM kernel plays a vital role in its performance.

    The implementation of the CNN classifier uses Keras[12]with Tensorflow[13]back-end. The experimental environment is a server with an Intel i9-9900k, 64 GB DDR4 memory and one Nvidia RTX2080Ti GPU.

    3.3 Evaluation

    Accuracy is the criterion of evaluation. The accuracy rate is the proportion of all the correct sample sizes to the training data during the iterative training, which is calculated according to Eq.(2). To ensure the reliability of experiments, the models’ performance is estimated by conducting a 10-fold cross-validation on each dataset.

    (2)

    Table 2 shows the accuracy results of 4 algorithms under 4 datasets. CNN has the highest accuracy and its effect remains stable. It is 1.6%, 3.7%, 8%, 2.43% higher than the second best algorithm using 4 datasets, respectively. It achieves the highest accuracy of 98.67% in SC10.

    Table 2 The accuracy of classification under different algorithms and different datasets

    The results are depicted in Fig.3 for 4 algorithms. All algorithms achieve high accuracy in the first 2 datasets. With the change of sample equilibrium, namely, like real-world environments, the number of normal phone call sample in the training set is far more than fraudulent phone call sample, KNN, SVM (RBF kernel), and CNN are getting less accurate but still effective in the last 2 datasets. However, the accuracy of SVM (linear kernel) has decreased dramatically to about 50%. For binary classification, this means that the algorithm fails. One possible reason for the performance drop is that the classifier trained and evaluated in small data size might learn the partial or error features instead.

    The main conclusion here is that the CNN-based classifier is capable of extracting accurate identifying information from the phone number and call behavior features of telephone fraud. It works very well and outperforms other competing methods.

    Fig.3 The accuracy of 4 models for 4 datasets

    4 Conclusions

    Fraudulent phone call recognition represents an essential task for both preventing and curbing fraud effectively. In this study, a new method is proposed for fraudulent phone call recognition which is evaluated on the real-world datasets. The experimental results show that the proposed novel method has the ability of learning phone number and call behavior features of telephone fraud automatically and outperforms other competing methods. The obtained success rate exceeds 98% in the datasets evaluation. The method has 3.9% more classification accuracy than the state-of-the-art method on average. In conclusion, the application of deep learning algorithm makes fraudulent phone call recognition accurate and effective.

    欧美一区二区国产精品久久精品| 高清在线国产一区| 亚洲av五月六月丁香网| 热99在线观看视频| 啪啪无遮挡十八禁网站| 精品无人区乱码1区二区| 国产色婷婷99| 日本-黄色视频高清免费观看| 国产高清激情床上av| 亚洲av一区综合| 国产成人aa在线观看| 色尼玛亚洲综合影院| 日本熟妇午夜| 日韩精品有码人妻一区| 69人妻影院| 午夜激情欧美在线| 搡老熟女国产l中国老女人| 国产女主播在线喷水免费视频网站 | 亚洲,欧美,日韩| 国产极品精品免费视频能看的| 午夜福利欧美成人| 丝袜美腿在线中文| 高清在线国产一区| 欧美三级亚洲精品| 国产精品人妻久久久影院| 在线观看午夜福利视频| 国产大屁股一区二区在线视频| 国产精品不卡视频一区二区| 久久人人精品亚洲av| 狂野欧美激情性xxxx在线观看| 国产高清激情床上av| 我要搜黄色片| 特大巨黑吊av在线直播| 老熟妇乱子伦视频在线观看| 久久这里只有精品中国| videossex国产| 九九爱精品视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 成人三级黄色视频| 九九热线精品视视频播放| 99在线视频只有这里精品首页| 国产 一区 欧美 日韩| 成年版毛片免费区| 国产高清激情床上av| 亚洲av第一区精品v没综合| 成年免费大片在线观看| 欧美精品啪啪一区二区三区| 国产精品久久久久久亚洲av鲁大| 亚洲性夜色夜夜综合| 欧美xxxx性猛交bbbb| 免费在线观看日本一区| 国产高清视频在线播放一区| 天堂√8在线中文| 午夜福利视频1000在线观看| 国内精品久久久久精免费| 99视频精品全部免费 在线| 黄色女人牲交| 啪啪无遮挡十八禁网站| 国产色爽女视频免费观看| 全区人妻精品视频| 亚洲内射少妇av| 久9热在线精品视频| 啦啦啦观看免费观看视频高清| 免费观看在线日韩| 亚洲精品国产成人久久av| 午夜激情欧美在线| 不卡视频在线观看欧美| 亚洲精品日韩av片在线观看| 亚洲aⅴ乱码一区二区在线播放| 91麻豆av在线| 成人特级黄色片久久久久久久| 亚洲一级一片aⅴ在线观看| 俺也久久电影网| av在线老鸭窝| 日韩人妻高清精品专区| 精品久久久久久久久av| 99热这里只有是精品在线观看| 在线播放无遮挡| 亚洲av中文av极速乱 | 国产探花极品一区二区| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 99久国产av精品| 久久久久国产精品人妻aⅴ院| 国产一区二区三区av在线 | 国产精品三级大全| 很黄的视频免费| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 久久久久久久午夜电影| 免费看日本二区| 亚洲欧美日韩东京热| 亚洲精品日韩av片在线观看| 亚洲va在线va天堂va国产| 十八禁国产超污无遮挡网站| 麻豆久久精品国产亚洲av| 精品久久久久久久久av| 老司机午夜福利在线观看视频| 黄色配什么色好看| 国产精品人妻久久久影院| 在线免费十八禁| 亚洲中文日韩欧美视频| 五月伊人婷婷丁香| 99久久精品国产国产毛片| 99热精品在线国产| 男人舔奶头视频| 偷拍熟女少妇极品色| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 在线免费观看的www视频| 99在线视频只有这里精品首页| 少妇的逼水好多| 亚洲真实伦在线观看| 搡老妇女老女人老熟妇| 精品人妻一区二区三区麻豆 | 日本五十路高清| 搡老妇女老女人老熟妇| 十八禁国产超污无遮挡网站| 国产精品福利在线免费观看| 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| av在线观看视频网站免费| 欧美日韩乱码在线| 在线播放国产精品三级| 久久热精品热| 女人十人毛片免费观看3o分钟| 色尼玛亚洲综合影院| 日本-黄色视频高清免费观看| 国产精品三级大全| 婷婷丁香在线五月| 麻豆成人av在线观看| 色综合亚洲欧美另类图片| 真人一进一出gif抽搐免费| 在线国产一区二区在线| 国产蜜桃级精品一区二区三区| 日本一二三区视频观看| 尾随美女入室| 一a级毛片在线观看| 最后的刺客免费高清国语| 国产精品一区二区免费欧美| 最好的美女福利视频网| 一本久久中文字幕| 成人永久免费在线观看视频| 丰满人妻一区二区三区视频av| 99在线视频只有这里精品首页| 日韩欧美在线乱码| 国产蜜桃级精品一区二区三区| 日本欧美国产在线视频| 午夜免费男女啪啪视频观看 | 天美传媒精品一区二区| 真实男女啪啪啪动态图| 国产精品无大码| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 日韩精品青青久久久久久| 男女之事视频高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美 国产精品| 嫩草影院精品99| 91麻豆av在线| 国内少妇人妻偷人精品xxx网站| 国产精品自产拍在线观看55亚洲| 级片在线观看| 一区二区三区高清视频在线| 一夜夜www| 黄色丝袜av网址大全| ponron亚洲| 成人美女网站在线观看视频| 色在线成人网| 麻豆国产av国片精品| 欧美日韩国产亚洲二区| 精品午夜福利在线看| 国产视频内射| 国产熟女欧美一区二区| 深爱激情五月婷婷| 亚洲图色成人| 在线观看av片永久免费下载| 性插视频无遮挡在线免费观看| 日本一本二区三区精品| 18禁黄网站禁片免费观看直播| 春色校园在线视频观看| 18+在线观看网站| 18禁黄网站禁片免费观看直播| 性色avwww在线观看| 窝窝影院91人妻| 国产 一区精品| 性插视频无遮挡在线免费观看| 成人欧美大片| 国产91精品成人一区二区三区| 欧美xxxx性猛交bbbb| 欧美日韩瑟瑟在线播放| 久久久久久国产a免费观看| 亚洲精品456在线播放app | 成人性生交大片免费视频hd| 国产精品一区二区三区四区免费观看 | 亚洲18禁久久av| 亚洲一区高清亚洲精品| 人妻夜夜爽99麻豆av| 免费看美女性在线毛片视频| 国产成人a区在线观看| 色在线成人网| 欧美成人a在线观看| 99精品在免费线老司机午夜| 草草在线视频免费看| 99精品久久久久人妻精品| 欧美激情久久久久久爽电影| 国产男人的电影天堂91| 精品午夜福利视频在线观看一区| 欧美又色又爽又黄视频| 一个人观看的视频www高清免费观看| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 少妇熟女aⅴ在线视频| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 国产精品久久视频播放| av在线亚洲专区| 欧美bdsm另类| xxxwww97欧美| 22中文网久久字幕| 嫁个100分男人电影在线观看| 国产伦在线观看视频一区| 日韩欧美三级三区| 中文字幕免费在线视频6| 国产女主播在线喷水免费视频网站 | 久久亚洲真实| 国产伦一二天堂av在线观看| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 精品人妻1区二区| 高清毛片免费观看视频网站| 99久久九九国产精品国产免费| 久久久久久久午夜电影| 精品一区二区三区av网在线观看| 久久精品久久久久久噜噜老黄 | 22中文网久久字幕| 天美传媒精品一区二区| 免费av观看视频| 国产私拍福利视频在线观看| 欧美另类亚洲清纯唯美| 欧美日本亚洲视频在线播放| 国产人妻一区二区三区在| 国产毛片a区久久久久| 女生性感内裤真人,穿戴方法视频| 亚洲不卡免费看| 日韩人妻高清精品专区| 久久久色成人| 在线天堂最新版资源| 深爱激情五月婷婷| 看黄色毛片网站| 日日撸夜夜添| 精品久久久久久成人av| 色在线成人网| aaaaa片日本免费| 亚洲中文字幕一区二区三区有码在线看| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 欧美极品一区二区三区四区| 又粗又爽又猛毛片免费看| 18禁裸乳无遮挡免费网站照片| 人人妻人人看人人澡| 高清日韩中文字幕在线| 亚洲不卡免费看| 亚洲乱码一区二区免费版| 国产淫片久久久久久久久| 国产精品1区2区在线观看.| 黄色视频,在线免费观看| av在线老鸭窝| 国产私拍福利视频在线观看| 国内久久婷婷六月综合欲色啪| 亚洲真实伦在线观看| 欧美色视频一区免费| .国产精品久久| 观看美女的网站| 日韩一区二区视频免费看| 亚洲综合色惰| 99热这里只有精品一区| 国产 一区精品| 成人av在线播放网站| 在线观看免费视频日本深夜| 欧美zozozo另类| 18+在线观看网站| 十八禁网站免费在线| 91麻豆av在线| 久久国产乱子免费精品| 欧美色欧美亚洲另类二区| 欧美日韩黄片免| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 日本色播在线视频| 又爽又黄无遮挡网站| 久久久久久九九精品二区国产| 中亚洲国语对白在线视频| 日本熟妇午夜| 亚洲av第一区精品v没综合| 亚洲av中文字字幕乱码综合| 色哟哟·www| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 欧美高清性xxxxhd video| 国产精品福利在线免费观看| 两人在一起打扑克的视频| 22中文网久久字幕| 日韩 亚洲 欧美在线| 免费观看在线日韩| 毛片女人毛片| 日韩中文字幕欧美一区二区| 亚洲欧美清纯卡通| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片 | 亚洲无线观看免费| 国产精品爽爽va在线观看网站| 国产探花在线观看一区二区| 国产av不卡久久| 男女那种视频在线观看| 免费电影在线观看免费观看| 乱码一卡2卡4卡精品| 热99在线观看视频| 日本在线视频免费播放| 日本 av在线| 国产精品不卡视频一区二区| 国产一区二区激情短视频| 午夜精品一区二区三区免费看| 一进一出好大好爽视频| 中文在线观看免费www的网站| 男女下面进入的视频免费午夜| 免费看日本二区| 免费看a级黄色片| 午夜激情欧美在线| av天堂在线播放| 国产成人aa在线观看| 悠悠久久av| 久久九九热精品免费| 久久香蕉精品热| 亚洲av第一区精品v没综合| 中文资源天堂在线| 制服丝袜大香蕉在线| 亚洲国产日韩欧美精品在线观看| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av涩爱 | 99在线人妻在线中文字幕| 老女人水多毛片| 一进一出好大好爽视频| 真实男女啪啪啪动态图| 亚洲av成人av| 啦啦啦韩国在线观看视频| 亚洲18禁久久av| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| 国产高清三级在线| 亚洲一级一片aⅴ在线观看| 日韩欧美国产在线观看| 亚洲av美国av| 亚洲在线观看片| 亚洲精品色激情综合| 日本一本二区三区精品| 免费高清视频大片| 精品久久久噜噜| 色吧在线观看| 又黄又爽又刺激的免费视频.| 他把我摸到了高潮在线观看| 十八禁国产超污无遮挡网站| 波多野结衣高清作品| 色尼玛亚洲综合影院| 最新中文字幕久久久久| av黄色大香蕉| 97超视频在线观看视频| 中文字幕久久专区| 国产一区二区激情短视频| 日日摸夜夜添夜夜添小说| 国产男人的电影天堂91| 美女被艹到高潮喷水动态| 色哟哟·www| 午夜视频国产福利| 俄罗斯特黄特色一大片| 日韩,欧美,国产一区二区三区 | 动漫黄色视频在线观看| 国产欧美日韩一区二区精品| 成人国产一区最新在线观看| 久久99热6这里只有精品| 人人妻人人澡欧美一区二区| 亚洲精品456在线播放app | 久久久精品大字幕| 国产精品日韩av在线免费观看| 成人精品一区二区免费| av在线天堂中文字幕| 欧美日韩国产亚洲二区| 亚洲aⅴ乱码一区二区在线播放| 色综合色国产| 嫁个100分男人电影在线观看| 久久精品91蜜桃| 午夜精品在线福利| 亚洲专区中文字幕在线| 国产亚洲欧美98| 搡老岳熟女国产| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 久久久久久久久久久丰满 | 亚洲欧美精品综合久久99| 精品久久久久久久久亚洲 | АⅤ资源中文在线天堂| 久久久久久久久中文| 听说在线观看完整版免费高清| 中文资源天堂在线| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播放欧美日韩| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 在线免费观看不下载黄p国产 | 精品人妻一区二区三区麻豆 | 欧美性感艳星| 黄色配什么色好看| 18禁裸乳无遮挡免费网站照片| 999久久久精品免费观看国产| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 成年女人毛片免费观看观看9| 3wmmmm亚洲av在线观看| 高清在线国产一区| 国产男人的电影天堂91| 18+在线观看网站| 欧美性感艳星| 欧美不卡视频在线免费观看| 亚洲精品久久国产高清桃花| 国产精品久久久久久久电影| 日韩 亚洲 欧美在线| 自拍偷自拍亚洲精品老妇| 精品午夜福利视频在线观看一区| 91麻豆精品激情在线观看国产| 男女那种视频在线观看| 色综合站精品国产| 欧美绝顶高潮抽搐喷水| 久久久久国内视频| 22中文网久久字幕| 久久精品国产99精品国产亚洲性色| 午夜a级毛片| 亚洲天堂国产精品一区在线| 国产黄a三级三级三级人| 看黄色毛片网站| 国产黄色小视频在线观看| 亚洲av二区三区四区| 午夜福利视频1000在线观看| 嫩草影视91久久| 又爽又黄无遮挡网站| 日韩欧美三级三区| 成人综合一区亚洲| 国产精品女同一区二区软件 | 午夜精品在线福利| 神马国产精品三级电影在线观看| 成熟少妇高潮喷水视频| 精品乱码久久久久久99久播| 国产激情偷乱视频一区二区| 露出奶头的视频| 成人永久免费在线观看视频| 欧美成人a在线观看| 国产一区二区三区视频了| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 亚洲人与动物交配视频| 欧美又色又爽又黄视频| 亚洲美女搞黄在线观看 | a在线观看视频网站| 国产精品综合久久久久久久免费| 美女高潮的动态| 男女做爰动态图高潮gif福利片| 观看免费一级毛片| 亚洲狠狠婷婷综合久久图片| 婷婷亚洲欧美| 麻豆国产av国片精品| 人人妻人人澡欧美一区二区| 亚洲第一电影网av| АⅤ资源中文在线天堂| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品免费久久| 日韩精品青青久久久久久| 人妻久久中文字幕网| 97超视频在线观看视频| 在线观看舔阴道视频| 欧美成人a在线观看| 两个人的视频大全免费| 蜜桃亚洲精品一区二区三区| 国产精品免费一区二区三区在线| 欧美高清成人免费视频www| 亚洲国产精品成人综合色| 国产一级毛片七仙女欲春2| 三级毛片av免费| 黄片wwwwww| 成人美女网站在线观看视频| 在线观看美女被高潮喷水网站| 小说图片视频综合网站| 国产亚洲av嫩草精品影院| 99国产极品粉嫩在线观看| 蜜桃久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 亚洲,欧美,日韩| 久久久久九九精品影院| 亚洲精品一区av在线观看| 别揉我奶头 嗯啊视频| 美女高潮喷水抽搐中文字幕| 色综合婷婷激情| 嫩草影院新地址| 变态另类成人亚洲欧美熟女| 久久久国产成人免费| 99国产极品粉嫩在线观看| 婷婷丁香在线五月| 免费电影在线观看免费观看| 国产伦精品一区二区三区四那| 国产精品自产拍在线观看55亚洲| 国产毛片a区久久久久| 18禁裸乳无遮挡免费网站照片| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 一a级毛片在线观看| 国产大屁股一区二区在线视频| 国产国拍精品亚洲av在线观看| netflix在线观看网站| 毛片一级片免费看久久久久 | 男人的好看免费观看在线视频| 国产精品综合久久久久久久免费| 午夜福利成人在线免费观看| 亚洲内射少妇av| 一个人看视频在线观看www免费| 色精品久久人妻99蜜桃| 麻豆久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品sss在线观看| 国产精品永久免费网站| 亚洲熟妇熟女久久| 成人永久免费在线观看视频| 午夜福利在线观看吧| 永久网站在线| 亚洲人成伊人成综合网2020| 久久人人精品亚洲av| 日韩欧美在线二视频| 免费高清视频大片| 伦精品一区二区三区| 亚洲精品久久国产高清桃花| 日韩人妻高清精品专区| 亚洲男人的天堂狠狠| 亚洲av美国av| 国产亚洲精品av在线| 欧美黑人巨大hd| 999久久久精品免费观看国产| x7x7x7水蜜桃| 深夜a级毛片| 色尼玛亚洲综合影院| 欧美精品国产亚洲| 韩国av一区二区三区四区| 91在线精品国自产拍蜜月| 麻豆成人av在线观看| 国内精品久久久久久久电影| 国产高清激情床上av| 免费人成在线观看视频色| 免费大片18禁| 亚洲国产精品合色在线| 春色校园在线视频观看| av中文乱码字幕在线| 国产在视频线在精品| 舔av片在线| 国产白丝娇喘喷水9色精品| 久久九九热精品免费| 久久久午夜欧美精品| 久久久久精品国产欧美久久久| 久久99热这里只有精品18| 看黄色毛片网站| av视频在线观看入口| 亚洲电影在线观看av| 欧美色欧美亚洲另类二区| 国产免费av片在线观看野外av| 午夜免费男女啪啪视频观看 | 久久国内精品自在自线图片| 亚洲精品一区av在线观看| 又爽又黄a免费视频| 亚洲精品国产成人久久av| 国产乱人伦免费视频| 能在线免费观看的黄片| 国产av在哪里看| 观看免费一级毛片| 偷拍熟女少妇极品色| 夜夜看夜夜爽夜夜摸| 婷婷丁香在线五月| 久久久久久大精品| 全区人妻精品视频| 欧美成人免费av一区二区三区| 欧美一区二区国产精品久久精品| 欧美不卡视频在线免费观看| 韩国av在线不卡| 丰满人妻一区二区三区视频av| 久久精品国产亚洲av涩爱 | 18禁裸乳无遮挡免费网站照片| 深夜a级毛片| 99久久精品一区二区三区| www.www免费av| 精华霜和精华液先用哪个| 成人精品一区二区免费| 春色校园在线视频观看| 3wmmmm亚洲av在线观看| 欧美高清成人免费视频www| 成年人黄色毛片网站| avwww免费| 中文资源天堂在线| 久久久国产成人免费| 免费av毛片视频| 日韩,欧美,国产一区二区三区 | 久久精品国产亚洲av香蕉五月| 亚洲成av人片在线播放无| 真人一进一出gif抽搐免费| 久久99热这里只有精品18| 搞女人的毛片|