李杰章 譚光輝 吳磊 覃媛鈺 張依裕
摘要:【目的】明確IP3R3對蛋殼性狀的效應機制及其在蛋殼品質改良中的應用價值,為開展蛋殼品質改良分子標記育種提供參考依據,也為深入研究IP3R3基因的生物學功能打下基礎。【方法】以288羽三穗鴨為研究對象,收集45周齡母鴨生產的鴨蛋,測定蛋重、蛋形指數、蛋殼厚度、蛋殼強度和蛋殼重;采用DNA直接測序法對三穗鴨IP3R3基因SNP位點進行鑒定,使用SHEsis進行單倍型及連鎖不平衡分析,通過RNAfold預測不同單倍型的mRNA二級結構和自由能,并以SPSS 18.0中的一般線性模型(GLM)對三穗鴨IP3R3基因SNP位點與蛋殼品質進行關聯分析?!窘Y果】在三穗鴨IP3R3基因外顯子上發(fā)現2個SNPs位點,分別位于第49外顯子的g.35195T>C和g.35207G>A,均屬于同義突變,且均存在3種基因型,對應的多肽信息含量(PIC)分別為0.330和0.276,屬于中度多態(tài)位點(0.25
關鍵詞: 三穗鴨;IP3R3基因;SNP位點;蛋殼品質;關聯性
中圖分類號: S834.89 ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2020)07-1729-08
Abstract:【Objective】To clarify the effect mechanism of IP3R3 on eggshell traits and its application value in eggshell quality improvement, provide reference basis for molecular marker breeding of eggshell quality improvement and lay a foundation for further research on the biological function of IP3R3 gene. 【Method】Taking 288 Sansui ducks as the research object, duck eggs produced by 45-week old female ducks were collected, and egg weight, egg shape index, eggshell thickness, eggshell strength and eggshell weight were measured. The SNP sites of Sansui duck IP3R3 gene were identified by DNA direct sequencing, and haplotype and linkage disequilibrium analysis were performed by SHEsis. The secondary structure and free energy of different haplotypes mRNA were predicted by RNAfold, and the correlation analysis between SNP sites of Sansui duck IP3R3 gene and eggshell quality was conducted by general linear model(GLM) in SPSS 18.0. 【Result】Two SNPs sites were found on the IP3R3 exon of Sansui duck, respectively located at g.35195T>C and g.35207G>A of exon 49, both of which were synonymous mutations, and there were three genotypes. The corresponding polypeptide information contents(PIC) were 0.330 and 0.276, respectively, belonging to moderate polymorphism sites (0.25
Key words: Sansui duck; IP3R3 gene; SNP locus; eggshell quality; correlation
Foundation item: National Natural Science Foundation of China(31760663); Guizhou Outstanding Young Scientific and Technological Talents Subsidy Project(QKHPTRC〔2017〕5788); Guizhou Province Thousand-level Innovative Ta-lents Project(701030174401)
0 引言
【研究意義】我國是典型的農業(yè)大國,畜禽養(yǎng)殖在國民經濟中占據重要地位,而家禽養(yǎng)殖業(yè)又是畜牧產業(yè)的重要組成部分。禽蛋是人類重要的食品之一,由蛋殼、蛋黃、蛋白和蛋系帶等部分組成,其中蛋殼是抵御外界物理損傷和微生物侵染的重要屏障;但在養(yǎng)殖過程中常出現大量的軟殼蛋,嚴重影響禽蛋品質,且在運輸和保存過程中易造成較大經濟損失,直接影響?zhàn)B殖經濟效益(張佳蘭等,2008;Dunn et al.,2009)。因此,如何有效提高蛋殼品質已成為當前家禽育種的焦點,通常在育種方案中將分子標記育種與蛋殼品質選擇相結合,以期進一步改善蛋殼品質?!厩叭搜芯窟M展】1,4,5-三磷酸肌醇(Inositol 1,4,5-trisphosphate,IP3)受體(IP3R)是四聚體細胞內鈣離子(Ca2+)釋放通道家族,幾乎位于所有哺乳動物細胞類型的肌質網膜上,包括平滑肌細胞(Smooth muscle cells,SMC),其主要定位于內質網(Endoplasmic reticulum,ER),在細胞內的Ca2+釋放通道中普遍表達,且通過開放響應IP3和Ca2+結合以調控Ca2+從細胞器中釋放出來(Soulsby and Wojcikiewicz,2005;Narayanan et al.,2012)。在鳥類和哺乳動物中存在3種IP3R亞型(IP3R1、IP3R2和IP3R3),三者在其一級序列中具有高度的相似性,同源性達70%~80%(Chaloux et al.,2007)。盡管3種IP3R亞型的結構高度相似性,但其編碼基因(IP3R1、IP3R2和IP3R3)的表達模式存在明顯差異(Yamamoto-Hino et al.,1994;Wojcikiewicz,1995;Taylor et al.,1999),且在各種細胞類型中的表達程度也不同。IP3R1基因在神經元中高度表達;IP3R2基因主要在心肌和肝細胞中高度表達;IP3R3基因主要在快速增殖的細胞中表達,如上皮細胞(Kuchay et al.,2017)。IP3R3基因表達多種腫瘤壞死因子并調節(jié)腫瘤細胞的侵襲和增殖(Sakakura et al.,2003;Kang et al.,2017),可通過促進IP3R3和Ca2+介導的細胞凋亡,而抑制腫瘤生長(Kang et al.,2010);也可通過調節(jié)Ca2+以降低乳腺癌細胞的遷移能力(Mound et al.,2017)。此外,IP3R3基因表達與細胞的圓度指數呈負相關,其沉默可誘導細胞骨架重組,導致細胞周徑變小,細胞黏附性降低;IP3R3基因沉默還顯示出振蕩的Ca2+濃度特征,在細胞骨架早期修復中發(fā)生主要的振蕩特征(Furukawa et al.,2003;Morikawa et al.,2008;Tsai et al.,2015)。已有研究證實,雞子宮上皮細胞中有IP3R3基因表達(Jonchère et al.,2010;Brionne et al.,2014),其子宮內膜鈣化可增加IP3R3基因的表達水平,且明顯高于同樣具有活性鈣代謝的腦膜和十二指腸,揭示IP3R3對子宮內膜細胞中的Ca2+轉運具有重要調節(jié)作用,具體表現為促進蛋殼鈣化(Rodríquez-Navarro et al.,2015)。生物礦化是一種鈣化,是通過Ca2+與碳酸根離子(CO32?)的共沉淀形成蛋殼。蛋殼礦化的先決條件是通過跨細胞運輸在有限的細胞外環(huán)境中供應大量Ca2+,因此需要離子通道、離子泵和離子交換劑的存在及活化(Jonchére et al.,2012;Nys and Roy,2018)。子宮是為蛋殼形成提供最快礦化的主要部位,Ca是蛋殼鈣化過程中的必需元素,且不斷從血液供應到子宮液中以抵抗?jié)舛忍荻龋∟ys et al.,2004)。Ca2+轉移到子宮液中涉及IP3R3或其他Ca2+通道進入蛋殼腺細胞,其中,鈣結合蛋白-D28k(CALB1)作用于細胞內轉運,而Na+/Ca2+或Ca2+/H+交換確保Ca2+輸出(Bahadoran et al.,2018)?!颈狙芯壳腥朦c】目前,國內外針對IP3R3的研究主要集中在信號通路及其對Ca2+促細胞凋亡轉移抗癌等方面,IP3R主要參與Ca2+釋放,尤其是IP3R3對動物機體Ca2+的轉運具有重要調控作用,但至今在家禽上鮮有研究報道?!緮M解決的關鍵問題】以三穗鴨為研究對象,采用DNA直接測序法對IP3R3基因的SNP位點進行鑒定,并分析其與蛋殼品質的關聯性,明確IP3R3對蛋殼性狀的效應機制及其在蛋殼品質改良中的應用價值,為開展蛋殼品質改良分子標記育種提供參考依據,也為深入研究IP3R3基因的生物學功能打下基礎。
1 材料與方法
1. 1 試驗材料
隨機選擇飼養(yǎng)于貴州大學家禽研究所且同日出雛、健康無病、相同飼養(yǎng)管理條件下的三穗鴨288羽,于90日齡時翅靜脈采血0.2~0.5 mL,采用血液/組織/細胞基因組提取試劑盒[DP304,天根生化科技(北京)有限公司]提取基因組DNA,以1.2%瓊脂糖凝膠電泳和NanoDrop2000 DNA濃度測定儀(美國Thermo Scientific公司)聯合評估DNA提取質量,稀釋成100 ng/μL后保存?zhèn)溆谩J占?5周齡母鴨生產的鴨蛋,測定蛋重、蛋形指數、蛋殼厚度、蛋殼強度和蛋殼重共5個指標。
1. 2 引物設計及PCR擴增
根據GenBank收錄的鴨基因組(NC_040072.1)序列信息,利用Primer 3.0(http://primer3.ut.ee/)設計5對特異性擴增引物,引物信息見表1。PCR反應體系20.0 μL:DNA模板1.0 μL,2×Es Taq MasterMix 10.0 μL,上、下游引物(10 pmol/μL)各1.0 μL,ddH2O 7.0 μL。擴增程序:95 ℃預變性8 min;95 ℃ 50 s,退火40 s,72 ℃ 50 s,進行35個循環(huán);72 ℃延伸6 min。
1. 3 三穗鴨IP3R3基因SNP位點鑒定
對288羽三穗鴨的IP3R3基因擴增產物進行純化,然后送至生工生物工程(上海)股份有限公司直接測序,分別采用DNAMAN和Chromas 2.4.1進行SNP位點篩查及鑒定。
1. 4 統(tǒng)計分析
使用Excel 2016計算三穗鴨IP3R3基因各SNP位點的基因型頻率、等位基因頻率、觀測雜合度(Ho)、有效等位基因數(Ne)、期望雜合度(He)和多態(tài)信息含量(PIC),并進行Hardy-Weinberg平衡定律檢驗;采用SHEsis(http://analysis.bio-x.cn/)進行單倍型及連鎖不平衡分析;利用ORF Finder進行氨基酸翻譯,通過RNAfold(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi)預測不同單倍型的mRNA二級結構和自由能;以SPSS 18.0中的一般線性模型(GLM)完成三穗鴨IP3R3基因SNP位點基因型與蛋殼表型數據的關聯分析。
2 結果與分析
2. 1 SNP位點篩選及鑒定結果
利用設計的5對特異性引物對三穗鴨IP3R3基因進行PCR擴增,每個樣品均單獨直接測序和序列比對分析,結果如圖1所示。在三穗鴨IP3R3基因外顯子上發(fā)現2個SNPs位點,分別位于第49外顯子的g.35195T>C和g.35207G>A,且均未引起編碼氨基酸發(fā)生改變,屬于同義突變。
2. 2 SNP位點群體遺傳信息分析結果
通過對三穗鴨IP3R3基因的2個SNPs位點進行群體遺傳信息分析,結果(表2)發(fā)現2個SNPs位點在三穗鴨群體中均存在3種基因型。g.35195T>C位點的優(yōu)勢基因型為TT,其頻率為0.490;g.35207G>A位點的優(yōu)勢基因型為GG,其頻率為0.625。g.35195T>C和g.35207G>A位點的優(yōu)勢等位基因分別為T和G,其頻率分別是0.703和0.792,對應的PIC分別為0.330和0.276,均屬于中度多態(tài)位點(0.25
2. 3 三穗鴨IP3R3基因SNP位點連鎖不平衡及倍型分析結果
利用SHEsis分析三穗鴨IP3R3基因2個SNPs位點的連鎖不平衡,結果顯示,g.35195T>C位點與g.35207G>A位點間的D?和γ2分別為1.000和0.111,表明2個SNPs位點間不存在強的連鎖不平衡(D>0.750,γ2<0.330)。2個SNPs位點聯合共產生3種單倍型(H1、H2和H3),其中,優(yōu)勢單倍型H3(TG)的頻率為0.495,劣勢單倍型H2(TA)的頻率為0.208(表3)。對3種單倍型進行組合共得到6種雙倍型(H1H1、H1H2、H1H3、H2H2、H2H3和H3H3),其中,優(yōu)勢雙倍型H1H3(CTGG)的頻率為0.333,劣勢雙倍型H2H2(TTAA)的頻率為0.031(表3)。
2. 4 三穗鴨IP3R3基因SNP位點對mRNA二級結構的影響
采用RNAfold對所構建的3種單倍型mRNA二級結構進行預測分析,結果(圖2)顯示,3種單倍型的mRNA二級結構存在一定差異(圓圈部分),對應的mRNA二級結構最小自由能也不同,其中,單倍型H1的mRNA二級結構最小自由能為-475.50 kJ/mol,單倍型H2的為-476.50 kJ/mol,單倍型H3的為-476.10 kJ/mol,說明在三穗鴨IP3R3基因外顯子上發(fā)現的2個SNPs位點突變能引起基因mRNA二級結構和自由能改變。
2. 5 三穗鴨IP3R3基因SNP位點基因型與蛋殼品質的關聯分析結果
利用SPSS 18.0分析三穗鴨IP3R3基因SNP位點各基因型與蛋殼品質的關聯性,結果(表4)顯示,g.35195T>C和g.35207G>A位點對三穗鴨蛋殼厚度、蛋殼強度、蛋形指數、蛋重和蛋殼重的影響均未達顯著水平(P>0.05,下同),說明IP3R3基因單個SNP位點對三穗鴨蛋殼品質無顯著影響。
2. 6 三穗鴨IP3R3基因SNP位點雙倍型與蛋殼品質的關聯分析結果
三穗鴨IP3R3基因SNP位點雙倍型與三穗鴨蛋殼品質的關聯分析結果(表5)表明,雙倍型H1H1個體的蛋殼強度顯著高于其他雙倍型個體(P<0.05,下同),雙倍型H2H2個體的蛋形指數顯著低于其他雙倍型個體,其他雙倍型個體間均無顯著差異。
3 討論
IP3R是細胞內Ca2+釋放通道家族,近年來人們對該受體的研究主要集中在調節(jié)信號通路上,而鮮見IP3R基因多態(tài)性對禽類生產性能影響的研究報道。本研究通過對PCR擴增產物直接測序,發(fā)現在三穗鴨IP3R3基因外顯子上存在2個SNPs位點,其群體遺傳信息分析結果顯示,g.35195T>C和g.35207G>A位點均處于中度多態(tài)(0.25
本研究通過對三穗鴨IP3R3基因的2個SNPs位點進行分析,發(fā)現均為同義突變,不影響編碼氨基酸改變。編碼區(qū)的同義突變會影響該基因的表達功能,進而影響個體間的表現型(Ren et al.,2014)。Komar(2007)研究報道,天然存在的SNP位點可導致編碼相同氨基酸的核苷酸序列在合成蛋白產物時,其功能和結構發(fā)生改變,可能是SNP位點對可變剪接調控進而干擾其生物學功能(Kelemen et al.,2013)。也有研究表明,MDR1基因中的同義突變導致底物特異性改變(Kimchi-Sarfaty et al.,2007),而山羊POU1F1基因的同義突變與其產奶量和出生體重有關(Lan et al.,2007)。說明同義突變也是相關研究中不能忽略的突變,因此非常有必要明確IP3R3基因同義突變與蛋殼品質間的關聯機制。本研究通過對三穗鴨IP3R3基因2個SNPs位點進行連鎖不平衡分析,結果表明,g.35195T>C位點與g.35207G>A位點間的D為1.000、γ2為0.111,兩者間不存在強的連鎖不平衡。2個SNPs位點聯合共構建獲得3種單倍型,其中,優(yōu)勢單倍型H3(TG)的頻率為0.495,劣勢單倍型H2(TA)的頻率為0.208。在疾病遺傳和性狀分析研究中,基因對性狀的影響表現為單倍型共同作用可能比單個SNP位點的作用更大(Akey et al.,2001),說明單倍型可在選育過程中發(fā)揮重要作用。采用RNAfold對所構建的3種單倍型mRNA二級結構進行預測分析,發(fā)現單倍型H1的mRNA二級結構最小自由能最大,為-475.50 kJ/mol,即單倍型H1的mRNA二級結構穩(wěn)定性最低;單倍型H2的mRNA二級結構最小自由能最小(-476.50 kJ/mol),說明其mRNA二級結構最穩(wěn)定。2個SNPs位點的改變均對mRNA二級結構產生一定影響,且有可能影響各細胞內的細胞因子,通過影響IP3R3通路對Ca2+的釋放而影響蛋殼形成。
蛋殼基質蛋白基因的多態(tài)性被認為與蛋殼強度和蛋殼厚度有關(Dunn et al.,2009),也有研究證實雞子宮上皮細胞中有IP3R3存在(Jonchère et al.,2010;Brionne et al.,2014)。為此,本研究利用SPSS 18.0分析三穗鴨IP3R3基因SNP位點各基因型與蛋殼品質的關聯性,結果發(fā)現g.35195T>C和g.35207G>A位點對三穗鴨蛋殼厚度、蛋殼強度、蛋形指數、蛋重和蛋殼重的影響均未達顯著水平。光照強度可影響蛋殼厚度,且較長光照時間可導致較早的性成熟(Lewis et al.,1999,2010)。母雞隨著年齡的增加其產蛋率下降,且軟殼蛋和破裂蛋的發(fā)生率顯著增加,卵殼鈣化不良似乎是由于卵殼腺的某些功能障礙所致,還可能與IP3R3基因調節(jié)的Ca2+分泌有關(Joyner et al.,1987)。光照刺激主要通過視覺和激素調節(jié)系統(tǒng)來發(fā)揮作用,其相關基因則可能影響鴨的性成熟或激素分泌,進一步通過IP3R3調控Ca2+對蛋殼品質的影響,本研究選取45周齡(產蛋高峰期)的三穗鴨,說明蛋殼品質與年齡無關。此外,本研究發(fā)現2個SNPs位點共同聯合引起的基因結構變化強于單個SNP位點對基因結構變化的影響,其對蛋殼品質的調控作用可能更有效;同時對2種單倍型進行組合共獲得6種雙倍型,經關聯分析發(fā)現雙倍型H1H1個體的蛋殼強度顯著高于其他雙倍型個體,而雙倍型H2H2個體的蛋形指數顯著低于其他雙倍型個體,其他雙倍型個體間均無顯著差異。通過對雙倍型的關聯分析可降低單個SNP位點受環(huán)境、其他SNP位點及其他相關微效基因的影響,也充分說明采用雙倍型關聯分析在評估品種和種群遺傳改良時更準確(李天科等,2015)。蛋殼品質性狀受多種基因調控,除基因遺傳外,還受溫度、光照和日齡等相關因素的影響(張亞男,2017;劉聰等,2019;譚光輝等,2019)。因此,今后應從蛋白組和轉錄組等水平進行深入挖掘,提供更有育種價值的SNP位點或單倍型,以推動家禽育種發(fā)展。
4 結論
三穗鴨IP3R3基因與蛋殼品質有一定關聯性。在三穗鴨IP3R3基因外顯子上發(fā)現的2個SNPs位點能引起基因mRNA二級結構和自由能改變,其構建的雙倍型可作為主效候選基因或與主基因緊密連鎖的分子標記用于鴨蛋殼品質改良。
參考文獻:
李天科,趙娟花,裴杰,梁春年,郭憲,秦文,閻萍. 2015. 牦牛Ihh基因組織表達分析、SNP檢測及其基因型組合與生產性狀的關聯分析[J]. 畜牧獸醫(yī)學報,46(1):50-59. [Li T K,Zhao J H,Pei J,Liang C N,Guo X,Qin W,Yan P. 2015. Tissue expression,SNP detection and association of genotype combination of Ihh gene with production traits in yak[J]. Acta Veterinaria et Zootechnica Sinica,46(1):50-59.]
劉聰,李華,張正芬,華國洪,羅杰靈,于輝. 2019. 清遠麻雞快慢羽品系產蛋性能比較分析[J]. 南方農業(yè)學報,50(7):1625-1631. [Liu C,Li H,Zhang Z F,Hua G H,Luo J L,Yu H. 2019. Comparative analysis of laying performance between early and late feathering strains in Qingyuan Pa-tridge Chickens[J]. Journal of Southern Agriculture,50(7):1625-1631.]
譚光輝,平立鋒,熊建民,覃媛鈺,吳磊,李杰章,張依裕. 2019. 三穗鴨IP3R3基因的表達、遺傳變異及對蛋殼品質效應的影響[J]. 農業(yè)生物技術學報,27(11):2033-2041. [Tan G H,Ping L F,Xiong J M,Qin Y Y,Wu L,Li J Z,Zhang Y Y. 2019. Expression,genetic variation of IP3R3 gene and its effect on eggshell quality in Sansui duck (Anas platyrhyncha domestica)[J]. Journal of Agricultu-ral Biotechnology,27(11):2033-2041.]
張佳蘭,趙玉琴,高玉鵬. 2008. 蛋雞周齡對褐殼蛋蛋殼品質的影響[J]. 西北農業(yè)學報,17(2):48-50. [Zhang J L,Zhao Y Q,Gao Y P. 2008. Effect of age of brown hen on eggshell quality[J]. Acta Agriculturae Boreali-occidentalis Sinica,17(2):48-50.]
張亞男. 2017. 飼糧錳調控雞蛋殼品質的作用機制研究[D]. 北京:中國農業(yè)科學院. [Zhang Y N. 2017. Dietary manganese supplementation modulated eggshell quality in laying hens[D]. Beijing:Chinese Academy of Agricultu-ral Sciences.]
Akey J,Jin L,Xiong M. 2001. Haplotypes vs single marker linkage disequilibrium tests:What do we gain?[J]. European Journal of Human Genetics,9(4):291-300.
Bahadoran S,Samani A D,Hassanpour H. 2018. Effect of heat stress on the gene expression of ion transporters/channels in the uterus of laying hens during eggshell formation[J]. Stress,21(1):51-58.
Brionne A,Nys Y,Hennequet-Antier C,Gautron J. 2014. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process[J]. BMC Genomics,15:220. doi:10.1186/1471-2164-15-220.
Chaloux B,Caron A Z,Guillemette G. 2007. Protein kinase A increases the binding affinity and the Ca2+ release activity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F cells[J]. Biology of the Cell,99(7):379-388.
Dunn I C,Joseph N T,Bain M,Edmond A,Wilson P W,Milona P,Nys Y,Gautron J,Schmutz M,Preisinqer R,Waddinqton D. 2009. Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurementsin pedigree Rhode Island Red hens[J]. Animal Genetics,40(1):110-114.
Furukawa R,Maselli A,Thomson S A M,Lim R W L,Stokes J V,Fechheimer M. 2003. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium[J]. Journal of Cell Science,116(Pt 1):187-196.
Goliásová E,Wolf J. 2004. Impact of the ESR gene on litter size and production traits in Czech Large White pigs[J]. Animal Genetics,35(4):293-297.
Jonchère V,Brionne A,Gautron J,Nys Y. 2012. Identification of uterine ion transporters for mineralisation precursors of the avian eggshell[J]. BMC Physiology,12:10. doi:10.1186/1472-6793-12-10.
Jonchère V,Réhault-Godbert S,Hennequet-Antier C,Cabau C,Sibut V,Cogburn L A,Nys Y,Gaytron J. 2010. Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg[J]. BMC Genomics,11:57. doi:10.1186/1471-2164-11-57.
Joyner C J,Peddie M J,Taylor T G. 1987. The effect of age on egg production in the domestic hen[J]. General and Comparative Endocrinology,65(3):331-336.
Kang S S,Han K S,Ku B M,Lee Y K,Hong J,Shin H Y,Antoine A G,Woo D H,Brat D J,Eun M H,Yoo S H,Chung K C,Park S H,Peak S H,Roh E J,Lee S J,Park J Y,Traynelis S F,Lee C J. 2010. Inhibition of the Ca2+ release channel,IP3R subtype 3 by caffeine slows glioblastoma invasion and migration and extends survival[J]. Cancer Research,70(3):1173-1183.
Kang S,Hong J,Lee J M,Moon H E,Jeon B,Choi J,Yoon N A,Paek S H,Roh E J,Lee C J,Kang S S. 2017. Trifluoperazine,a well-known antipsychotic,inhibits glioblastoma invasion by binding to calmodulin and disinhibiting calcium release channel IP3R[J]. Molecular Cancer The-rapeutics,16(1):217-227.
Kelemen O,Convertini P,Zhang Z Y,Wen Y,Shen M L,Falaleeva M,Stamm S. 2013. Function of alternative splicing[J]. Gene,514(1):1-30.
Kimchi-Sarfaty C,Oh J M,Kim I W,Sauna Z E,Calcaqno A M,Ambudkar S V,Gottesman M M. 2007. A “silent”polymorphism in the MDR1 gene changes substrate specificity[J]. Science,315(5811):525-528.
Komar A A. 2007. Silent SNPs:Impact on gene function and phenotype[J]. Pharmacogenomics,8(8):1075-1080.
Kuchay S,Giorgi C,Simoneschi D,Paqan J,Missiroli S,Saraf A,Florens L,Washburn M P,Collazo-Lorduy A,Castillo-Martin M,Sebti S M,Pinton P,Paqano M. 2017. PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth[J]. Nature,546(7659):554-558.
Lan X Y,Pan C Y,Chen H,Zhang C L,Li J Y,Zhao M,Lei C Z,Zhang A L,Zhang L. 2007. An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits[J]. Small Ruminant Research,73(1-3):8-12.
Leal S M. 2010. Detection of genotyping errors and pseudo-SNPs via deviations from Hardy-Weinberg equilibrium[J]. Genetic Epidemiology,29(3):204-214.
Lewis P D,Danisman R,Gous R M. 2010. Photoperiods for broiler breeder females during the laying period[J]. Poultry Science,89(1):108-114.
Lewis P D,Morris T R,Perry G C. 1999. Light intensity and age at first egg in pullets[J]. Poultry Science,78(8):1227-1231.
Morikawa K,Goto T,Tanimura A,Kobayashi S,Maki K. 2008. Distribution of inositol 1,4,5-trisphosphate receptors in rat osteoclasts[J]. Acta Histochemica et Cytoche-mica,41(2):7-13.
Mound A,Vautrin-Glabik A,Foulon A,Botia B,Haque F,Parys J B,Ouadid-Ahidouch H,Rodat-Despoix L. 2017. Downregulation of type 3 inositol(1,4,5)-trisphosphate receptor decreases breast cancer cell migration through an oscillatory Ca2+ signal[J]. Oncotarget,8(42):72324-72341.
Narayanan D,Adebiyi A,Jaggar J H. 2012. Inositol trisphosphate receptors in smooth muscle cells.[J]. American Journal of Physiology. Heart and Circulatory Physiolgoy,302(11):H2190-H2210.
Nys Y,Gautron J,Garcia-Ruiz J M,Hincke M T. 2004. Avian eggshell mineralization:Biochemical and functional cha-racterization of matrix proteins[J]. Comptes Rendus Palevol,3(6-7):560-562.
Nys Y,Roy N L. 2018. Chapter 22—Calcium homeostasis and eggshell biomineralization in female chicken[J]. Vitamin D,1:361-382.
Ren G,Huang Y Z,Wei T B,Liu J X,Lan X Y,Lei C Z,Zhang C L,Zhang Z Y,Qi X L,Chen H. 2014. Linkage disequilibrium and haplotype distribution of the bovine LHX4 gene in relation to growth[J]. Gene,538(2):354-360.
Rodríquez-Navarro A B,Marie P,Nys Y,Hincke M T,Gautron J. 2015. Amorphous calcium carbonate controls avian eggshell mineralization:A new paradigm for understan-ding rapid eggshell calcification[J]. Journal of Structural Biology,190(3):291-303.
Sakakura C,Hagiwara A,Fukuda K,Shimomura K,Takagi T,Kin S,Nakase Y,Fujiyama J,Mikoshiba K,Okazaki Y,Yamagishi H. 2003. Possible involvement of inositol 1,4,5-trisphosphate receptor type 3(IP3R3) in the peritoneal dissemination of gastric cancers[J]. Anticancer Research,23(5A):3691-3697.
Soulsby M D,Wojcikiewicz R J H. 2005. The type III inositol 1,4,5-trisphosphate receptor is phosphorylated by cAMP-dependent protein kinase at three sites[J]. The Biochemical Journal,392(Pt 3):493-497.
Taylor C W,Genazzani A A,Morris S A. 1999. Expression of inositol trisphosphate receptors[J]. Cell Calcium,26(6):237-251.
Tsai F C,Kuo G H,Chang S W,Tsai P J. 2015. Ca2+ signa-ling in cytoskeletal reorganization,cell migration,and cancer metastasis[J]. BioMed Research International,2015:409245. doi:10.1155/2015/409245.
Wojcikiewicz R J. 1995. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types[J]. The Journal of Biolo-gical Chemistry,270(19):11678-11683.
Yamamoto-Hino M,Sugiyama T,Hikichi K,Mattei M G,Hasegawa K,Sekine S,Sakurada K,Miyawaki A,Furuichi T,Haseqawa M. 1994. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors[J]. Receptors and Channels,2(1):9-22.
(責任編輯 蘭宗寶)