王 珊
跳過程驅動的隨機時滯微分方程的指數(shù)穩(wěn)定性
王 珊
(萍鄉(xiāng)學院 工程與管理學院,江西 萍鄉(xiāng) 337000)
文章研究了一類跳過程驅動的時滯隨機微分方程的穩(wěn)定性。利用Banach不動點定理和一些不等式得到了在一定條件下,Mild解存在且是均方指數(shù)穩(wěn)定的。
隨機發(fā)展方程;Lévy跳過程;Mild解;指數(shù)穩(wěn)定性
隨機(偏)微分方程用來刻畫一個系統(tǒng)的變化過程,在數(shù)學、經(jīng)濟、金融、工程等領域有著廣泛的應用,其解的存在性、唯一性、穩(wěn)定性等漸近性質得到廣泛的研究[1~4]。Zhang-Chen[3]研究了帶Markov切換的隨機時滯微分方程全局解的存在唯一性、具有一般衰減函數(shù)的p階矩和幾乎必然指數(shù)穩(wěn)定性。Ji等[4]研究了具有有限或可數(shù)狀態(tài)空間的帶切換和跳擴散過程的穩(wěn)定性問題。關于隨機微分方程的系統(tǒng)知識和理論可以見文獻[5~7]。
眾所周知,生活中充滿了各種各樣隨機因素的干擾。一般地,Brown運動刻畫連續(xù)軌道的隨機擾動。但是當一些隨機干擾非常劇烈時,這種干擾會使系統(tǒng)在短時間內發(fā)生不連續(xù)的變化。因此,Brown運動刻畫的隨機因素對這類現(xiàn)象的描述會有一點局限,研究者們用Lévy跳過程來表示這類不連續(xù)的變動。Lévy過程驅動的隨機微分方程在排隊論、保險風險、數(shù)理金融等領域有著重要的應用,其性質得到了廣泛的研究[8~10]。Zhu[10]利用反證法研究了一類Lévy過程驅動的隨機時滯微分方程,得到了方程穩(wěn)定的充分條件。
Banach不動點定理是泛函分析中重要的定理之一。很多學者利用此定理來研究微分方程的穩(wěn)定性[11~12]。本文將利用不動點定理來研究如下的Lévy跳過程驅動的隨機時滯微分方程的指數(shù)穩(wěn)定性:
我們先介紹一些背景知識、假設和引理。
因此可以得到:
根據(jù)式(4)、式(7),有
[1] T. Taniguchi. Asymptotic stability theorems of semilinear stochastic evolution equations in hilbert spaces[J]. Stochastics, 1995, 53: 1~2, 41~52.
[2] D. Li, S. Liu, J. Cui. Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching[J]. J. Differential Equations, 2019, 266: 3973~4017.
[3] T. Zhang, H.B. Chen. The stability with a general decay of stochastic delay differential equations with Markovian switching[J]. Appl. Math. Comput., 2019 359: 294~307.
[4] H.J. Ji, J.H. Shao, F.B. Xi. Stability of regime-switching jump diffusion processes[J]. J. Math. Anal. Appl. 2020, 484: 123727.
[5] X. Mao. Stochastic Differential Equations and their Applications[M]. Horwood Publishing, Chichester, 2007.
[6] X.R. Mao, C.G. Yuan. Stochastic Differential Equations with Markovian Switching[M]. London, Imperial College Press, 2006.
[7] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions[M]. Cambridge University Press, Cambridge, 2014.
[8] J.W. Luo, K. Liu. Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps[J]. Stochastic Process. Appl., 2008, 118: 864~895.
[9] T. Taniguchi. The existence and asymptotic behaviour of solutions to non-Lipschitz stochastic functional evolution equations driven by Poisson jumps [J]. Stochastics, 2010, 82(4): 339~363.
[10] Q.X. Zhu. Stability analysis of stochastic delay differential equations with Lévy noise[J]. Syst. Control Lett., 2018, 118:62~68.
[11] L. Wei, Q.X. Zhu et.al. p-th moment exponential stability of hybrid stochastic fourth-order parabolic equations [J]. Adv. Difference Equ., 2016, 2016: 65.
[12] J.W. Luo, T. Taniguchi. Fixed Points and Stability of Stochastic Neutral Partial Differential Equations with Infinite Delays[J]. Stoch. Anal. Appl., 2009: 27(6): 1163~1173.
Exponential Stability of Stochastic Delay Differential Equations Driven by Jump Processes
WANG Shan
(School of Management and Engineering, Pingxiang University, Pingxiang Jiangxi 337000, China)
In the paper, the stability of a class of stochastic delay differential equations driven by Lévy jump processes is studied. By making use of Banach fixed point theorem and some inequality techniques, the Mild solution is obtained and is exponentially stable under certain conditions.
stochastic evolution equation; Lévy jump processes; Mild solution; exponential stability
2020-06-18
萍鄉(xiāng)學院青年科研基金項目(2018D0224)
王珊(1987—),女,江西萍鄉(xiāng)人,講師,碩士,研究方向:隨機微分方程及其應用。
O211.63
A
2095-9249(2020)03-0001-06
〔責任編校:范延琛〕