• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scalable Clock Synchronization Analysis:A Symmetric NoncooperativeOutput Feedback Tubes-MPCApproach

    2020-11-05 09:36:22TingWangXiaoquanXuandXiaomingTang
    IEEE/CAA Journal of Automatica Sinica 2020年6期

    Ting Wang, Xiaoquan Xu,and Xiaoming Tang

    Abstract—In the cyber-physical environment, the clock synchronization algorithm is required to have better expansion for network scale. In this paper,a new measurementmodel of observability under the equivalent transformation of m inimum mean square error(MMSE) is constructed based on basic measurement unit (BMU), which can realize the scaled expansion of MMSEmeasurement. Based on the state updating equation of absolute clock and the decoupled measurement modelof MMSElike equivalence, which is proposed to calculate the positive definite invariant set by using the theoretical-practical Luenberger observer as the synthetical observer, the local noncooperative optimal control problem is built,and the clock synchronization system driven by the idealstateof local clock can reach the exponential convergence for synchronization performance. Different from the problem of general linear system regulators, the state estimation error and state control error are analyzed in the established affine system based on the set-theoryin-control to achieve the quantification of state deviation caused by noise interference. Based on the BMU for isomorphic state map, the synchronization performance of clock states between multiple sets of representative nodes isevaluated,and the scale of evaluated system can be stillexpanded. After the synchronization is completed, the state of perturbation system remains in the maximum range of measurement accuracy,and the state of nom inal system can be stabilized at the ideal state for local clock and realizes the exponential convergence of the clock synchronization system.

    I.In t roduction

    W SN(w ireless sensor networks) network scale is expanding,the needs of a large number of cyberphysical applications for high-performance clock synchronization algorithm are also increasing[1].However,due to the dynamic change of communication between nodes,WSN channel conflict,time-varying channel gain and other unreliable transm ission factors,in the face of more stringent complex real environment,the clock synchronization application presentsa greater challenge.

    The engineering background of the paper is reflected in whether the convergent performance of the clock synchronization can be realized independently of the size of the network scale.It can analyze the convergence speed and convergence error quantitatively,which is usually of important practical significance for determ inistic industrial applications(industrial applications for hard real-time),internet of things(IoT),and 5G.For example, the on-line monitoring and acquisition of synchronousdata for large-scale rotary intelligent equipment.

    Early clock synchronization studiesused thew irelesssensor network time synchronization protocol based on the hierarchical structure to estimate clock parameters and synchronize adjustments,such as timing-sync protocol for sensor network(TPSN)[2],reference broadcast synchronization(RBS)[3],flooding time synchronization protocol(FTSP)[4],and so on.The clock synchronization protocolhas good performance on a small network.W ith the development of technology,the network size expands exponentially,and the protocolalgorithm can not meet theenergy constraintsand the constraints of computation consumption.Consensus technology is gradually used for clock synchronization,such as average timesynch(ATS)[5],asynchronous consensus algorithm[6],maximum time synchronization(MTS)[7],and so on.Inspired by the ATS,[8] proposed a novel synchronization protocol,denoted as robust average timesynch (RoATS),to adjust both the nodes’clock frequency and clock offset in a robust way w ith respect to bounded communication delays.In[9],a broad fam ily of random ized clock synchronization protocols based on a second order consensus algorithm are proposed.It is proved that the parameters of the algorithm can always be tuned in such a way that the clock synchronization is achieved in the probabilistic mean-square sense.In[10],the clock synchronization problem for event-driven measurement applications is addressed based on the consensus-based protocol and prelim inary version of the RoATS-like.The relative clock modelas a coupled statemodel depended on the average of the interactions to achieve the synchronous compensation or cooperative control process.Therefore, both of the existing protocols and average methods of consensus were lim ited by the scale of network,and w ith the expansion of network scale,the convergence performance of clock synchronization w ill decrease.

    In recent years,the clock synchronization has beenmainly studied using the statistical signal processing framework[11].The researchers realized that clock synchronization was essentially a parameter estimation problem.The WSN clock synchronization was analyzed by using the statistical signal processing perspective,and the performance of some classical protocolswasevaluated under different network random delay distributions in [11].

    The parameter estimation of clock synchronization w ith processing of statistical signal studied the clock parameters’estimation of different delays and protocols in a unified framework.However,under the scaled expansion of network,based on the synchronous compensation of relative clock model,the convergence for parameter estimation of clock synchronization w ill decrease.Itwas still difficult to quantify and evaluate theestimation errors.

    Recently,consideringmessage delays are not considered in the research of clock synchronization in sensor network,which causes largemean-square-error unconverged clocks,a fully distributed clock offset and skew tracking algorithm using the Kalman filtering was proposed.The Kalman filtering was used in[12]to derive amessage-passingmethod(two-ways-message exchange)for the clock offsets tracking in the presence of message delays.We need to further expand the researching results of the international scholars who have made achievements in the study of time delay.Specifically,delay has been extensively studied,such as[13]and[14].In fact,the clock model in[12]has a new and different nature(the state of node depends on the “noise disturbance”of its own node in state spacemodel).Therefore, by combining the modeling of statistical signal processing w ith the quantitative evaluation framework of networked control theory,we proposea new viewpoint of research.

    The relative clock model as a coupled state model depends on the cooperative control process.The convergence rate of consensus-based method of clock synchronization is lim ited to network size focuses on convergence(stability),which is difficult to quantify and analyze convergence rate,especially for unreliable networks.The interaction of network communication information w ill consume a large amount of energy,and affect w ireless network life cycle.

    For the proportional-integral(PI)controller[15], we could know that when the node isdormant or thenew node joins the WSN,it is needed to rebuild the spanning tree or cluster topology,so itwas notconducive to the expansion of network scale.On the other side,in relative clock model including relative reference node among agents,a second order consensus algorithm[9]employed randomized synchronization communication protocol coupled w ith a PI control at each agent.It was possible to properly tune the linear PI-like control so that the network achieved clock synchronization.

    The absolute clock model in[12]is modeled as the decoupling state model, but the measurement model(using message-passing method in two-way-message exchange)is still the auxiliary measurement process of absolute state,and there is actually a state coupling relationship.It is found through the analysis that [12]cannotmeet the observability of the system.Therefore,we propose the problem of the observability for the modelof theabsolute clock.Based on the framework in[16]and[17],the present paper constructs the measurement model of observability of BMU under the transformation of m inimum mean square error(MMSE),which meets the necessary conditionsof the state’sestimation of system.

    The superiority of predictive control in dealing w ith the industrial constraint problem brings together the advantagesof distributed model[18].Therefore,this is an effective way to solve large-scale clock synchronization problems for cyberphysical applications.Instead,scalable solutions are those solutions whose clock synchronization performance is independent of the system size.Distributed model predictive control(DMPC)algorithm[19]like the cooperative consensus-based method can be used for the solution of synchronization problems of both linear and nonlinear systems.However,it neither take into account the noise perturbation, nor has output feedback that is an important characteristic for clock synchronization and does notadapt to network size.Inspired by the previous work[20],[21]have addressed the DMPC for a set of linear local systems w ith decoupled dynam icsand a coupled global cost function.

    In the industrial cyber-physical networking(including w ireless smart devices embedded in w ireless RF chips),the present paper aims to further improve the clock synchronization enhancing DMPC when considering[22]–[24]on robust and stochastic MPC.On the basis of solid theory,we need to pay more attention to the applicability research of MPC in the specific application fieldmodel[22].The on-line synthesis approaches of MPC have been investigated for networked control systems(NCS)where the packet loss and data quantization are coexisting(see[25]–[27])and networkinduced delays(see[28]and[29]),and it is the one which guarantees the closed-loop stability,i.e.,the closed-loop system is stable whenever the optimization problem is feasible.See[30],[31]for the latest relevant researches for the problem of trajectory tracking under complex constraints.In present paper,we turn the clock synchronization adapted to scalable networks into a set-point tracking problem and design a DMPC to drive the clock parameters of each node to a common ideal clock statesZ.

    The standard method of obtaining unbiased parameter tracking in MPC is to add a perturbation system model to the prediction modeland then use an observer to estimate the real perturbation.Maeder and Morari provide a method of perturbation estimation for any unstable system model in[32].The key point of thismethod is that the selected perturbation system model should meet the internal model condition and the target tracking conditions in the MPC problem are not appropriate for the clock synchronization problem.Other method are robust MPC(RMPC)and stochastic MPC(SMPC).On RMPC, the disturbances are assumed to be bounded and constraints are required to be satisfied for all possible realizations of the disturbance process.In SMPC,on the other hand,disturbances are assumed to be stochastic and not necessarily bounded and(at least some)constraints are softened,i.e., not required to be satisfied for all realizationsof the disturbance[24].Reference[22]comprehensively studies the importance of robustness and stochasticmodel prediction control, points out that the research of model predictive controlneeds to fully consider the industry demand,themain concern is the robustand stochasticmodel predictive control,because these modal MPCs often need to solve complex online optimization control problem.It is pointed out thatwe should consider the further expansion of the Tubes method,and the terminal domain constraints should also be further considered to exploit theMPC advantage.

    The distributed control algorithm studied has exponential convergence,so as to realize the large-scalemulti-point online monitoring of “Industrial IoT”under smart manufacturing.

    The main contributionsof this paper are:

    1)Based on the previous research[16],[17], this paper constructs an observable measurementmodelunder the BMU for absolute clock in the large-scale network from the viewpoint of networked control theory;

    2)Aim ing at the calculation problem of positive definite invariant sets,the observability measurement model of MMSE-like equivalence is proposed to calculate the positive definite invariant set by using the Luenberger observer as the synthetical observer.Then the on-line calculation of the Tubes-MPC method for clock synchronization can be realized;

    3)Using the feedback control strategy and set-theory-incontrol to establish the control error positive definite set,quantitatively analyzing the deviation between the estimated system state and the nom inal system statew ith ameasurement model of observability.The exponential stability convergence performance of Tubes-MPC for clock synchronization is achieved;

    4)The determ ined estimated value of the absolute state by using the equivalent observability measurement model of MMSE is based on the ideal state as public reference target.The problem of clock synchronization is transformed into the problem of set-point tracking to ideal state for local clock.

    II.Clock Synch ronizat ion System/Framework Based on Netw orked Cont rol Perspective

    Fig.1 describes the main modules involved in the clock synchronization system.In this paper,The clock synchronization is carried out according to the above procedure.There is no specificity between the nodes.The processmainly involves:

    4)Clock Parameter Estimation

    Estimator:Due to the different network environment of different nodes,each node may have differentmeasurement quality,and because of the presence of noise in the measurement process,the state is polluted.According to the

    Fig.1.A distributed absolute clock synchronization system framework based on networked control perspective.

    For each node w ithin the WSN,repeat the above process,the cumulative clock offset of each node and the estimated value of the clock skew are approaching the state target,and tend to the standard reference time,that is, to achieve distributed clock synchronization.

    It is proved that clock synchronization model based on control also applies to the separation principle(“3.Control Strategy in Clock Synchronization”in[16]).For the state estimator and controller design in Fig.1,a separation principle is proposed to decompose the controller of the stochastic control system into two parts:state estimation and determ inistic feedback control[16].When applying this principle,the state of the system is estimated based on the random observation data,and then the estimated value is regarded as the real state.The optimal control law is designed according to the deterministic system.Reference[16]proposed the stochastic optimal control of the networked control perspective based on the relative clock state space model.

    III.Dist r ibu ted Upda ting M odel of Absolu te Clock Sta te Based on Networked Cont rol

    The absolute clock statemodel is established by analyzing the underlying hardware clock counting error.According to the discrete clock reading model in[12],the optimal control quantityis updated, then the logic clock reading value is updated in each sample cycle. After adding the control decision, the iterative relationship of the clock read is

    Fig.2.Clock synchronization cycle.

    IV.Loca l ized Obser ver Design

    A. Local Observation Model

    Since the clock state of the node can not be obtained directly,it is necessary to observe the clock state of the node by means of its neighbor node,we construct the observer to estimate the clock state.This section gives two local clock stateobservation models.

    We use two-way time-stamp exchange based on the senderreceiver,so that the delay induced by the network can be categorized into the random delay in the observation.

    1) Proposal of Problem

    According to the detailed analysis in Appendix A,a state spacemodelof the system clockmade up of themeasurement model of the system established by using themechanism of two-way message exchange and the state-decoupled state transition equation cannot meet the observability of the system state in [12].

    Fig.3.State vector space for absolute clock model.

    Fig.4.A set of clock information exchange processes ( and are symmetrical measurement information each other).

    2) Analysisof Physical Process,Strategy and Transformation of MMSE Equivalence

    According to the modern control theory,in order to determ ine the internal state of the system through measurements,it is the key to ensure the observability of the system that needs correctly selecting the appropriate measurement model.For this purpose,we introduce a BMU to study the nature of physical process of two-way message exchange in depth and establish an auxiliary measurement model of theabsolute clock.

    W ith the help of the auxiliary measurement model,the relative measurement model in[12]is transformed into a decoupled equivalent measurement model w ith MMSE performance through a linear transformation,consequently the observability of the system can be ensured.Referring to the process of this equivalent transformation,a modified Luenberger observer is constructed and an upper bound of its error covariance exists.This is described as the follow ing Theorem 1.

    Theorem 1:Considering(19)–(21),and(25),the observability of BMU has established the necessary conditions for equivalentmeasurement of MMSE:Equations(19)–(26)are established to represent the evolutionary cues of observability in measurement model of the system.Under the analysis model of the BMU,an auxiliary measurement model conforming to the physical process is constructed.Through the equivalent transformation for measurement of MMSE,a measurement model for observability of the subsystem is established to realize theobservability of the subsystem.

    It is proved that “equivalent transformation of MMSE performance”indicates that the independent measurement noise in(21)is converted here into the correlated measurement noise.The MMSE-like measurement can be performed using the distributed Luenberger observer(The MMSE measurement can be performed using distributed Kalman filter,and see Appendix C for proof).

    Proof (Strategy of Observability):Clear demonstration for observability of BMUs can be seen in Appendix B for details.This section serves asa refined version of the follow ing proof to help usunderstand the key detailsand major points.

    B. Low-Complexity Luenberger State Observer(MMSE Measurement Equivalence—Theoretical Observer)

    Proposition 1:Due to the observability of observer is the necessary condition for equivalentmeasurement of MMSE,when we perform the MMSE-likemeasurement equivalence,the proposed alternatives can be traded the between online controllersand replaced by offline optim ization.

    Using the decoupled observation model(25)and the coupled observation model(21)established in the previous section,the decoupled observer and the coupled observer can be established,respectively.

    In fact,based on themarsurement accuracy of the Kalman filter in[12],we have carried on the indepth analysis to the equivalent transformation of the MMSE in the observer measurement.Different from[12],it has been strictly proved that the equivalent transformation of MMSE which satisfies observability exists in the distributed Kalman filter w ith the state-space model of absolute clock.

    Based on the theoretical analysis of the equivalent transformation of MMSE,the decoupling measurement can be realized in the equivalent transformation of MMSE through two-way message exchange(as shown in Appendix B,observability can be achieved.).Considering the characteristics of the Luenberger observer w ith low computational complexity,weusea Luenberger observer.

    Considering the state space(7)of the system and the decoupled observation model(26),we can build a decentralized Luenberger observer

    C. Low-Complexity Luenberger State Observer(MMSE Measurement Equivalence—Practical Observer)

    Proposition 2:Reversing reconstruction from relative state to absolute state estimation,online measurement is regarded as theMMSE-like measurement equivalence.

    Considering the state space equation(7)of the system and the coupled measurement model(22),a distributed Luenberger observer can be established.The coupled measurement equation(22)deals only w ith the states of its own node and all neighbor nodes.The standard Luenberger observer isdecomposed into a distributed form

    V.Design of Dist r ibuted Clock Synchroniza tion Quant ita tive Ana lysis System Based on Tubes-MPC

    In this section,wemainly discuss the controldecision based on the parameter tracking,and propose a distributed Tubes-MPC clock synchronization algorithm based on thenetworked control perspective to realize the fully distributed clock synchronization which does not depend on special reference nodes.

    Use a recent review[24]and a recent paper[33]on model predictive control in industry.Reference[22]emphasizes that many proposals for robust and stochastic model predictive control are probably too complex for current implementation in the process industries where most applications are to be found and to encourage the development of simpler alternatives.These simplifications employ nom inal predictive control w ith tightened constraints; the tightened constraints are determined offline using possibly extensive,stochastic optim ization[34].The alternatives are allbased on tube based model predictive control[35]–[37].In the paper,the alternatives as online controller strategies are based on specific absolute clock model.

    Theorem 2:Simpler online controllers employed nom inal model predictive control w ith tightened constraints steer nom inal states to converge to common ideal statew ith exponential speed,and clock states(skew and accumulate offset)are centered on the nominal states,when the state tracking are independent between nodes(detail proof see the SectionsV-A and V-B).

    According to the analysis of Section IV,it is different from the strict discussion of the general linear system in[38].In otherwords,it is applicable to the characteristics of the clock state space evolution model,and the deep understanding of the clock synchronization problem,the discrete time affine timeinvariant system model isestablished for the node.

    A.Tubes-MPC Design of Affine System Based on Origin

    Corollary 1 provides usw ith the necessary theoretical basis for obtaining the output feedback model predictive control of the original perturbation system.It has been known that the Tubes-MPC is studied for general linear systems in[38].Due to the particularity of the clock synchronization problem,the relationship(2) between the cumulative clock offset and the instantaneous skew leads to the introduction of the offsetin the state space equation(7).We study the Tubes-MPC algorithm for the clock synchronization affine system.In order to obtain the control strategy which meets the requirements,the Tubes-MPC method of the affine system based on origin is designed,and then extended to the Tubes-MPC method based on the set-pointto solve the clock synchronization problem.The Tubes-MPC also uses the initial state of the nom inal system as a decision variable so that the optimal control problem is closely related to the traditional optimal control problem that only the control sequence is taken as the decision variable in terms of the properties of the objective function.The traditional optimal control problemhas no uncertainty. According to Corollary 1,in order to ensure that the perturbation system satisfies the original constraint(33),has a constraint that is tighter than the original constraint,whereis the current state andis the prediction domain,and the control domain is.Define problemPN(xˉ):

    B.Tubes-MPC Design of the Affine System in Set-Point Tracking to Ideal State for Local Clock

    Section V-A discusses themore common origin-based state tracking problems.However,the clock synchronization problem driven by the ideal state is essentially a set-point tracking problem.This section w ill continue to discuss the design of the Tubes-MPC under the clock synchronization problem based on the above basic conclusions.

    For a clock synchronization affine system w ith an ideal stateZas the target

    Fig.5.A block diagram of distributed absolute clock synchronization system based on networked control perspective.

    C. Robustness of Tubes-MPC Clock Synchronization Algorithm

    VI.Clock Synchroniza tion A lgor ithm Based on Outpu t Feedback Model Predict Con t rol

    TABLE I Clock Synch ronization A lgor ithm Based on Output Feedback Model Predict Cont rol

    VII.Simu lat ion and Per formance Eva lua tion

    Fig.6. Network topology.

    TABLE II List of System Parameters

    Fig.7.State tracing trajectory based on quantization boundary constraint driven by set-point.

    Fig.8.Single-nodeoriginal disturbance system state trajectory.

    Fig.9.System states and control variation chart.

    Fig.10.Different initial points clock parameter variation chart.

    Fig.10 shows that the state sequences of the systems w ith the same nodes at different initial points have the same downward trend,which is the result of implementing the same control law.In order to reflect the dependency of the Tubes-MPC on the initialvalue of the state,and more clearly observe the state trajectory after the clock synchronization,we take different clock initialization states parameters and reduce the distance between the initial state parameter and the ideal state.It shows that nodes w ith different initial points are driven to the setwhere the initial parameter deviates from the ideal state,and the disturbance state continues to converge to the small range of targetZafter the disturbance system state enters the set,asshown Fig.11.

    Fig.11.Tubes-MPC control trajectories at different initial.

    Fig.12.Tim ing diagram of each system stateunder Tubes-MPC.

    In Figs.12(a)and 12(b),it is clear thatall nodes have clock synchronization after 15 times synchronizations in the case of a large initial parameter difference,indicating that the Tubes-MPC is the initial parameter and there is no dependency relationship.At the same time,Figs.12(a)and 12(b)also show at the differentstarting points the system is driven to the invariant setw ith the exponentialspeed.It isknown that when the node clock skew is 1,it reduces the clock offset deviation between the nodes in the non-synchronization time,for more intuitively display clock synchronization between nodes,as shown in Figs.13(a)and 13(b)which reflect synchronization trend between clock readings among nodes.In this paper,it is considered that the clock reading deviation between nodes is no more than,which means that the clock synchronization is achieved.Since the system state w ill change,the node clock readingsw ill still occurw ithin a small range of deviation, but they are w ithin the allowable range.

    Fig.13.Clock readings.

    Figs.14(a)and 14(b)show the exponential convergence of the system state for all nodes under different sampling periods.Figs.15(a)and 15(b)show the clock readings of all nodes under different sampling periods,revealing synchronization situation of all nodes.Figs.14 and 15 show that all nodes synchronize at the 15th step,revealing that the number of synchronization steps is not affected by the sampling period when the clock synchronization method synchronizes all nodes.The simulation results show that the clock synchronization method has some robustness to the sampling period,the relative size of the error invariantsetcan also be controlled by selecting an appropriate sampling period.

    Fig.14.Tim ing diagram of each system state.

    VIII.Conc lusion

    Fig.15.Clock reading of all node.

    In thispaper,a new exploration ismade from thenetworked control perspective,and a quantitative analysis and design method of clock synchronization problem based on the output feedback model predictive control is proposed.Based on the two-way information exchangemechanism of w ireless sensor networks(including w ireless smart devices embedded in w irelessRF chips),an equivalent decoupled observer model is proposed. An output feedback model predictive controller for the affine system is designed.The robust exponential convergence of the clock synchronization system is established,and the error synchronization set is used to quantize the clock synchronization parameter boundary.The symmetric noncooperative MPC method has network-scale adaptability.Based on the ideal state of the local clock,it calculates online and controls,therefore it has a smaller load of communication(the power consumption of the sensor node ismainly caused by the load of communication).Themethod has a certain degree of robustness to the sampling period;the output feedback model predictive control and the general model predictive control has the same computational complexity.

    According to more strict proof,theexponential convergence for the state tracking method of clock synchronization designed by the proposed measurementmodel of the MMSE equivalent transformation of observability does notdepend on the expansion of network scale.The proposed method is suitable for the application of large-scale industrial Internetof Things.

    Appendix A Proposa l o f Problem

    Appendix B Proof of Observabil ity for BMU

    Through the above study,it isknown that the system(67)is unobservable,and using the multiple sets of measurements can only determine the relative amountof clock state between the center nodeand the neighbor nodes.In order to determ ine the state of node,a self-statemeasurement model can be built by analyzing the mechanism of two-way information exchange for each node

    色综合站精品国产| 国产精品日韩av在线免费观看 | 午夜福利一区二区在线看| 97碰自拍视频| 亚洲精品在线美女| 亚洲国产欧美日韩在线播放| 99久久久亚洲精品蜜臀av| 丝袜美足系列| 色婷婷av一区二区三区视频| 黑人操中国人逼视频| 99热国产这里只有精品6| 如日韩欧美国产精品一区二区三区| 亚洲av成人一区二区三| 多毛熟女@视频| 最新在线观看一区二区三区| 啪啪无遮挡十八禁网站| 免费高清在线观看日韩| 一a级毛片在线观看| 精品人妻在线不人妻| 99在线人妻在线中文字幕| 国产精品 国内视频| 国产成人欧美在线观看| 91九色精品人成在线观看| 丝袜美足系列| 身体一侧抽搐| 亚洲第一av免费看| 国产真人三级小视频在线观看| 久久国产精品影院| 免费日韩欧美在线观看| 麻豆久久精品国产亚洲av | 国产精品久久视频播放| 三级毛片av免费| 精品福利永久在线观看| 男女之事视频高清在线观看| 长腿黑丝高跟| 淫秽高清视频在线观看| 在线免费观看的www视频| 久久精品国产亚洲av香蕉五月| 久热这里只有精品99| 在线免费观看的www视频| 久热这里只有精品99| av在线播放免费不卡| 男人舔女人的私密视频| 神马国产精品三级电影在线观看 | 97超级碰碰碰精品色视频在线观看| 精品熟女少妇八av免费久了| 欧美人与性动交α欧美精品济南到| 天天添夜夜摸| 免费在线观看完整版高清| 99re在线观看精品视频| netflix在线观看网站| 成人亚洲精品av一区二区 | 国产熟女xx| 欧美成人性av电影在线观看| 精品国产一区二区三区四区第35| 欧美乱色亚洲激情| 99国产精品一区二区三区| 国产又爽黄色视频| 亚洲专区中文字幕在线| 9热在线视频观看99| 亚洲国产精品合色在线| 亚洲 欧美 日韩 在线 免费| 女同久久另类99精品国产91| 欧美日韩av久久| av天堂久久9| 国产日韩一区二区三区精品不卡| 亚洲人成伊人成综合网2020| 国产av精品麻豆| 成人亚洲精品一区在线观看| 成人免费观看视频高清| 久久欧美精品欧美久久欧美| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| 国产一区二区三区在线臀色熟女 | 日本五十路高清| 啦啦啦免费观看视频1| 他把我摸到了高潮在线观看| 精品久久久久久久毛片微露脸| 视频区欧美日本亚洲| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 女性生殖器流出的白浆| 亚洲av熟女| 俄罗斯特黄特色一大片| 黑人欧美特级aaaaaa片| 在线观看免费视频网站a站| 国产亚洲欧美在线一区二区| 黑丝袜美女国产一区| 亚洲一区二区三区色噜噜 | 少妇 在线观看| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠躁躁| 免费在线观看日本一区| 老司机午夜十八禁免费视频| 亚洲全国av大片| 一级黄色大片毛片| 久久亚洲精品不卡| 亚洲精品美女久久久久99蜜臀| 亚洲成人国产一区在线观看| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 黄片大片在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 在线天堂中文资源库| 日韩欧美三级三区| 国产亚洲精品第一综合不卡| 巨乳人妻的诱惑在线观看| 女人高潮潮喷娇喘18禁视频| 欧美乱妇无乱码| 岛国视频午夜一区免费看| 欧美黑人精品巨大| 欧美激情久久久久久爽电影 | av欧美777| 久久草成人影院| 女性生殖器流出的白浆| 免费在线观看视频国产中文字幕亚洲| 一级片'在线观看视频| 制服人妻中文乱码| 亚洲精品国产色婷婷电影| 男男h啪啪无遮挡| 日日夜夜操网爽| 夜夜躁狠狠躁天天躁| 精品一区二区三区四区五区乱码| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲av一区麻豆| 久久久国产一区二区| 日本vs欧美在线观看视频| 中出人妻视频一区二区| 最新美女视频免费是黄的| www.熟女人妻精品国产| 国产精品电影一区二区三区| 高清欧美精品videossex| 一区福利在线观看| 中文字幕人妻丝袜一区二区| 每晚都被弄得嗷嗷叫到高潮| 一级毛片精品| 欧美激情久久久久久爽电影 | 国产精品 国内视频| 久久天躁狠狠躁夜夜2o2o| 国产伦人伦偷精品视频| 欧美激情极品国产一区二区三区| 九色亚洲精品在线播放| 国产三级在线视频| 狂野欧美激情性xxxx| 免费人成视频x8x8入口观看| 日韩大尺度精品在线看网址 | 国产成人av激情在线播放| 久久久久九九精品影院| 久久久国产一区二区| 亚洲免费av在线视频| 一级片免费观看大全| 国产精品 国内视频| 黄片大片在线免费观看| 欧美激情高清一区二区三区| 亚洲一码二码三码区别大吗| 欧美日韩视频精品一区| 正在播放国产对白刺激| 久久精品亚洲熟妇少妇任你| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 国产精品久久久久久人妻精品电影| 成人国语在线视频| 亚洲av片天天在线观看| 侵犯人妻中文字幕一二三四区| 欧美国产精品va在线观看不卡| 国产精品电影一区二区三区| 操美女的视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 在线播放国产精品三级| 中文字幕精品免费在线观看视频| 国产精品综合久久久久久久免费 | 精品久久久久久久久久免费视频 | 天天添夜夜摸| 黄色视频,在线免费观看| aaaaa片日本免费| 黄色毛片三级朝国网站| 国产99白浆流出| 日日爽夜夜爽网站| 美女午夜性视频免费| 久久国产精品影院| 国产成人欧美在线观看| 亚洲狠狠婷婷综合久久图片| 69av精品久久久久久| 十分钟在线观看高清视频www| 在线观看免费高清a一片| 身体一侧抽搐| 天堂动漫精品| 在线观看免费日韩欧美大片| 免费久久久久久久精品成人欧美视频| 午夜福利影视在线免费观看| 99国产极品粉嫩在线观看| 国产精品日韩av在线免费观看 | 黄色视频不卡| 波多野结衣一区麻豆| 黄片播放在线免费| 国产精品免费视频内射| 日韩欧美一区二区三区在线观看| 亚洲一区二区三区欧美精品| 国产日韩一区二区三区精品不卡| 国产免费男女视频| 亚洲 欧美 日韩 在线 免费| 久久人人精品亚洲av| 久久精品国产亚洲av香蕉五月| 免费高清视频大片| 亚洲精品国产精品久久久不卡| av在线天堂中文字幕 | 在线观看午夜福利视频| 黄色怎么调成土黄色| 超碰97精品在线观看| 一区福利在线观看| 国产精品自产拍在线观看55亚洲| 两人在一起打扑克的视频| 一级毛片精品| 曰老女人黄片| 亚洲成人免费av在线播放| 精品一品国产午夜福利视频| 精品国内亚洲2022精品成人| 免费在线观看视频国产中文字幕亚洲| 日韩精品青青久久久久久| 久久亚洲精品不卡| 亚洲激情在线av| 日韩三级视频一区二区三区| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 免费在线观看影片大全网站| 亚洲男人天堂网一区| 最近最新免费中文字幕在线| 搡老熟女国产l中国老女人| 精品国产美女av久久久久小说| 在线观看免费午夜福利视频| 女同久久另类99精品国产91| 国产成人精品无人区| 人人澡人人妻人| 色在线成人网| bbb黄色大片| 精品福利观看| 精品免费久久久久久久清纯| 一级毛片女人18水好多| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 999精品在线视频| 亚洲一码二码三码区别大吗| 女人爽到高潮嗷嗷叫在线视频| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区| 国产av在哪里看| 91国产中文字幕| 亚洲自偷自拍图片 自拍| 亚洲激情在线av| 国产精品亚洲av一区麻豆| 亚洲一区二区三区色噜噜 | 精品久久久久久电影网| 777久久人妻少妇嫩草av网站| 色综合站精品国产| 欧美久久黑人一区二区| 国产主播在线观看一区二区| 亚洲成国产人片在线观看| 超碰97精品在线观看| 久久久久久久精品吃奶| 香蕉久久夜色| 淫秽高清视频在线观看| 91老司机精品| 午夜福利欧美成人| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 日韩av在线大香蕉| av电影中文网址| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 18禁观看日本| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 日本a在线网址| 可以在线观看毛片的网站| 另类亚洲欧美激情| 欧洲精品卡2卡3卡4卡5卡区| 成人三级黄色视频| 88av欧美| x7x7x7水蜜桃| 欧美亚洲日本最大视频资源| 嫁个100分男人电影在线观看| 色婷婷久久久亚洲欧美| 久久人妻熟女aⅴ| 中文字幕av电影在线播放| 久久精品国产清高在天天线| 亚洲国产中文字幕在线视频| 国产三级在线视频| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| a级毛片在线看网站| 咕卡用的链子| 免费高清在线观看日韩| 国产成人免费无遮挡视频| 精品乱码久久久久久99久播| 成人三级做爰电影| 自线自在国产av| 国产精华一区二区三区| 黄网站色视频无遮挡免费观看| 久久久久久久精品吃奶| 日韩精品中文字幕看吧| 性色av乱码一区二区三区2| 一级毛片高清免费大全| 女性生殖器流出的白浆| 看免费av毛片| 日本黄色日本黄色录像| 伦理电影免费视频| 久久天堂一区二区三区四区| 亚洲精品国产色婷婷电影| 日韩 欧美 亚洲 中文字幕| 亚洲免费av在线视频| 欧美+亚洲+日韩+国产| 国产精品成人在线| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 满18在线观看网站| 热99国产精品久久久久久7| 久久久久久大精品| 日本三级黄在线观看| 美女福利国产在线| 亚洲第一青青草原| 国内毛片毛片毛片毛片毛片| 女人被狂操c到高潮| 成人影院久久| 免费一级毛片在线播放高清视频 | www.熟女人妻精品国产| 婷婷丁香在线五月| 久久久久久久久中文| 999精品在线视频| 亚洲狠狠婷婷综合久久图片| 成人亚洲精品av一区二区 | 99国产精品一区二区蜜桃av| 国产日韩一区二区三区精品不卡| 国产成人系列免费观看| 中文欧美无线码| 在线国产一区二区在线| 精品国产一区二区三区四区第35| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 嫩草影视91久久| 久久久久久久精品吃奶| 免费在线观看日本一区| 搡老岳熟女国产| 成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲| 1024香蕉在线观看| 一级片'在线观看视频| 无遮挡黄片免费观看| x7x7x7水蜜桃| 午夜影院日韩av| 无人区码免费观看不卡| 好男人电影高清在线观看| 欧美色视频一区免费| 国产亚洲av高清不卡| 国产精品久久久久久人妻精品电影| 热99国产精品久久久久久7| 中文字幕另类日韩欧美亚洲嫩草| 亚洲va日本ⅴa欧美va伊人久久| 90打野战视频偷拍视频| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 嫩草影院精品99| 国产1区2区3区精品| 欧美激情极品国产一区二区三区| 精品高清国产在线一区| 免费高清在线观看日韩| 又黄又粗又硬又大视频| 男女下面插进去视频免费观看| 在线十欧美十亚洲十日本专区| 中文字幕另类日韩欧美亚洲嫩草| 757午夜福利合集在线观看| 亚洲国产精品一区二区三区在线| 欧美日韩av久久| 交换朋友夫妻互换小说| 97人妻天天添夜夜摸| 免费人成视频x8x8入口观看| 黄色怎么调成土黄色| 精品乱码久久久久久99久播| 日韩大尺度精品在线看网址 | 叶爱在线成人免费视频播放| 欧美性长视频在线观看| 一级片免费观看大全| 黄色成人免费大全| 久久久久国内视频| 亚洲一区二区三区色噜噜 | 精品少妇一区二区三区视频日本电影| 久久精品亚洲av国产电影网| 女人被躁到高潮嗷嗷叫费观| 亚洲人成伊人成综合网2020| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 啦啦啦免费观看视频1| 成人亚洲精品av一区二区 | 亚洲色图综合在线观看| 亚洲中文av在线| 91精品国产国语对白视频| 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 国产成人精品在线电影| 国产亚洲精品一区二区www| 丝袜美腿诱惑在线| 色老头精品视频在线观看| 母亲3免费完整高清在线观看| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 三上悠亚av全集在线观看| av福利片在线| 97碰自拍视频| 十分钟在线观看高清视频www| 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 亚洲精品成人av观看孕妇| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 757午夜福利合集在线观看| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| tocl精华| 久久欧美精品欧美久久欧美| 欧美一级毛片孕妇| 亚洲激情在线av| 夜夜躁狠狠躁天天躁| 欧美日本中文国产一区发布| 99久久99久久久精品蜜桃| 叶爱在线成人免费视频播放| 成年版毛片免费区| 欧美精品一区二区免费开放| 日本免费一区二区三区高清不卡 | 国产97色在线日韩免费| 满18在线观看网站| 亚洲精品av麻豆狂野| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 亚洲中文字幕日韩| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久| 久久精品人人爽人人爽视色| 黄片播放在线免费| 中文字幕高清在线视频| 成人免费观看视频高清| 中文字幕最新亚洲高清| 国产三级在线视频| bbb黄色大片| 日韩精品青青久久久久久| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| a级毛片在线看网站| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久av网站| svipshipincom国产片| 国产野战对白在线观看| 久9热在线精品视频| 在线观看免费日韩欧美大片| 亚洲精品国产一区二区精华液| 国产深夜福利视频在线观看| 91国产中文字幕| 中文亚洲av片在线观看爽| 黑丝袜美女国产一区| 精品一区二区三区av网在线观看| av视频免费观看在线观看| 久久精品国产99精品国产亚洲性色 | 最近最新中文字幕大全电影3 | 黄色视频,在线免费观看| 免费av中文字幕在线| 村上凉子中文字幕在线| 女警被强在线播放| 精品电影一区二区在线| 国产成人精品在线电影| 国产精品野战在线观看 | 国产欧美日韩综合在线一区二区| 老熟妇仑乱视频hdxx| 午夜免费观看网址| 法律面前人人平等表现在哪些方面| 嫩草影视91久久| 后天国语完整版免费观看| 麻豆久久精品国产亚洲av | 手机成人av网站| 99国产综合亚洲精品| 国产成人免费无遮挡视频| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 国产国语露脸激情在线看| 少妇粗大呻吟视频| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 久久天躁狠狠躁夜夜2o2o| 精品国产超薄肉色丝袜足j| 一夜夜www| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| 亚洲情色 制服丝袜| 巨乳人妻的诱惑在线观看| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼 | 午夜两性在线视频| 亚洲国产欧美一区二区综合| 国产精品免费视频内射| 免费人成视频x8x8入口观看| 岛国在线观看网站| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 日韩三级视频一区二区三区| xxxhd国产人妻xxx| 天堂动漫精品| 精品久久久久久久久久免费视频 | 又大又爽又粗| 不卡一级毛片| 亚洲五月婷婷丁香| 国产精品99久久99久久久不卡| 视频在线观看一区二区三区| 水蜜桃什么品种好| 又大又爽又粗| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 国产精品综合久久久久久久免费 | 极品教师在线免费播放| 亚洲欧美一区二区三区久久| 淫秽高清视频在线观看| 精品国产乱子伦一区二区三区| 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 91精品三级在线观看| xxxhd国产人妻xxx| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 免费av毛片视频| 级片在线观看| 91麻豆精品激情在线观看国产 | 精品一品国产午夜福利视频| 日韩欧美在线二视频| 日韩精品免费视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久狼人影院| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| www.精华液| 久久天堂一区二区三区四区| xxx96com| 亚洲精品美女久久av网站| 久久 成人 亚洲| 色综合站精品国产| 精品久久久精品久久久| 亚洲av电影在线进入| 亚洲午夜精品一区,二区,三区| 真人一进一出gif抽搐免费| 免费少妇av软件| 人人澡人人妻人| 亚洲av第一区精品v没综合| 色哟哟哟哟哟哟| 中文字幕色久视频| 国产一区二区三区综合在线观看| 美女国产高潮福利片在线看| 午夜精品久久久久久毛片777| 日韩免费av在线播放| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 制服诱惑二区| 国产一区二区三区视频了| 后天国语完整版免费观看| 新久久久久国产一级毛片| 校园春色视频在线观看| 亚洲久久久国产精品| 搡老熟女国产l中国老女人| 亚洲五月天丁香| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久| 亚洲人成网站在线播放欧美日韩| 亚洲色图 男人天堂 中文字幕| 韩国精品一区二区三区| 大码成人一级视频| 80岁老熟妇乱子伦牲交| 丁香六月欧美| 高清黄色对白视频在线免费看| 精品国产亚洲在线| 老司机午夜十八禁免费视频| 天天影视国产精品| 久久热在线av| 淫秽高清视频在线观看| 老熟妇乱子伦视频在线观看| 超色免费av| 午夜视频精品福利| 久久精品国产99精品国产亚洲性色 | 成人18禁高潮啪啪吃奶动态图| 99精品欧美一区二区三区四区| 亚洲av片天天在线观看| 亚洲国产欧美一区二区综合| 亚洲国产欧美日韩在线播放| 国产97色在线日韩免费| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂| 亚洲av电影在线进入| 九色亚洲精品在线播放| 成人亚洲精品一区在线观看| 欧美国产精品va在线观看不卡| 视频在线观看一区二区三区| 久久婷婷成人综合色麻豆| 日本vs欧美在线观看视频| 啦啦啦免费观看视频1| 国产精品久久电影中文字幕| a级片在线免费高清观看视频| 高潮久久久久久久久久久不卡| 91精品三级在线观看| 午夜福利影视在线免费观看| 1024视频免费在线观看| 老汉色∧v一级毛片| 欧美丝袜亚洲另类 | 亚洲欧洲精品一区二区精品久久久| 成年人免费黄色播放视频| 热99国产精品久久久久久7| 一区二区三区精品91|