• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neural-Network-Based Nonlinear Model Predictive Tracking Controlof a Pneumatic Muscle Actuator-Driven Exoskeleton

    2020-11-05 09:40:08YuCaoandJianHuang
    IEEE/CAA Journal of Automatica Sinica 2020年6期

    Yu Cao, and Jian Huang,

    Abstract—Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities,hysteresis,and uncertainties,etc.,complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, weuse nonlinear model predictive control(NMPC)and an extension of the echo state network called an echo state Gaussian process(ESGP) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynam ics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems.To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optim ization problem and generate the control signal.The stability of the closed-loop system isguaranteed when the ESGP is capable of approximating system dynam ics.Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training w ith four healthy subjects.

    I.In t roduction

    THERE is an increasing interest in using various kinds of exoskeleton devices to deal w ith practical problems,such as rehabilitation exoskeletons[1],[2],cooperative exoskeletons[3],[4],and powered exoskeletons[5],[6],etc.Such robots directly interact w ith the human body so that the system requiresnecessary compliance to ensure human safety.Pneumatic muscle actuators(PMAs)are compliant and very promising in the field of robot actuation,ow ing to their advantages including a high-force-to-weight ratio,no mechanical parts,and low cost[7].These make PMAs particularly suitable for the exoskeleton class of robotic devices.As early as 2006,Costaet al.[8]designed a 10-DOF PMA-driven exoskeleton for human walking,in which each DOFwas actuated by an antagonistic configuration of PMAs.By 2010,Choiet al.[9]established the dynamics of an antagonistic configuration of PMAs and proposed sliding mode control for position tracking of joint angles. Hussainet al.[10]developed a gait training paradigm by using a PMAdriven lower limb exoskeleton and provided interactive robotic gait training w ith adaptive impedance control in 2013.At present,most PMA-driven exoskeletons are dependent on antagonistic configurations, because a single PMA can only provide a unidirectional force[11],[12]. A lthough there exist different lower limb PMA-driven exoskeletons,complex mechanismsare rarely involved.The main reason is the PMAs nonlinearities,hysteresis,time-varying parameters and unmodeled uncertainties which cause difficulties in position and force control.Most researches focus on position control,and various model-based and model-free strategies are proposed,including sliding mode control[13], nonlinear model predictive control [14],active model-based control [15],proportional-integral-derivative(PID) based control[16],etc.However,model-based strategies have to deal w ith system uncertainties whilemodel-free strategies,like traditional PID and Mamdani fuzzy control,lack theoretical foundation for ensuring system stability when no theoretical model is involved.

    Model predictive control(MPC) has been w idely recognized from academ ia and industry due to its conceptual simplicity and ability to effectively handle complex systems w ith hard control constraints and multiple inputs and outputs[17]–[19].This strategy turns a control problem into a quadratic programm ing problem which can be solved by various methods,such as gradient-based optim ization[20],neural networks[21],[22],etc.Hence,it has been an important approach to control complex mechano-electronic systems.However,the MPC requires an accuratemodel that might be hard to obtain for nonlinear systems.Fortunately,different kinds of approximators,such as neural networks and fuzzy approximation, provide an alternate way to estimate unmodeled dynam ics,due to their universal approximation ability[23]–[26].Therefore,neural-networks-based nonlinear model predictive control(NN-NMPC)is gradually known.W ith this approach,only the system’s input and output data are required to realize the neural network approximation.Chenget al.[27]applied nonlinear predictive controlw ith two cascaded feedforward neural networks to approximate the dynam ics of Piezoelectric Actuators.Panetal.[28]presented model predictive control of unknown nonlinear dynamical systems based on two recurrent neural networks. Note that different topologies of neural networks result in varying modeling accuracy which may bring about serious problems to NMPC.Traditional feedforward neural networks,like multi-layer perceptrons(M LP), provide a staticmap between the inputs and outputs thatmay not be suitable for nonlinear dynamic systems. Recursive neural networks (RNNs) [29], [30]m ight be more suitable for dynamic learning because they recursively input information in the order where they are connected.The echo state network(ESN),a special RNN,is famous for reservoir computing which is in the form of sparse connections of hidden neurons[31].In 2011,Chatziset al.[32]fused the ESN and Gaussian process(GP)into the echo state Gaussian process(ESGP)which inherits the ESN’s reservoir computing and combines the merits of GP.As a result,it can solve the ESN’s ill-posed problem and strengthen generalization capabilities[33]. Although the ESGP had been proposed for years,few application studies were presented in robotic systems.

    In this paper,we propose a neural-network-based nonlinear model predictive control strategy for a PMA-driven lower limb exoskeleton system.The system is comprised of a treadm ill, a bodyweight support system, and a few mechanisms.Among them,the mechanisms contain two-leg orthoses,each of which contains two rotary joints,and each joint isdriven by an antagonistic configuration of PMAs.Meanwhile,the PMAs are independently installed in an external frame.Actuation torques are not generated on the joints, thus force transm issions via several connecting bars are required.The practical problem mainly contains the follow ing two aspects.One is the identification problem of two cascaded nonlinear subsystems,including the PMA actuation and multi-linkagemechanisms.The other is slow response characteristics of PMA actuation.Considering the factors above,we focus on the precise tracking control of the exoskeleton.The proposed approach turns out to be a data-driven strategy so that only the sensory data of the system is necessary.The main contribution of this paper lies in:1)the proposed controller for the PMA-driven exoskeleton;2)the stability analysis of the closed-loop system;and 3) the experimental studies for validating the control strategy.

    The rest of this paper is organized as follows.Section II describes the dynamics of the exoskeleton system,and the controller designed is presented in Section III together w ith the technique for addressing the modeling and optim izing problems.Section IV presents the simulations that verify the approximation ability of the ESGP.Real-world experiments are conducted to demonstrate the effectiveness of the proposed method in Section V.Finally, Section VI summarizes the conclusion of this paper.To enhance readability,the proof of system stability is presented in Appendix.

    II.Problem Formu lat ion

    This paper focuses on tracking control of the leg orthoses driven by antagonistic configurations of PMAs.Two groups of antagonistic configurationsof PMAs provide torquesand,which drive the hip and knee joints through connecting rods.Therefore,we describe the system from two aspects of actuation and mechanism.

    A. Actuation

    One actuation unit drives one rotary joint.This is an antagonistic configuration of PMAs that is comprised of two PMAs and a pulley.One PMA is inflated while the other one is deflated,and the PMAs generate forces of different magnitude in the same direction thereby the torque is produced.Each unit drives a joint so that two-leg orthoses require four groupsof antagonistic configurationsof PMAs.

    The basicmodelof PMAs is called the three-element model[34],asshown:

    B. Mechanism

    Fig.1.Theantagonistic configuration of PMAs.

    Fig.2.Themechanism of lower limb exoskeleton.

    III.Con t rol ler Design

    A. Echo State Gaussian Process

    B. Nonlinear Model Predictive Control

    The idea of this controller mainly contains two aspects.One is the approximation process.The other one is to solve an optimization problem.The control scheme is shown in Fig.3.In the former aspect, the ESGP approximates the dynam icsof the PMA-driven exoskeleton and forecasts future behaviors.Then,together w ith the desired trajectories,the predicted tracking errors are fed into the model predictive controller which solves theoptimization problem.

    C.Optimization Method

    For convenience, we first define follow ing equations:

    Then,(29)and (30)can be rew ritten as

    IV.Simu la tion Studies

    In this section,the approximation ability of the ESGP is verified w ith a simplified model of the exoskeleton(10)and(11)which isa 2-DOF roboticmanipulator [38]

    The parameters,including antagonistic configurations of PMAsand the mechanisms,areshown in Table I.

    TABLE I M odel Pa rameter s

    Another two neural networks, the ESN,and the MLP,are used to compare the results of ESGP.To make a fair comparison,these three approximators have the same topology,including an input layer,a hidden layer,and an output layer.The parameter training methods of these approximators can be referred to[39].Also,the number of neurons in the hidden layers of three neural networks is also the same, which is set as 25.The prediction horizon and the control horizon areand.

    The results are shown in Figs.4–7.It is seen that although the input frequency varies w ith time,all the networks can approximate the dynamics of the exoskeleton and predict output angles of the hip and knee joints.The three networks show the same characteristics that the prediction errors become larger as the input frequency increases.Compared w ith the ESN and MLP,the ESGP behaves w ith the highest approximation accuracy.Actually,in most cases,the ESGP and ESN have sim ilar approximation capabilities, but the ESGP extends ESN to combine GP and handles Gaussian noise.Meanwhile,thanks to the reservoir computing,the sparely connected hidden neurons largely reduce computational complexity and the ESGPonly needs to train a readout.Hence,its calculation efficiency ishigher than that of MLP.

    Based on the above analysis, we regard the ESGP as a suitable approximator to model the dynamics of the physical PMA-driven lower limb exoskeleton system and forecast the future behaviors.

    Fig.4.Prediction of thehip joint anglew ith varying input frequency.

    Fig.5.Prediction error of thehip joint anglew ith varying input frequency.

    Fig.6.Prediction of the knee joint anglew ith varying input frequency.

    Fig.7.Prediction error of the knee joint angle w ith varying input frequency.

    V.Exper imenta l Studies

    The physical platform ismainly comprised of a treadm ill,a body weight support system and leg orthoses,as shown in Fig.8.Among them,the sensing and control units,including angle encoders,electromagnetic valves,force sensors,signal amplifiers,are concentrated on the leg orthoses to accomplish the favorable control performance.The devices of the platform are shown in Table II.

    Fig.8.The physical platform.

    TABLE II Devices of the Exoskeleton System

    TABLE III In formation of Subjects

    One subject(age:24,height:176 cm, weight:68 kg)participates in the first experiment to demonstrate the effectiveness of the proposed control strategy.The subject is asked to wear the body weight suit which helps the participator keep balance,and relax the leg.This allows the mechanisms to guide the lower limb movement.The experimental results are presented in Figs.9–12.Overall,the tracking performance of the knee joint isbetter than that of the hip joint.This is because the hip joint burdens the weight of the leg orthosis,causing itmore difficult to control than the knee joint in the face of the same control effect. Another significant factor is the slow response of the PMAs.When facing a relatively large load,theantagonistic configuration of PMAs requires large average pressure to provide sufficient rigidity.Remarkably,there existmultiple optimal solutions in the NMPC,and typical numerical solvers are unable to distinguish a local optimum from a global optimum.Thus,only a feasible solution is necessary. According to the results shown in Table IV,the MAE and IAE of the proposed strategy are obviously smaller than the PID controller,which indicates the effectiveness of the method.When we increase the gain of the PID controller to ensure tracking performance,a serious vibration occurs that causes larger tracking errors.Unlike the PID controller,the proposed control strategy uses the ESGP to capture the dynam ics of the system, which helps to achievebetter control performance.

    Fig.9.Tracking performanceof thehip joint.

    Fig.10.Tracking error of thehip joint.

    Fig.11.Tracking performance of the knee joint.

    Fig.12.Tracking error of the knee joint.

    TABLE IV Compar ison of the Proposed Method and PID Cont rol ler

    In the second experiment,the other three subjects are instructed to follow the process in the same manner as the previous experiment.The results are shown in Figs.13–16.It is clear that even though the control parameters have not changed,the tracking performances of different subjects are similar.The main reason for this is that this experiment is mainly used for passive gait training,and human initiative is not involved.In this situation,human legs can be regarded as an external load.Before conducting the experiment w ith subjects, we first roughly calibrate the weight of human legs by the body segment inertial parameters(BSIPs)[40].And then,a corresponding weight of loads is added to the PMAdriven exoskeleton for testing the controller.When thiswork is done, participators wear the exoskeleton and further verify the effectiveness of the controller.Actually,it is impossible to calibrate the weight accurately, thus this requires the controller to be robust to weights.According to experimental results,this control strategy can meet the requirement of passivegait training for different subjects.

    VI.Conc lusion

    Fig.13.Hip joint tracking performanceof different subjects.

    Fig.14.Hip joint tracking error of different subjects.

    Fig.15.Knee joint tracking performance of different subjects.

    Fig.16.Knee joint tracking error of different subjects.

    In this paper,we propose a neural-network-based nonlinear model predictive controller to achieve tracking control of a PMA-driven lower limb exoskeleton for passive gait training,in which the ESGP is used to approximate the dynam icsof the robot system while the nonlinearmodel predictive controller solves an optim ization problem by using the gradient descent algorithm.Ow ing to the online learning of the ESGP and the optimization,the strategy turnsout to be a data-drivenmethod where only the sensory data is required. According to the Lyapunov theorem,the stability of the closed-loop system is guaranteed.Simulations and experiments are conducted to verify the effectiveness of the proposed method and achieve gait pattern training w ith four healthy subjects.

    At present,the problem of this PMA-driven exoskeleton mainly includes the follow ing two aspects.One is the slow response characteristics of PMA actuation.The other is the problem of human-computer interaction.The main reason for the former is that the PMA actuation depends on the internal air pressure, but the rate of pressure change is intrinsically small.One solution is to replace the proportional pressure relief valve w ith the proportional directional valve which can control the flow rate of gas inside the PMA to speed up the response.However, the modeling of this valve is difficult.Various factors,including aerodynam ics and fluid dynam ics,etc.,need to be considered.Therefore,one of our future tasks is to model the proportional directional valve. Another significant problem concerns human-robot interaction.In our exoskeleton system,we use soft airbags as interactive sensors.The human-machine interaction force squeezes the airbags to deform them,thereby raising their internal air pressure.Hence,such sensors can measure the interaction force after suitable calibration. Asmentioned earlier,the rate of pressure change is small.This may result in the measurement of interaction forces not being fast or accurate.Therefore,we would like to determ ine how to improve the performance of the sensors and realize impedance control to expand the application of exoskeleton.

    APPENDIX Proof of the Theorem 1

    精品日产1卡2卡| 国产精品爽爽va在线观看网站 | 久热爱精品视频在线9| 精品日产1卡2卡| 亚洲一区高清亚洲精品| 男人操女人黄网站| 国产精品 国内视频| 女生性感内裤真人,穿戴方法视频| 午夜a级毛片| 亚洲一区二区三区色噜噜 | 最好的美女福利视频网| 99久久久亚洲精品蜜臀av| 亚洲精品国产区一区二| 久久精品国产综合久久久| 亚洲国产中文字幕在线视频| 99久久综合精品五月天人人| 欧美日韩亚洲国产一区二区在线观看| 中文字幕色久视频| 99久久综合精品五月天人人| 夜夜夜夜夜久久久久| 三级毛片av免费| 欧美成狂野欧美在线观看| 视频区欧美日本亚洲| 宅男免费午夜| 国产av一区二区精品久久| 人人妻,人人澡人人爽秒播| 国产精品一区二区精品视频观看| 我的亚洲天堂| 正在播放国产对白刺激| 黑人猛操日本美女一级片| 亚洲avbb在线观看| 久久久国产成人精品二区 | 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区免费| 黑人欧美特级aaaaaa片| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久电影中文字幕| 高清av免费在线| 精品久久蜜臀av无| 久久精品国产99精品国产亚洲性色 | x7x7x7水蜜桃| 1024视频免费在线观看| 大型av网站在线播放| 亚洲七黄色美女视频| 男女之事视频高清在线观看| 久久久精品欧美日韩精品| 久久香蕉国产精品| 亚洲久久久国产精品| 久久精品国产亚洲av香蕉五月| 在线观看一区二区三区激情| 国产又色又爽无遮挡免费看| 国产主播在线观看一区二区| 精品人妻1区二区| 国产在线观看jvid| 天天影视国产精品| 久久国产乱子伦精品免费另类| 亚洲成人精品中文字幕电影 | 超碰97精品在线观看| 变态另类成人亚洲欧美熟女 | 韩国av一区二区三区四区| 精品高清国产在线一区| 国产激情欧美一区二区| 一级毛片高清免费大全| 黄色毛片三级朝国网站| 久久青草综合色| 久久 成人 亚洲| 欧美性长视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日本黄色视频三级网站网址| 精品一区二区三区视频在线观看免费 | 夜夜躁狠狠躁天天躁| 国产精品一区二区在线不卡| 国产精品 欧美亚洲| 国产精品久久电影中文字幕| 天堂影院成人在线观看| 黑人欧美特级aaaaaa片| 丁香六月欧美| 真人做人爱边吃奶动态| 亚洲午夜理论影院| 激情在线观看视频在线高清| 色婷婷久久久亚洲欧美| 亚洲国产精品合色在线| 欧美成人午夜精品| 久久香蕉精品热| 欧美日韩亚洲高清精品| 国产高清视频在线播放一区| 每晚都被弄得嗷嗷叫到高潮| 精品国产超薄肉色丝袜足j| 纯流量卡能插随身wifi吗| 12—13女人毛片做爰片一| 欧美日韩亚洲高清精品| 乱人伦中国视频| 亚洲精品一区av在线观看| 在线视频色国产色| 神马国产精品三级电影在线观看 | 两个人免费观看高清视频| 两个人免费观看高清视频| 久久天堂一区二区三区四区| 成人免费观看视频高清| 天堂中文最新版在线下载| 亚洲国产精品一区二区三区在线| 69av精品久久久久久| 大香蕉久久成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷av一区二区三区视频| 成年女人毛片免费观看观看9| 国产亚洲欧美精品永久| 老司机午夜福利在线观看视频| 校园春色视频在线观看| 久久热在线av| 淫妇啪啪啪对白视频| 91精品国产国语对白视频| 国产精品久久久久成人av| 一级a爱视频在线免费观看| 国产成人欧美| 日韩精品免费视频一区二区三区| 99热只有精品国产| videosex国产| 一个人观看的视频www高清免费观看 | bbb黄色大片| 久久草成人影院| 亚洲欧洲精品一区二区精品久久久| 我的亚洲天堂| 不卡av一区二区三区| av免费在线观看网站| 自线自在国产av| 午夜a级毛片| 啦啦啦免费观看视频1| 国产野战对白在线观看| 丁香欧美五月| 午夜福利欧美成人| 黄色 视频免费看| 丰满饥渴人妻一区二区三| 精品福利观看| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 亚洲第一青青草原| 黄色视频不卡| 啪啪无遮挡十八禁网站| 中文字幕人妻熟女乱码| 亚洲精品国产一区二区精华液| 人人妻人人添人人爽欧美一区卜| 国产亚洲精品综合一区在线观看 | 欧美乱色亚洲激情| 一边摸一边做爽爽视频免费| 久久久久久人人人人人| 在线视频色国产色| 深夜精品福利| 嫩草影院精品99| 大香蕉久久成人网| 中出人妻视频一区二区| 国产精品永久免费网站| 国产日韩一区二区三区精品不卡| 啦啦啦在线免费观看视频4| 亚洲午夜精品一区,二区,三区| 黄网站色视频无遮挡免费观看| 97碰自拍视频| 日韩欧美一区二区三区在线观看| 99在线人妻在线中文字幕| 久久久久久大精品| 一级片免费观看大全| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机午夜十八禁免费视频| 国产高清videossex| 看片在线看免费视频| 美女国产高潮福利片在线看| 一进一出抽搐gif免费好疼 | 制服诱惑二区| 女人被狂操c到高潮| 亚洲欧美精品综合久久99| 丁香六月欧美| 变态另类成人亚洲欧美熟女 | 午夜精品国产一区二区电影| 婷婷精品国产亚洲av在线| 免费av毛片视频| 日韩欧美免费精品| 在线观看免费日韩欧美大片| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区av网在线观看| 在线观看舔阴道视频| 亚洲熟女毛片儿| 男女做爰动态图高潮gif福利片 | 久久婷婷成人综合色麻豆| 成人三级黄色视频| 在线天堂中文资源库| 国产伦人伦偷精品视频| 大香蕉久久成人网| 亚洲成国产人片在线观看| 怎么达到女性高潮| 精品福利观看| 韩国精品一区二区三区| 亚洲精品美女久久av网站| а√天堂www在线а√下载| 真人一进一出gif抽搐免费| 熟女少妇亚洲综合色aaa.| 免费一级毛片在线播放高清视频 | 女性被躁到高潮视频| 亚洲一区二区三区色噜噜 | 国产av精品麻豆| 成年人黄色毛片网站| 美女扒开内裤让男人捅视频| 麻豆一二三区av精品| 亚洲精品一卡2卡三卡4卡5卡| av中文乱码字幕在线| 国产精品国产av在线观看| 国产有黄有色有爽视频| 成人黄色视频免费在线看| 美女扒开内裤让男人捅视频| 午夜免费鲁丝| 国产精品1区2区在线观看.| 亚洲精品国产区一区二| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美在线一区二区| 视频在线观看一区二区三区| 久久久国产成人精品二区 | 国产一区在线观看成人免费| 国产精品影院久久| 另类亚洲欧美激情| 国产免费现黄频在线看| 国产精品久久视频播放| 国产精品久久久久久人妻精品电影| 国产精华一区二区三区| 欧美一级毛片孕妇| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久久毛片| 欧美乱妇无乱码| 国产精品久久电影中文字幕| 色播在线永久视频| 亚洲午夜精品一区,二区,三区| 亚洲 国产 在线| 久久精品影院6| www.www免费av| 老司机福利观看| 韩国av一区二区三区四区| 天天躁夜夜躁狠狠躁躁| 黄色视频不卡| 一个人观看的视频www高清免费观看 | 18禁裸乳无遮挡免费网站照片 | 国产视频一区二区在线看| 男女午夜视频在线观看| 国产精品九九99| 91国产中文字幕| 国产亚洲欧美精品永久| 国产熟女xx| 韩国精品一区二区三区| 99国产综合亚洲精品| 免费不卡黄色视频| 老司机在亚洲福利影院| 亚洲成人精品中文字幕电影 | 国产欧美日韩综合在线一区二区| xxx96com| 一边摸一边做爽爽视频免费| 精品一品国产午夜福利视频| 性色av乱码一区二区三区2| 两人在一起打扑克的视频| 久久国产亚洲av麻豆专区| 亚洲精品国产区一区二| 他把我摸到了高潮在线观看| 啪啪无遮挡十八禁网站| a在线观看视频网站| 一区福利在线观看| 高清欧美精品videossex| 国产精品爽爽va在线观看网站 | 麻豆国产av国片精品| a在线观看视频网站| 老司机福利观看| 欧美日韩国产mv在线观看视频| 一二三四在线观看免费中文在| 欧美在线黄色| 国产一区二区激情短视频| 欧美色视频一区免费| 久久久久久久久免费视频了| 亚洲专区国产一区二区| 丁香欧美五月| 国产伦人伦偷精品视频| 国产精品亚洲av一区麻豆| 亚洲国产欧美网| www.自偷自拍.com| 欧美日本中文国产一区发布| 国产精品成人在线| 最新美女视频免费是黄的| 在线观看免费视频日本深夜| 午夜a级毛片| 母亲3免费完整高清在线观看| 中出人妻视频一区二区| 久久久久国产精品人妻aⅴ院| 精品一区二区三卡| 久久人妻福利社区极品人妻图片| 日本vs欧美在线观看视频| 国产1区2区3区精品| 色哟哟哟哟哟哟| 99热只有精品国产| 中亚洲国语对白在线视频| 黑人猛操日本美女一级片| 午夜激情av网站| 在线永久观看黄色视频| 黄片大片在线免费观看| 天堂影院成人在线观看| 亚洲欧美精品综合一区二区三区| 亚洲自拍偷在线| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 亚洲专区字幕在线| 免费看a级黄色片| 久久人妻熟女aⅴ| 精品日产1卡2卡| 97人妻天天添夜夜摸| 婷婷六月久久综合丁香| 亚洲国产精品一区二区三区在线| 成人亚洲精品av一区二区 | 国产成人精品在线电影| 99热国产这里只有精品6| 在线国产一区二区在线| 精品电影一区二区在线| 国产精品爽爽va在线观看网站 | 又紧又爽又黄一区二区| 国产精品国产av在线观看| 99国产精品一区二区蜜桃av| 中出人妻视频一区二区| 久久久久国产精品人妻aⅴ院| 国产高清激情床上av| av超薄肉色丝袜交足视频| 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 久久久水蜜桃国产精品网| 国产av一区二区精品久久| 国产成人精品在线电影| 操美女的视频在线观看| 亚洲国产欧美网| 日韩 欧美 亚洲 中文字幕| 大型av网站在线播放| 黑人猛操日本美女一级片| 老司机在亚洲福利影院| 欧美激情 高清一区二区三区| 制服诱惑二区| 国产精品野战在线观看 | 久久香蕉激情| 男男h啪啪无遮挡| 婷婷精品国产亚洲av在线| 亚洲一码二码三码区别大吗| 黑人猛操日本美女一级片| 久久久久久免费高清国产稀缺| 日韩三级视频一区二区三区| 极品人妻少妇av视频| 两性午夜刺激爽爽歪歪视频在线观看 | 免费日韩欧美在线观看| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看| 天堂影院成人在线观看| 黄网站色视频无遮挡免费观看| 日韩三级视频一区二区三区| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频 | 黄色 视频免费看| 99在线人妻在线中文字幕| 很黄的视频免费| 欧美 亚洲 国产 日韩一| av欧美777| 中文欧美无线码| 久久久久久久久中文| 最好的美女福利视频网| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 午夜视频精品福利| 久久久精品欧美日韩精品| av网站在线播放免费| 国产无遮挡羞羞视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产单亲对白刺激| 黄色成人免费大全| 欧美黄色片欧美黄色片| 精品国产一区二区久久| 岛国在线观看网站| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 久久久久久久久中文| 久久国产乱子伦精品免费另类| 亚洲五月天丁香| 国产激情欧美一区二区| 美女大奶头视频| 中文欧美无线码| 成人永久免费在线观看视频| 两个人免费观看高清视频| 亚洲人成电影免费在线| av电影中文网址| 亚洲精品一二三| 99热国产这里只有精品6| 亚洲午夜精品一区,二区,三区| 亚洲久久久国产精品| 色婷婷av一区二区三区视频| 97人妻天天添夜夜摸| 亚洲熟妇中文字幕五十中出 | 午夜两性在线视频| 黑丝袜美女国产一区| 精品日产1卡2卡| 亚洲国产欧美日韩在线播放| 久久中文字幕人妻熟女| 成人18禁在线播放| 亚洲av成人不卡在线观看播放网| 国产成人精品久久二区二区91| 亚洲欧美日韩高清在线视频| 国产野战对白在线观看| 午夜福利在线观看吧| 午夜日韩欧美国产| 日韩欧美一区二区三区在线观看| 欧美日韩一级在线毛片| 国产精品国产高清国产av| 日本黄色日本黄色录像| 国产区一区二久久| 亚洲欧美日韩另类电影网站| 国产一区二区三区在线臀色熟女 | 午夜福利欧美成人| 真人一进一出gif抽搐免费| 91在线观看av| 免费av毛片视频| 精品国产一区二区久久| 国产精品亚洲一级av第二区| 亚洲av电影在线进入| 午夜成年电影在线免费观看| 天天躁夜夜躁狠狠躁躁| 啪啪无遮挡十八禁网站| 黄色毛片三级朝国网站| 日韩欧美一区视频在线观看| 99香蕉大伊视频| 午夜激情av网站| 亚洲中文av在线| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 国产精品 国内视频| 国产熟女xx| 亚洲av美国av| 亚洲成国产人片在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品久久二区二区91| 欧美最黄视频在线播放免费 | 18禁裸乳无遮挡免费网站照片 | 黄色视频不卡| 色综合欧美亚洲国产小说| 欧美一区二区精品小视频在线| 久久99一区二区三区| 亚洲色图综合在线观看| 男女下面进入的视频免费午夜 | 99久久99久久久精品蜜桃| 女同久久另类99精品国产91| 老司机靠b影院| av在线天堂中文字幕 | 亚洲欧美激情在线| 久久人妻熟女aⅴ| 亚洲精品av麻豆狂野| 日本 av在线| aaaaa片日本免费| 亚洲精品中文字幕在线视频| 亚洲国产精品一区二区三区在线| 黄色毛片三级朝国网站| av在线播放免费不卡| 三级毛片av免费| 国产视频一区二区在线看| 国产一区二区激情短视频| 黑人猛操日本美女一级片| 国产三级在线视频| 久9热在线精品视频| 老司机在亚洲福利影院| 久久久国产精品麻豆| 两个人看的免费小视频| 在线观看一区二区三区激情| 黄色片一级片一级黄色片| 亚洲欧美日韩另类电影网站| 久久99一区二区三区| netflix在线观看网站| 欧美av亚洲av综合av国产av| bbb黄色大片| 久久精品91蜜桃| av超薄肉色丝袜交足视频| 在线观看免费高清a一片| 欧美黑人欧美精品刺激| 久久伊人香网站| 亚洲国产精品999在线| 免费不卡黄色视频| 欧美一区二区精品小视频在线| 十八禁人妻一区二区| www日本在线高清视频| 水蜜桃什么品种好| 亚洲精品一二三| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 男人操女人黄网站| 九色亚洲精品在线播放| 国产伦人伦偷精品视频| 免费一级毛片在线播放高清视频 | 国产精品免费一区二区三区在线| 老司机福利观看| 男女午夜视频在线观看| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 18禁裸乳无遮挡免费网站照片 | 国产一区二区三区综合在线观看| 精品久久久久久成人av| 久久人人精品亚洲av| 99热国产这里只有精品6| 老汉色∧v一级毛片| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 满18在线观看网站| 精品久久久精品久久久| 国产免费现黄频在线看| 高潮久久久久久久久久久不卡| 日本欧美视频一区| 女人被狂操c到高潮| 午夜免费成人在线视频| 真人一进一出gif抽搐免费| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 国产成+人综合+亚洲专区| 五月开心婷婷网| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久 | 国产亚洲av高清不卡| 免费搜索国产男女视频| 岛国在线观看网站| 亚洲精品中文字幕一二三四区| 在线观看舔阴道视频| 亚洲av电影在线进入| 国产成人精品久久二区二区免费| 国产午夜精品久久久久久| av国产精品久久久久影院| 亚洲成av片中文字幕在线观看| 久久人妻av系列| 亚洲av美国av| 久久热在线av| 黄片小视频在线播放| 日韩欧美在线二视频| 午夜a级毛片| 欧美日韩亚洲国产一区二区在线观看| 国产在线观看jvid| 亚洲免费av在线视频| 最好的美女福利视频网| 精品熟女少妇八av免费久了| 黄色 视频免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产区一区二| 午夜免费激情av| 一边摸一边做爽爽视频免费| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| av网站免费在线观看视频| 亚洲欧美精品综合一区二区三区| 久久亚洲真实| 九色亚洲精品在线播放| www.www免费av| 亚洲成人免费电影在线观看| 久久性视频一级片| 在线观看www视频免费| tocl精华| 麻豆久久精品国产亚洲av | 午夜两性在线视频| 超色免费av| 亚洲精品在线美女| 久久久国产成人免费| 12—13女人毛片做爰片一| 国产精品美女特级片免费视频播放器 | 亚洲一区二区三区欧美精品| 少妇 在线观看| 丝袜人妻中文字幕| 激情视频va一区二区三区| 制服诱惑二区| 天天躁夜夜躁狠狠躁躁| 老司机午夜十八禁免费视频| 亚洲成人免费av在线播放| 欧美中文日本在线观看视频| 亚洲国产精品999在线| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月| 男女高潮啪啪啪动态图| 午夜免费观看网址| 最近最新中文字幕大全电影3 | 性欧美人与动物交配| 亚洲国产毛片av蜜桃av| 人妻久久中文字幕网| 婷婷六月久久综合丁香| 9色porny在线观看| av有码第一页| 国产亚洲精品一区二区www| 天堂中文最新版在线下载| a级毛片黄视频| 午夜福利在线观看吧| 一区二区三区激情视频| 两性夫妻黄色片| 纯流量卡能插随身wifi吗| 精品国产一区二区久久| 无遮挡黄片免费观看| 国产亚洲欧美精品永久| 午夜免费观看网址| 亚洲精品久久午夜乱码| 久久久久久久午夜电影 | 丝袜美腿诱惑在线| 欧美日韩瑟瑟在线播放| 久久天躁狠狠躁夜夜2o2o| 国产亚洲av高清不卡| 中文字幕人妻熟女乱码| 亚洲精品一区av在线观看| 久久久久国产一级毛片高清牌| 国产高清激情床上av| 人人澡人人妻人| 五月开心婷婷网| 国产精品久久久久成人av| 久久久久久久久久久久大奶| 亚洲一区二区三区不卡视频| 大陆偷拍与自拍| 曰老女人黄片| 久久性视频一级片| 久久人人97超碰香蕉20202| 国产97色在线日韩免费| 在线观看免费视频网站a站| 久久影院123| 国产精品日韩av在线免费观看 |