• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neural-Network-Based Nonlinear Model Predictive Tracking Controlof a Pneumatic Muscle Actuator-Driven Exoskeleton

    2020-11-05 09:40:08YuCaoandJianHuang
    IEEE/CAA Journal of Automatica Sinica 2020年6期

    Yu Cao, and Jian Huang,

    Abstract—Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities,hysteresis,and uncertainties,etc.,complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, weuse nonlinear model predictive control(NMPC)and an extension of the echo state network called an echo state Gaussian process(ESGP) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynam ics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems.To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optim ization problem and generate the control signal.The stability of the closed-loop system isguaranteed when the ESGP is capable of approximating system dynam ics.Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training w ith four healthy subjects.

    I.In t roduction

    THERE is an increasing interest in using various kinds of exoskeleton devices to deal w ith practical problems,such as rehabilitation exoskeletons[1],[2],cooperative exoskeletons[3],[4],and powered exoskeletons[5],[6],etc.Such robots directly interact w ith the human body so that the system requiresnecessary compliance to ensure human safety.Pneumatic muscle actuators(PMAs)are compliant and very promising in the field of robot actuation,ow ing to their advantages including a high-force-to-weight ratio,no mechanical parts,and low cost[7].These make PMAs particularly suitable for the exoskeleton class of robotic devices.As early as 2006,Costaet al.[8]designed a 10-DOF PMA-driven exoskeleton for human walking,in which each DOFwas actuated by an antagonistic configuration of PMAs.By 2010,Choiet al.[9]established the dynamics of an antagonistic configuration of PMAs and proposed sliding mode control for position tracking of joint angles. Hussainet al.[10]developed a gait training paradigm by using a PMAdriven lower limb exoskeleton and provided interactive robotic gait training w ith adaptive impedance control in 2013.At present,most PMA-driven exoskeletons are dependent on antagonistic configurations, because a single PMA can only provide a unidirectional force[11],[12]. A lthough there exist different lower limb PMA-driven exoskeletons,complex mechanismsare rarely involved.The main reason is the PMAs nonlinearities,hysteresis,time-varying parameters and unmodeled uncertainties which cause difficulties in position and force control.Most researches focus on position control,and various model-based and model-free strategies are proposed,including sliding mode control[13], nonlinear model predictive control [14],active model-based control [15],proportional-integral-derivative(PID) based control[16],etc.However,model-based strategies have to deal w ith system uncertainties whilemodel-free strategies,like traditional PID and Mamdani fuzzy control,lack theoretical foundation for ensuring system stability when no theoretical model is involved.

    Model predictive control(MPC) has been w idely recognized from academ ia and industry due to its conceptual simplicity and ability to effectively handle complex systems w ith hard control constraints and multiple inputs and outputs[17]–[19].This strategy turns a control problem into a quadratic programm ing problem which can be solved by various methods,such as gradient-based optim ization[20],neural networks[21],[22],etc.Hence,it has been an important approach to control complex mechano-electronic systems.However,the MPC requires an accuratemodel that might be hard to obtain for nonlinear systems.Fortunately,different kinds of approximators,such as neural networks and fuzzy approximation, provide an alternate way to estimate unmodeled dynam ics,due to their universal approximation ability[23]–[26].Therefore,neural-networks-based nonlinear model predictive control(NN-NMPC)is gradually known.W ith this approach,only the system’s input and output data are required to realize the neural network approximation.Chenget al.[27]applied nonlinear predictive controlw ith two cascaded feedforward neural networks to approximate the dynam ics of Piezoelectric Actuators.Panetal.[28]presented model predictive control of unknown nonlinear dynamical systems based on two recurrent neural networks. Note that different topologies of neural networks result in varying modeling accuracy which may bring about serious problems to NMPC.Traditional feedforward neural networks,like multi-layer perceptrons(M LP), provide a staticmap between the inputs and outputs thatmay not be suitable for nonlinear dynamic systems. Recursive neural networks (RNNs) [29], [30]m ight be more suitable for dynamic learning because they recursively input information in the order where they are connected.The echo state network(ESN),a special RNN,is famous for reservoir computing which is in the form of sparse connections of hidden neurons[31].In 2011,Chatziset al.[32]fused the ESN and Gaussian process(GP)into the echo state Gaussian process(ESGP)which inherits the ESN’s reservoir computing and combines the merits of GP.As a result,it can solve the ESN’s ill-posed problem and strengthen generalization capabilities[33]. Although the ESGP had been proposed for years,few application studies were presented in robotic systems.

    In this paper,we propose a neural-network-based nonlinear model predictive control strategy for a PMA-driven lower limb exoskeleton system.The system is comprised of a treadm ill, a bodyweight support system, and a few mechanisms.Among them,the mechanisms contain two-leg orthoses,each of which contains two rotary joints,and each joint isdriven by an antagonistic configuration of PMAs.Meanwhile,the PMAs are independently installed in an external frame.Actuation torques are not generated on the joints, thus force transm issions via several connecting bars are required.The practical problem mainly contains the follow ing two aspects.One is the identification problem of two cascaded nonlinear subsystems,including the PMA actuation and multi-linkagemechanisms.The other is slow response characteristics of PMA actuation.Considering the factors above,we focus on the precise tracking control of the exoskeleton.The proposed approach turns out to be a data-driven strategy so that only the sensory data of the system is necessary.The main contribution of this paper lies in:1)the proposed controller for the PMA-driven exoskeleton;2)the stability analysis of the closed-loop system;and 3) the experimental studies for validating the control strategy.

    The rest of this paper is organized as follows.Section II describes the dynamics of the exoskeleton system,and the controller designed is presented in Section III together w ith the technique for addressing the modeling and optim izing problems.Section IV presents the simulations that verify the approximation ability of the ESGP.Real-world experiments are conducted to demonstrate the effectiveness of the proposed method in Section V.Finally, Section VI summarizes the conclusion of this paper.To enhance readability,the proof of system stability is presented in Appendix.

    II.Problem Formu lat ion

    This paper focuses on tracking control of the leg orthoses driven by antagonistic configurations of PMAs.Two groups of antagonistic configurationsof PMAs provide torquesand,which drive the hip and knee joints through connecting rods.Therefore,we describe the system from two aspects of actuation and mechanism.

    A. Actuation

    One actuation unit drives one rotary joint.This is an antagonistic configuration of PMAs that is comprised of two PMAs and a pulley.One PMA is inflated while the other one is deflated,and the PMAs generate forces of different magnitude in the same direction thereby the torque is produced.Each unit drives a joint so that two-leg orthoses require four groupsof antagonistic configurationsof PMAs.

    The basicmodelof PMAs is called the three-element model[34],asshown:

    B. Mechanism

    Fig.1.Theantagonistic configuration of PMAs.

    Fig.2.Themechanism of lower limb exoskeleton.

    III.Con t rol ler Design

    A. Echo State Gaussian Process

    B. Nonlinear Model Predictive Control

    The idea of this controller mainly contains two aspects.One is the approximation process.The other one is to solve an optimization problem.The control scheme is shown in Fig.3.In the former aspect, the ESGP approximates the dynam icsof the PMA-driven exoskeleton and forecasts future behaviors.Then,together w ith the desired trajectories,the predicted tracking errors are fed into the model predictive controller which solves theoptimization problem.

    C.Optimization Method

    For convenience, we first define follow ing equations:

    Then,(29)and (30)can be rew ritten as

    IV.Simu la tion Studies

    In this section,the approximation ability of the ESGP is verified w ith a simplified model of the exoskeleton(10)and(11)which isa 2-DOF roboticmanipulator [38]

    The parameters,including antagonistic configurations of PMAsand the mechanisms,areshown in Table I.

    TABLE I M odel Pa rameter s

    Another two neural networks, the ESN,and the MLP,are used to compare the results of ESGP.To make a fair comparison,these three approximators have the same topology,including an input layer,a hidden layer,and an output layer.The parameter training methods of these approximators can be referred to[39].Also,the number of neurons in the hidden layers of three neural networks is also the same, which is set as 25.The prediction horizon and the control horizon areand.

    The results are shown in Figs.4–7.It is seen that although the input frequency varies w ith time,all the networks can approximate the dynamics of the exoskeleton and predict output angles of the hip and knee joints.The three networks show the same characteristics that the prediction errors become larger as the input frequency increases.Compared w ith the ESN and MLP,the ESGP behaves w ith the highest approximation accuracy.Actually,in most cases,the ESGP and ESN have sim ilar approximation capabilities, but the ESGP extends ESN to combine GP and handles Gaussian noise.Meanwhile,thanks to the reservoir computing,the sparely connected hidden neurons largely reduce computational complexity and the ESGPonly needs to train a readout.Hence,its calculation efficiency ishigher than that of MLP.

    Based on the above analysis, we regard the ESGP as a suitable approximator to model the dynamics of the physical PMA-driven lower limb exoskeleton system and forecast the future behaviors.

    Fig.4.Prediction of thehip joint anglew ith varying input frequency.

    Fig.5.Prediction error of thehip joint anglew ith varying input frequency.

    Fig.6.Prediction of the knee joint anglew ith varying input frequency.

    Fig.7.Prediction error of the knee joint angle w ith varying input frequency.

    V.Exper imenta l Studies

    The physical platform ismainly comprised of a treadm ill,a body weight support system and leg orthoses,as shown in Fig.8.Among them,the sensing and control units,including angle encoders,electromagnetic valves,force sensors,signal amplifiers,are concentrated on the leg orthoses to accomplish the favorable control performance.The devices of the platform are shown in Table II.

    Fig.8.The physical platform.

    TABLE II Devices of the Exoskeleton System

    TABLE III In formation of Subjects

    One subject(age:24,height:176 cm, weight:68 kg)participates in the first experiment to demonstrate the effectiveness of the proposed control strategy.The subject is asked to wear the body weight suit which helps the participator keep balance,and relax the leg.This allows the mechanisms to guide the lower limb movement.The experimental results are presented in Figs.9–12.Overall,the tracking performance of the knee joint isbetter than that of the hip joint.This is because the hip joint burdens the weight of the leg orthosis,causing itmore difficult to control than the knee joint in the face of the same control effect. Another significant factor is the slow response of the PMAs.When facing a relatively large load,theantagonistic configuration of PMAs requires large average pressure to provide sufficient rigidity.Remarkably,there existmultiple optimal solutions in the NMPC,and typical numerical solvers are unable to distinguish a local optimum from a global optimum.Thus,only a feasible solution is necessary. According to the results shown in Table IV,the MAE and IAE of the proposed strategy are obviously smaller than the PID controller,which indicates the effectiveness of the method.When we increase the gain of the PID controller to ensure tracking performance,a serious vibration occurs that causes larger tracking errors.Unlike the PID controller,the proposed control strategy uses the ESGP to capture the dynam ics of the system, which helps to achievebetter control performance.

    Fig.9.Tracking performanceof thehip joint.

    Fig.10.Tracking error of thehip joint.

    Fig.11.Tracking performance of the knee joint.

    Fig.12.Tracking error of the knee joint.

    TABLE IV Compar ison of the Proposed Method and PID Cont rol ler

    In the second experiment,the other three subjects are instructed to follow the process in the same manner as the previous experiment.The results are shown in Figs.13–16.It is clear that even though the control parameters have not changed,the tracking performances of different subjects are similar.The main reason for this is that this experiment is mainly used for passive gait training,and human initiative is not involved.In this situation,human legs can be regarded as an external load.Before conducting the experiment w ith subjects, we first roughly calibrate the weight of human legs by the body segment inertial parameters(BSIPs)[40].And then,a corresponding weight of loads is added to the PMAdriven exoskeleton for testing the controller.When thiswork is done, participators wear the exoskeleton and further verify the effectiveness of the controller.Actually,it is impossible to calibrate the weight accurately, thus this requires the controller to be robust to weights.According to experimental results,this control strategy can meet the requirement of passivegait training for different subjects.

    VI.Conc lusion

    Fig.13.Hip joint tracking performanceof different subjects.

    Fig.14.Hip joint tracking error of different subjects.

    Fig.15.Knee joint tracking performance of different subjects.

    Fig.16.Knee joint tracking error of different subjects.

    In this paper,we propose a neural-network-based nonlinear model predictive controller to achieve tracking control of a PMA-driven lower limb exoskeleton for passive gait training,in which the ESGP is used to approximate the dynam icsof the robot system while the nonlinearmodel predictive controller solves an optim ization problem by using the gradient descent algorithm.Ow ing to the online learning of the ESGP and the optimization,the strategy turnsout to be a data-drivenmethod where only the sensory data is required. According to the Lyapunov theorem,the stability of the closed-loop system is guaranteed.Simulations and experiments are conducted to verify the effectiveness of the proposed method and achieve gait pattern training w ith four healthy subjects.

    At present,the problem of this PMA-driven exoskeleton mainly includes the follow ing two aspects.One is the slow response characteristics of PMA actuation.The other is the problem of human-computer interaction.The main reason for the former is that the PMA actuation depends on the internal air pressure, but the rate of pressure change is intrinsically small.One solution is to replace the proportional pressure relief valve w ith the proportional directional valve which can control the flow rate of gas inside the PMA to speed up the response.However, the modeling of this valve is difficult.Various factors,including aerodynam ics and fluid dynam ics,etc.,need to be considered.Therefore,one of our future tasks is to model the proportional directional valve. Another significant problem concerns human-robot interaction.In our exoskeleton system,we use soft airbags as interactive sensors.The human-machine interaction force squeezes the airbags to deform them,thereby raising their internal air pressure.Hence,such sensors can measure the interaction force after suitable calibration. Asmentioned earlier,the rate of pressure change is small.This may result in the measurement of interaction forces not being fast or accurate.Therefore,we would like to determ ine how to improve the performance of the sensors and realize impedance control to expand the application of exoskeleton.

    APPENDIX Proof of the Theorem 1

    亚洲精品国产色婷婷电影| 咕卡用的链子| 久久久久久久大尺度免费视频| 三级国产精品片| 久久久国产欧美日韩av| 制服丝袜香蕉在线| 成人黄色视频免费在线看| 有码 亚洲区| 精品久久久精品久久久| 波多野结衣av一区二区av| 亚洲久久久国产精品| 精品福利永久在线观看| 欧美另类一区| 久久人人爽人人片av| 美女中出高潮动态图| 精品国产乱码久久久久久男人| 成人国产麻豆网| 免费av中文字幕在线| av不卡在线播放| 高清在线视频一区二区三区| 狠狠婷婷综合久久久久久88av| 波多野结衣一区麻豆| 精品第一国产精品| 蜜桃国产av成人99| av有码第一页| 久久久久精品久久久久真实原创| 啦啦啦视频在线资源免费观看| 久久久久久免费高清国产稀缺| 国产午夜精品一二区理论片| 1024视频免费在线观看| 丰满乱子伦码专区| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看| freevideosex欧美| 青青草视频在线视频观看| 亚洲三区欧美一区| 欧美老熟妇乱子伦牲交| freevideosex欧美| 一区二区三区四区激情视频| av线在线观看网站| 在线天堂最新版资源| 亚洲av男天堂| 午夜老司机福利剧场| 熟妇人妻不卡中文字幕| 国产xxxxx性猛交| 久久婷婷青草| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩一区二区视频免费看| 91成人精品电影| 纯流量卡能插随身wifi吗| 9热在线视频观看99| 亚洲欧美精品综合一区二区三区 | 精品亚洲成a人片在线观看| 久久狼人影院| 人妻一区二区av| 国产一区二区激情短视频 | 欧美人与性动交α欧美精品济南到 | 亚洲经典国产精华液单| 国产精品av久久久久免费| 成人亚洲欧美一区二区av| 一级,二级,三级黄色视频| 欧美日韩精品成人综合77777| 最黄视频免费看| 男女边吃奶边做爰视频| av国产精品久久久久影院| 在线 av 中文字幕| 另类精品久久| 精品亚洲成国产av| 成年美女黄网站色视频大全免费| 久久ye,这里只有精品| 欧美 亚洲 国产 日韩一| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人 | 国产伦理片在线播放av一区| 中文字幕人妻熟女乱码| 久久国产亚洲av麻豆专区| 在线亚洲精品国产二区图片欧美| av有码第一页| 亚洲av福利一区| 免费日韩欧美在线观看| 蜜桃在线观看..| 日产精品乱码卡一卡2卡三| 青青草视频在线视频观看| 亚洲国产欧美日韩在线播放| 大香蕉久久网| 国产97色在线日韩免费| 777久久人妻少妇嫩草av网站| 久久这里有精品视频免费| 精品人妻偷拍中文字幕| 精品少妇久久久久久888优播| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看| 亚洲综合色网址| 黄色视频在线播放观看不卡| 国产成人一区二区在线| 精品一区二区三区四区五区乱码 | 成年女人毛片免费观看观看9 | 国产视频首页在线观看| 在线观看www视频免费| 久久久久国产网址| 少妇人妻 视频| 日韩欧美精品免费久久| 久久久欧美国产精品| 久久99蜜桃精品久久| 午夜免费鲁丝| 精品亚洲成国产av| 国产精品国产三级专区第一集| 久久热在线av| 久久精品国产鲁丝片午夜精品| 丝袜美腿诱惑在线| 国产片内射在线| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 亚洲成国产人片在线观看| 女性被躁到高潮视频| 久热这里只有精品99| 国产精品国产三级专区第一集| 人人妻人人添人人爽欧美一区卜| 亚洲少妇的诱惑av| 男女啪啪激烈高潮av片| 美女福利国产在线| 日本欧美视频一区| 欧美日韩精品成人综合77777| 大片免费播放器 马上看| av在线老鸭窝| 超色免费av| 免费观看性生交大片5| 26uuu在线亚洲综合色| 亚洲国产欧美网| 国产xxxxx性猛交| 午夜日本视频在线| 国产精品久久久久久av不卡| 久久婷婷青草| 人人妻人人澡人人看| 丰满少妇做爰视频| 男女无遮挡免费网站观看| 欧美日韩成人在线一区二区| 一本久久精品| 亚洲第一青青草原| 女人精品久久久久毛片| 麻豆精品久久久久久蜜桃| 成年人免费黄色播放视频| 精品一区二区三区四区五区乱码 | 欧美中文综合在线视频| 中文字幕制服av| 黑丝袜美女国产一区| 在线观看三级黄色| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 欧美日韩视频高清一区二区三区二| 在线亚洲精品国产二区图片欧美| 电影成人av| 人人妻人人添人人爽欧美一区卜| 日本欧美视频一区| 日韩伦理黄色片| 日韩免费高清中文字幕av| 在线观看免费视频网站a站| 久久99蜜桃精品久久| 色播在线永久视频| 免费看不卡的av| 免费播放大片免费观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| h视频一区二区三区| 久久99蜜桃精品久久| 精品卡一卡二卡四卡免费| 亚洲三级黄色毛片| 欧美日韩一级在线毛片| 97精品久久久久久久久久精品| 国产精品二区激情视频| 国产精品人妻久久久影院| 久久人人爽人人片av| 成人免费观看视频高清| 中国国产av一级| 99久久人妻综合| 国产福利在线免费观看视频| 国产成人a∨麻豆精品| 一级爰片在线观看| 最黄视频免费看| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 桃花免费在线播放| 一边摸一边做爽爽视频免费| 狠狠婷婷综合久久久久久88av| 久久久久人妻精品一区果冻| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 亚洲精品av麻豆狂野| 欧美 日韩 精品 国产| 巨乳人妻的诱惑在线观看| 黄色 视频免费看| 欧美老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 亚洲成人手机| 熟妇人妻不卡中文字幕| 不卡视频在线观看欧美| av免费观看日本| 久久97久久精品| 香蕉精品网在线| 亚洲人成77777在线视频| 久久久久视频综合| 亚洲欧美一区二区三区国产| 老汉色av国产亚洲站长工具| 成人国产麻豆网| 欧美日韩国产mv在线观看视频| 久久精品国产a三级三级三级| 国产一区二区激情短视频 | 一区二区av电影网| 丰满迷人的少妇在线观看| 婷婷色综合www| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 欧美日韩视频高清一区二区三区二| 国产无遮挡羞羞视频在线观看| 日韩,欧美,国产一区二区三区| 久久久久精品久久久久真实原创| 久久韩国三级中文字幕| 丁香六月天网| 成人毛片60女人毛片免费| 男女边吃奶边做爰视频| 亚洲精品第二区| 十八禁网站网址无遮挡| 精品一区二区三区四区五区乱码 | 国产成人精品在线电影| 精品第一国产精品| 欧美 亚洲 国产 日韩一| 男女无遮挡免费网站观看| 纵有疾风起免费观看全集完整版| 极品人妻少妇av视频| 国语对白做爰xxxⅹ性视频网站| 在线观看人妻少妇| 寂寞人妻少妇视频99o| 亚洲成国产人片在线观看| 中文字幕精品免费在线观看视频| 亚洲av综合色区一区| 宅男免费午夜| 久久99蜜桃精品久久| 午夜激情久久久久久久| 国产乱人偷精品视频| av在线观看视频网站免费| 天天躁日日躁夜夜躁夜夜| 18禁国产床啪视频网站| av网站在线播放免费| 久久人人97超碰香蕉20202| 午夜日本视频在线| 国产 精品1| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 波多野结衣av一区二区av| 青草久久国产| 亚洲婷婷狠狠爱综合网| 亚洲欧洲日产国产| 中文字幕精品免费在线观看视频| 久久婷婷青草| 国产精品偷伦视频观看了| 看免费av毛片| 妹子高潮喷水视频| 伦精品一区二区三区| av又黄又爽大尺度在线免费看| 飞空精品影院首页| 一区二区三区精品91| 日本wwww免费看| 麻豆精品久久久久久蜜桃| 黄色配什么色好看| 精品国产乱码久久久久久小说| 国产精品久久久久久av不卡| 日韩视频在线欧美| 天天操日日干夜夜撸| 青青草视频在线视频观看| 日韩制服丝袜自拍偷拍| 女人久久www免费人成看片| 免费播放大片免费观看视频在线观看| 亚洲成人手机| 亚洲国产毛片av蜜桃av| 天天操日日干夜夜撸| 91久久精品国产一区二区三区| 久久久精品区二区三区| 人妻一区二区av| 婷婷色综合大香蕉| 免费观看性生交大片5| 乱人伦中国视频| 国产熟女欧美一区二区| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 午夜福利,免费看| 精品国产乱码久久久久久小说| 欧美日韩国产mv在线观看视频| 在线观看人妻少妇| 1024视频免费在线观看| 啦啦啦在线免费观看视频4| 欧美av亚洲av综合av国产av | 国产精品久久久久久精品电影小说| 亚洲国产精品999| 亚洲伊人久久精品综合| 美国免费a级毛片| 18禁国产床啪视频网站| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 18+在线观看网站| 国产精品成人在线| 中文精品一卡2卡3卡4更新| 曰老女人黄片| 成年女人在线观看亚洲视频| 国产极品天堂在线| 啦啦啦在线免费观看视频4| 亚洲少妇的诱惑av| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 午夜福利一区二区在线看| 国产精品亚洲av一区麻豆 | 免费大片黄手机在线观看| 搡老乐熟女国产| 久久这里有精品视频免费| 国产一区亚洲一区在线观看| 久久国产精品男人的天堂亚洲| 精品一区二区三区四区五区乱码 | 99九九在线精品视频| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 久久久久久久久免费视频了| 尾随美女入室| 在线观看美女被高潮喷水网站| 成人午夜精彩视频在线观看| √禁漫天堂资源中文www| 一级爰片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产一区二区| 男女午夜视频在线观看| 99热网站在线观看| 丝袜喷水一区| 亚洲精品乱久久久久久| 成人二区视频| 久久精品国产亚洲av高清一级| 国产成人免费无遮挡视频| 精品视频人人做人人爽| 欧美日韩一级在线毛片| av女优亚洲男人天堂| 国产毛片在线视频| 色吧在线观看| 侵犯人妻中文字幕一二三四区| 欧美最新免费一区二区三区| 国产精品免费大片| 999久久久国产精品视频| 大话2 男鬼变身卡| 制服人妻中文乱码| 国产精品久久久久久久久免| 香蕉丝袜av| 欧美少妇被猛烈插入视频| 亚洲精品国产av蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 国产爽快片一区二区三区| 欧美日韩视频精品一区| 欧美 日韩 精品 国产| 免费观看a级毛片全部| 亚洲精品中文字幕在线视频| 久久精品国产自在天天线| 老汉色∧v一级毛片| 两性夫妻黄色片| 激情视频va一区二区三区| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 1024视频免费在线观看| 丰满饥渴人妻一区二区三| 国产精品偷伦视频观看了| 天堂俺去俺来也www色官网| 18在线观看网站| 少妇人妻精品综合一区二区| 成人手机av| 久久久精品区二区三区| 99香蕉大伊视频| 久热久热在线精品观看| 精品国产乱码久久久久久小说| 午夜精品国产一区二区电影| 国产麻豆69| www.自偷自拍.com| 成人国语在线视频| 久久婷婷青草| 亚洲av电影在线观看一区二区三区| 国产一区有黄有色的免费视频| 男女边摸边吃奶| 国产精品一区二区在线观看99| 99久久中文字幕三级久久日本| 成人二区视频| 亚洲av欧美aⅴ国产| 综合色丁香网| videos熟女内射| 精品人妻偷拍中文字幕| 国精品久久久久久国模美| 亚洲第一av免费看| av免费观看日本| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 男女国产视频网站| 亚洲久久久国产精品| 国产av国产精品国产| 久久精品人人爽人人爽视色| 久久精品国产综合久久久| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 欧美激情高清一区二区三区 | 一级黄片播放器| 汤姆久久久久久久影院中文字幕| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 午夜91福利影院| 国产毛片在线视频| 欧美精品国产亚洲| 自线自在国产av| 丝袜人妻中文字幕| 亚洲婷婷狠狠爱综合网| 成年人午夜在线观看视频| 90打野战视频偷拍视频| 久久国内精品自在自线图片| 日韩一本色道免费dvd| 亚洲三区欧美一区| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| 久久久精品94久久精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久a久久爽久久v久久| 国产精品人妻久久久影院| 久久狼人影院| 国产97色在线日韩免费| 婷婷色av中文字幕| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 日韩电影二区| 人人妻人人澡人人看| www.自偷自拍.com| 爱豆传媒免费全集在线观看| 少妇的逼水好多| 人人澡人人妻人| 黄色一级大片看看| 一本久久精品| 1024视频免费在线观看| 在线亚洲精品国产二区图片欧美| 亚洲精品乱久久久久久| 18+在线观看网站| 啦啦啦中文免费视频观看日本| 午夜福利在线免费观看网站| 欧美人与性动交α欧美软件| a级毛片在线看网站| 超碰97精品在线观看| 视频区图区小说| 精品亚洲成a人片在线观看| 一级片'在线观看视频| 亚洲欧美成人精品一区二区| 国精品久久久久久国模美| 丝袜美腿诱惑在线| 性色avwww在线观看| 国产av一区二区精品久久| 日韩制服丝袜自拍偷拍| 欧美日韩精品成人综合77777| 亚洲精品中文字幕在线视频| videosex国产| 卡戴珊不雅视频在线播放| 久久久久国产网址| 日日摸夜夜添夜夜爱| 精品人妻在线不人妻| 国产精品欧美亚洲77777| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9 | 亚洲综合精品二区| 天堂中文最新版在线下载| 亚洲四区av| 久久久久久久久久人人人人人人| 国语对白做爰xxxⅹ性视频网站| 精品国产露脸久久av麻豆| 亚洲国产欧美网| 国产男女超爽视频在线观看| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 国产精品av久久久久免费| 一本久久精品| 久久人妻熟女aⅴ| 国产老妇伦熟女老妇高清| 午夜福利网站1000一区二区三区| 五月天丁香电影| 天天操日日干夜夜撸| 欧美日韩精品网址| 一级片免费观看大全| 一二三四在线观看免费中文在| 亚洲人成电影观看| 热re99久久精品国产66热6| av免费观看日本| 九九爱精品视频在线观看| 少妇人妻 视频| 男女午夜视频在线观看| 一区二区av电影网| 国产在线一区二区三区精| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 国产黄频视频在线观看| 婷婷成人精品国产| 哪个播放器可以免费观看大片| 精品国产超薄肉色丝袜足j| 中文欧美无线码| 飞空精品影院首页| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 美女国产视频在线观看| 久久精品国产a三级三级三级| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| 国产成人免费观看mmmm| www.自偷自拍.com| 成人国语在线视频| 欧美97在线视频| 一边亲一边摸免费视频| 久久久精品免费免费高清| 中国国产av一级| 伦精品一区二区三区| 日日摸夜夜添夜夜爱| 久久国产精品大桥未久av| 日韩欧美精品免费久久| 国产成人精品久久久久久| 亚洲精品国产av成人精品| 天堂中文最新版在线下载| a级毛片黄视频| 最新的欧美精品一区二区| 日韩中文字幕欧美一区二区 | 巨乳人妻的诱惑在线观看| 日韩制服骚丝袜av| 国产日韩欧美亚洲二区| 少妇人妻久久综合中文| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 老女人水多毛片| 日日撸夜夜添| 日韩制服丝袜自拍偷拍| 国产一区二区在线观看av| 久久精品国产亚洲av天美| 国产97色在线日韩免费| 免费少妇av软件| 亚洲国产欧美在线一区| 精品一区二区三卡| 国产亚洲午夜精品一区二区久久| 18+在线观看网站| 国产一区二区 视频在线| www.av在线官网国产| 亚洲精品日本国产第一区| 中文字幕人妻熟女乱码| 久热这里只有精品99| 国产精品久久久久久av不卡| 婷婷色麻豆天堂久久| 男女午夜视频在线观看| 青青草视频在线视频观看| 寂寞人妻少妇视频99o| 久久久久久人人人人人| 午夜久久久在线观看| 久久久久久久久久久免费av| 少妇人妻精品综合一区二区| 亚洲av.av天堂| 亚洲第一青青草原| 亚洲av免费高清在线观看| 亚洲熟女精品中文字幕| 亚洲三级黄色毛片| 91精品伊人久久大香线蕉| 国产精品 国内视频| 亚洲国产精品国产精品| 亚洲情色 制服丝袜| 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 夫妻午夜视频| 午夜福利在线免费观看网站| 国产亚洲一区二区精品| 久久久久视频综合| 国产成人精品福利久久| 少妇 在线观看| 性少妇av在线| 亚洲男人天堂网一区| 久久久久网色| 国产国语露脸激情在线看| 日韩在线高清观看一区二区三区| 久久国内精品自在自线图片| 精品国产乱码久久久久久小说| 国产精品国产av在线观看| 亚洲欧美清纯卡通| 男人操女人黄网站| 午夜福利乱码中文字幕| 午夜老司机福利剧场| 欧美日韩视频精品一区| 久热这里只有精品99| 一区二区三区乱码不卡18| 街头女战士在线观看网站| 成年女人在线观看亚洲视频| 99九九在线精品视频| 制服诱惑二区| 日韩一区二区视频免费看| 性色avwww在线观看| 欧美人与性动交α欧美精品济南到 | 色网站视频免费| 美女视频免费永久观看网站| 一边亲一边摸免费视频| 亚洲成人av在线免费| 韩国av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 国产欧美亚洲国产| 在线免费观看不下载黄p国产| 日韩大片免费观看网站| 国产成人精品福利久久| 人妻系列 视频| 高清av免费在线| 美女脱内裤让男人舔精品视频| 欧美成人精品欧美一级黄| 自拍欧美九色日韩亚洲蝌蚪91| 日韩熟女老妇一区二区性免费视频| 亚洲人成网站在线观看播放| 亚洲综合精品二区| 26uuu在线亚洲综合色| 尾随美女入室| 人妻少妇偷人精品九色|