• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reinforcement Learning Based Data Fusion Method for Multi-Sensors

    2020-11-05 09:36:58TongleZhouMouChenandJieZou
    IEEE/CAA Journal of Automatica Sinica 2020年6期

    Tongle Zhou,Mou Chen,,and Jie Zou

    Abstract—In order to improve detection system robustnessand reliability, multi-sensors fusion is used in modern air combat. In this paper,a data fusionmethod based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multisource data. Then, the reinforcement learning based data fusion(RLBDF)method is proposed to obtain the fusion results. W ith the case that the priori know ledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori know ledge isunable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.

    I.In t roduction

    AFTER several decades of development,modern m ilitary technology has become increasingly mature and is w idely used in air combat.In particular,the application of artificial intelligence technology,such as stealth aircraft leads to more complicated air combat environments[1].To obtain reliable and effective information in such environments,multi-sensors systemsare used for data processing.Compared w ith single sensor systems,multi-sensors system can improve system robustness,increase the detection range and ensure detection accuracy by data fusion.However,in the process of target detection,measurement data is affected by the sensors noises and disturbances in the surrounding environment,whichmay result in error and a certain percentage of outliers[2].Therefore,data fusion technologies are employed to solve this problem in air combat,and lay a foundation for decisionmaking.

    In recent years,multi-sensors data fusion methods of air combat have undergone rapid development due to boosts in sensor data acquisition and computer calculation capabilities.An unscented Kalman filter algorithm was introduced in[3],which investigated the problem of estimation of the wheelchair position in indoor environments w ith noisy measurements.Reference[4]presented a sequential fusion estimation method for maneuvering target tracking in asynchronous w ireless sensor networks.In[5],an assistant system of sub-station based on multi-sensors networks were studied through the improvement of evidence theory based fusion algorithm in a smart sub-station,and multi-sensors information fusion was realized.A complete perception fusion architecture based on the evidential framework was proposed in[6]to solve the detection and tracking ofmoving objects problem by integrating composite representation and uncertaintymanagement.In[7], to dealw ith counter-intuitive results may come out when fusing the highly conflicting evidence,a method based on a new belief divergencemeasure of evidence and belief entropy was developed for multisensors data fusion.An improved method w ith priori know ledge based on reinforcement learning techniques was proposed in[8]for air combat data fusion.Whereas some of the above-mentioned works may lack timeliness and reliability,or require a great deal of prior know ledge,the actualair combat is constantly changing,and prior know ledge is hard to obtain.On the other hand,air combatenvironments are difficult to describe w ith accurate mathematicalmodels.Under such cases,the developed reinforcement learning method can be employed to solve these problems.As one of the most active research areas in artificial intelligence,reinforcement learning has great advantages in solving learning and optim izing problems[9]–[11].Hence,reinforcement learning can improve the intellectualization of air combat data fusion systems by interacting w ith the air combat environment.As a field, reinforcement learning has progressed tremendously in the past decade,and has been w idely used in fields such as autonomous driving, humancooperativemanipulations,mobile edge caching and physical human-robot interaction [12]–[20].

    Multi-sensors data fusion is a processwhich dealsw ith the association,correlation and combination of data based on information from multiple sources to achieve refined target information estimates.In this paper,the reinforcement learningmethod is used to improve the data fusion system of air combat.The main contributions lie in the follow ing aspects:

    1) A data pre-processing method is raised before data fusion,which could solve the time alignment problem.

    2)To improve the accuracy of data fusion systems,a data fusion approach based on reinforcement learning is designed w ithout priori know ledge by multi-sensors weight adjustment.

    The structure of this paper is organized as follows.Section II formulates the problem.The data pre-processingmethod is studied in Section III.The reinforcement learning based data algorithm is introduced in Section IV.In Section V,we provide the simulation results.Finally,the conclusion is drawn in the last section.

    II.Problem Descr iptions

    As previously mentioned, the modern air combat environmenthas become increasingly complicated because of high-tech military technology.To improve the performance of information fusion systems,integrated space-air-ground information system are employed in modern air combat[21].Generally, the three types sensors consist of space-based platform sensors,air-based platform sensorsand ground-based platform sensorswhich are used to simultaneously detect the same target.The schematic diagram of integrated space-airground information systemsare shown in Fig.1[8].

    Fig.1.The schematic diagram of integrated space-air-ground information system.

    Due to the influence of sensor noise and air combat environment uncertainty,data detected by multi-sensors systems can not be directly used.In order to obtain optimal results,data fusion technologies are employed before air combatdecision-making.Hence,the objective of this paper is divided into two parts.The first part is to design a curve fitting algorithm to solve the time alignment problem.The second part is to design the state,action and reward of reinforcement learning and decide the optimal weightof each sensor based on reinforcement learning.

    The flow diagram of the reinforcement learning based data fusion (RLBDF)system isshown as Fig.2.

    III.Data Pre-processing

    Fig.2.The flow diagram of RLBDFsystem.

    In air combat data detection systems,due to advanced sensor varieties,the sample interval of integrated space-airground information system,including space-based platform sensors,air-based platform sensorsand ground-based platform sensors,are different[22].To obtain fusion results,it is indispensable to allow the data of different sample intervals to be unified in the same time space.Consequently,the time alignment should be considered before data fusion.In this paper,an approach based on cubic B-spline interpolation curve fitting is developed.The discrete observations detected by sensors w ith different sample intervals are fitted as a corresponding continuous curve.On that basis,the air target information atanymoment can be calculated according to the fitted curve.

    The schematic diagram of a B-spline interpolation curve fitting isshown in Fig.3[23].

    Fig.3.The schematic diagram of B-spline interpolation curve fitting.

    On thisbasis,consider the boundary condition [24]

    IV.Rein for cement Lea rning Based Da ta Fusion

    The above stage solves the time alignment problem and the obtained fitted curves provide the basis for fusion of air combat.Then,the RLBDF method is studied in this section.During the reinforcement learning process,the system takes actions and makes a corresponding reward or punishment from the environment.The objective is to choose the optimal action w ith maximum reward by repeated attempts.The relationship between data fusion and reinforcement learning aremainly by the follow ing three stages[26]:

    1)The target information is detected by the multi-sensors and a reinforcement signal is received by data fusion system.

    2)The data fusion system takes a possible action related to the current observation and producesa reward.

    3)The data fusion system makes a new fusion and updates theaccumulated reward.

    A general structure for an air combat RLBDF system is shown in Fig.4.

    Generally,due to theuncertainty of air combat,it isdifficult to find a model to describe air combat environments.-learning is a model-free form of reinforcement learning.Hence,in this paper,-learning algorithm is used to implement the reinforcement learning data fusion.The goal is to find the action which maxim izes reward to obtain the optimal fused value.

    Fig.4.A general structure for air combat RLBDF system.

    The reinforcement learning method is used for weight updating.The system can adapt the weights for each observation.In summary, three components are defined:states,actionsand reward of reinforcement learning.

    A. Data FusionWith Priori Know ledge

    Algorithm 1Q-learning for data fusion w ith priori know ledge in air combat Input:The observations of multi-sensors,,initial weights, the actual value of target ,the maximum number of iterationsimages/BZ_30_353_2460_420_2498.pngand the error threshold ;Output:The optimalset of weights,fused data;images/BZ_30_910_2363_943_2396.pngimages/BZ_30_971_2363_1079_2396.pngimages/BZ_30_1098_2363_1135_2396.pngimages/BZ_30_786_2422_815_2447.png images/BZ_30_779_2472_808_2497.png1:Initialize w ith random weights,images/BZ_30_908_2561_1030_2602.pngimages/BZ_30_1040_2561_1087_2602.png ,set parameters and of air combat data fusion system;images/BZ_30_421_2564_500_2598.pngimages/BZ_30_842_2573_888_2602.pngimages/BZ_30_453_2623_474_2648.pngimages/BZ_30_547_2615_563_2644.png2:for toimages/BZ_30_442_2662_555_2699.pngdoimages/BZ_30_332_2665_394_2694.png 3:Initialize state ,images/BZ_30_604_2712_1054_2753.png;images/BZ_30_561_2724_586_2749.png4:while doimages/BZ_30_435_2766_602_2799.png5:action in state;images/BZ_30_378_2824_444_2849.png images/BZ_30_671_2824_696_2849.pngimages/BZ_30_555_2874_580_2899.pngimages/BZ_30_725_2866_750_2895.png6:Take action ,observe (next available state ),images/BZ_30_364_2913_655_2951.png;images/BZ_30_1070_2866_1095_2895.png7:images/BZ_30_378_2967_1086_3017.png8:, optimal weights that maxim ize and in stateimages/BZ_30_377_3029_411_3054.pngimages/BZ_30_439_3029_547_3054.pngimages/BZ_30_547_3029_622_3054.pngimages/BZ_30_1150_3020_1250_3054.png images/BZ_30_436_3079_457_3104.png images/BZ_30_583_3079_608_3104.png9:optimalnew state ,images/BZ_30_763_3118_863_3155.png;images/BZ_30_378_3129_432_3150.pngimages/BZ_30_715_3129_744_3150.png

    10:end while 11:end for 12:return ,images/BZ_30_1555_360_1663_397.png;fused data .images/BZ_30_1503_371_1536_396.png images/BZ_30_1663_371_1700_396.png images/BZ_30_1882_371_1907_396.png

    B. Data FusionWithout Priori Know ledge

    Using the new reward definition,the data fusion w ithout actual value algorithm is summarized in Algorithm 2.What needs to be pointed out is that the state definition and action definition are sim ilar to the data fusion w ith actual value algorithm.

    Algorithm 2Q-learning for data fusion w ithout priori know ledge in air combat Input:The observations of multi-sensors,,initial weightsand the maximum number of iterationsimages/BZ_31_923_862_990_899.png;Output:Theoptimalset of weights,fused data;images/BZ_31_923_815_956_848.pngimages/BZ_31_987_815_1095_848.png images/BZ_31_1095_815_1132_848.png1:Initialize w ith random weights,,set parameter and of air combat data fusion system;images/BZ_31_423_966_502_999.pngimages/BZ_31_848_974_894_1003.pngimages/BZ_31_915_974_1036_1003.pngimages/BZ_31_1048_974_1094_1003.pngimages/BZ_31_476_1025_497_1050.pngimages/BZ_31_569_1016_586_1045.png2:Initialize state,images/BZ_31_539_1063_980_1104.png;images/BZ_31_495_1075_520_1100.png3:for toimages/BZ_31_442_1114_555_1151.pngdoimages/BZ_31_332_1117_394_1146.png 4:action in state ;images/BZ_31_340_1176_407_1201.png images/BZ_31_634_1176_659_1201.png5:Take action ,observe next available state and calculate according to(17); images/BZ_31_535_1226_560_1251.pngimages/BZ_31_1014_1218_1039_1247.png images/BZ_31_354_1277_375_1302.png6:images/BZ_31_340_1319_1057_1369.png7:images/BZ_31_343_1369_377_1406.png,images/BZ_31_397_1369_506_1406.png optimalweights thatmaxim ize and in state ;images/BZ_31_506_1381_581_1406.pngimages/BZ_31_1072_1372_1185_1406.png images/BZ_31_354_1431_375_1456.png images/BZ_31_501_1431_526_1456.png8:optimal new state ;9:end forimages/BZ_31_340_1481_403_1506.pngimages/BZ_31_686_1481_715_1502.png10:return ,images/BZ_31_459_1571_567_1608.png;fused data .images/BZ_31_407_1582_440_1607.png images/BZ_31_567_1582_605_1607.png images/BZ_31_787_1582_812_1607.png

    Remark 1:The data fusion system receives data from different sensors and broken sensors may lead to two conditions.If broken sensors can not detect the target,then the data fusion system also can not receive the data,and works w ith the data received by other available sensors.If the broken sensors receive the dataw ith large errors,in the reinforcement learning process, the action that decreases the broken sensors weights w ill be selected.Hence,the percentage of those broken sensors in fused data w ill be decreased.

    V.Simu la tion Resu l ts

    In this section,the simulation results are given to validate the performance of the RLBDFalgorithm.

    It is assumed that four radars are used to simultaneously detect the same target RCS information and the time interval of each radar may be different.The actualvalue of target RCSs0=5.55m2.The time intervalof radar1,radar 2, radar 3 and radar 4 areT1= 1.0 s,T2= 0.8 s,T3= 1.2 sandT4= 1.5 s.

    The simulation observations(target RCS information/m2)areshown in Tables I– IV.

    The results of curve fitting based on cubic B-spline interpolation areshown as Figs.5?8.

    Then,in the continuous fitted curve,the value of target information can be calculated at any moment.

    We chooset1=5.0 s,t2=10.0 s,t3=15.0 s andt4=20.0 s,the corresponding fitted value are shown in Table V.radar 3 and radar 4,is the fused value of target RCS that the possibleaction isperformed.

    TABLE I The Obser va tions of Radar 1

    TABLE II The Obser va tions of Radar 2

    TABLE III The Observations of Rada r 3

    TABLE IV The Observations of Rada r 4

    Fig.5.The curve fitting result of radar 1.

    Fig.6.The curve fitting result of radar 2.

    Fig.7.The curve fitting result of radar 3.

    Fig.8.The curve fitting result of radar 4.

    TABLE VI The Actions in RLBDF System W ith Four Rada rs

    TABLE V The Fit ted Data of Th ree Sensor s at Fixed Time

    The system learning by the reward of each state and the corresponding state of maximum reward is selected as state.

    The simulation results of weight selection are shown in Table VII.

    To evaluate the performance of the proposed method,we compare the follow ing strategies:

    1) Random:This algorithm serves as the baseline by just selecting theweights foreach time random ly.It does not need any information from theobservationaldataset.

    2) EEM(Expert experience method):This algorithm determ ines theweightsby utilizing the expert’sknow ledge.

    3) BE(Bayesian estimation):The fused data is obtained by mathematical statistics in this algorithm.According to the prior know ledge and probability distributions, themaximum likelihood estimator is the desired fused data [32].

    4) RL with priori know ledge:This is the reinforcement learningmethod developed in Section IV, which uses the error between fused data and actual value to guide us select the weights.

    5) RL without priori know ledge:This is also the reinforcement learning method developed in Section IV.The difference is the priori know ledge is not needed; the Fisher information is instead used as the reward of reinforcement learning.

    The simulation results of data fusion is shown in Tables VII and VIII.The fused data curve and error curve are shown in Figs.9 and 10.

    From the simulation results,it is illustrated that the weights of multi-sensors have influence on the accuracy of data fusionsystem.Through weights adjustment of multi-sensors,the available fused value can beobtained.Additionally,compared w ith other algorithms,the RLBDF algorithm has better fusion results and less error.Themain reason is that reinforcement learning develops fusion strategies according to observations.From the observations of four radars,it is obvious that the measure performance of radar 3 isbetter than radar 1,radar 2and radar 4.Thus,the weight of radar 3 makes up a greater percentage in the data fusion results.The results verify the effectiveness of the developed method under the conditions w ith or w ithout the priori know ledge in air combat multisensorsdata fusion.

    TABLE VII TheWeigh t of Four Sensors a t Fixed Time

    TABLE VIII The Fit ted Data of Fou r Sensors at Fixed Time

    Fig.9.Fused data curve.

    VI.Conc lusion

    Fig.10.Error curve.

    To improve detection system robustness and dependability,multi-sensors fusion is used inmodern air combat.Due to the diversity of multi-sensors function,the data detected bymultisensors can not be directly used.In this paper,to solve the time alignment problem,a cubic B-spline interpolation is employed to obtain a fitting curve based on observations before data fusion.Then,theRLBDFmethod is proposed.The data fusion system takes actions(weight adjustment)to reach different states(different fused value).The reinforcement signal is provided by the error between observations and actual value in the cases w ith priori know ledge.If the priori know ledge can not be obtained,the reward is designed by Fisher information.The simulation result shows that reinforcement learning technology can overcome the shortcom ings of traditional methods which depend on subjective experience excessively and improve the accuracy of data fusion system in air combat.

    欧美日韩亚洲高清精品| 国产精品自产拍在线观看55亚洲 | 国产男女内射视频| 色精品久久人妻99蜜桃| 亚洲精品一二三| 亚洲精品中文字幕在线视频| 91大片在线观看| 热99re8久久精品国产| 久久人妻福利社区极品人妻图片| 精品一品国产午夜福利视频| 一二三四在线观看免费中文在| 欧美乱码精品一区二区三区| 亚洲国产av新网站| 在线看a的网站| 日韩熟女老妇一区二区性免费视频| 伊人久久大香线蕉亚洲五| 亚洲av成人一区二区三| 亚洲国产欧美在线一区| 又大又爽又粗| 亚洲中文av在线| 日本欧美视频一区| 亚洲国产欧美日韩在线播放| 老司机亚洲免费影院| 丰满迷人的少妇在线观看| 亚洲伊人久久精品综合| 日韩三级视频一区二区三区| 80岁老熟妇乱子伦牲交| 男女无遮挡免费网站观看| 亚洲精品在线美女| 国产在视频线精品| 我的亚洲天堂| 日韩大片免费观看网站| 99香蕉大伊视频| 一区在线观看完整版| 90打野战视频偷拍视频| 国产高清激情床上av| 12—13女人毛片做爰片一| 成人永久免费在线观看视频 | 成人av一区二区三区在线看| 岛国在线观看网站| 91精品国产国语对白视频| 久久午夜综合久久蜜桃| 成人18禁在线播放| 亚洲人成电影观看| 国产精品九九99| 97在线人人人人妻| 在线观看www视频免费| 91九色精品人成在线观看| 国产人伦9x9x在线观看| 操出白浆在线播放| 人成视频在线观看免费观看| 99国产精品免费福利视频| 王馨瑶露胸无遮挡在线观看| 国产男女内射视频| 人人妻人人澡人人看| 人成视频在线观看免费观看| 国产一区二区激情短视频| avwww免费| 天天躁夜夜躁狠狠躁躁| 黄色成人免费大全| 午夜日韩欧美国产| 一级毛片电影观看| 亚洲国产av影院在线观看| 久久精品成人免费网站| 叶爱在线成人免费视频播放| 久久av网站| 国产又爽黄色视频| 18禁观看日本| 成人特级黄色片久久久久久久 | 大片免费播放器 马上看| 精品国产乱子伦一区二区三区| av天堂久久9| 高清在线国产一区| 熟女少妇亚洲综合色aaa.| 欧美日韩福利视频一区二区| 99国产精品一区二区蜜桃av | 久久久久精品人妻al黑| 欧美变态另类bdsm刘玥| 亚洲欧美色中文字幕在线| 伊人久久大香线蕉亚洲五| 黄色 视频免费看| netflix在线观看网站| 国产一区二区 视频在线| 久久国产精品人妻蜜桃| 夜夜夜夜夜久久久久| 一区在线观看完整版| 国产成人影院久久av| 国产在线视频一区二区| h视频一区二区三区| 在线观看一区二区三区激情| 精品视频人人做人人爽| 考比视频在线观看| 国产精品香港三级国产av潘金莲| 久久婷婷成人综合色麻豆| 成年版毛片免费区| 天天躁日日躁夜夜躁夜夜| 国产高清videossex| 欧美一级毛片孕妇| 极品人妻少妇av视频| 亚洲天堂av无毛| 亚洲人成电影观看| av超薄肉色丝袜交足视频| 欧美激情高清一区二区三区| 91成年电影在线观看| 人妻 亚洲 视频| 欧美变态另类bdsm刘玥| 亚洲国产看品久久| 在线观看免费视频网站a站| 国产高清视频在线播放一区| 久热爱精品视频在线9| 亚洲自偷自拍图片 自拍| 老司机在亚洲福利影院| 在线观看免费高清a一片| 欧美国产精品一级二级三级| 日韩大片免费观看网站| 操美女的视频在线观看| 如日韩欧美国产精品一区二区三区| 成人黄色视频免费在线看| 性少妇av在线| 高清av免费在线| 成人国产av品久久久| e午夜精品久久久久久久| 操出白浆在线播放| 首页视频小说图片口味搜索| 免费久久久久久久精品成人欧美视频| 国产精品 欧美亚洲| 国产精品欧美亚洲77777| www.熟女人妻精品国产| 精品午夜福利视频在线观看一区 | svipshipincom国产片| 亚洲精品国产色婷婷电影| 怎么达到女性高潮| 久久国产亚洲av麻豆专区| 久久精品亚洲精品国产色婷小说| 久久精品亚洲熟妇少妇任你| 亚洲午夜精品一区,二区,三区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品大桥未久av| 国产三级黄色录像| 国产单亲对白刺激| 99久久精品国产亚洲精品| 三级毛片av免费| 三级毛片av免费| 亚洲国产av新网站| 极品人妻少妇av视频| 国产成人一区二区三区免费视频网站| 别揉我奶头~嗯~啊~动态视频| 波多野结衣一区麻豆| 国产精品亚洲av一区麻豆| 18禁裸乳无遮挡动漫免费视频| 精品午夜福利视频在线观看一区 | 久久精品国产综合久久久| 精品福利观看| 成年版毛片免费区| 久久精品国产综合久久久| 久久国产亚洲av麻豆专区| 久久99热这里只频精品6学生| 黑人操中国人逼视频| 久久 成人 亚洲| 中文字幕av电影在线播放| 精品少妇久久久久久888优播| 国产精品一区二区免费欧美| 高潮久久久久久久久久久不卡| 亚洲精品久久午夜乱码| 两个人看的免费小视频| 亚洲情色 制服丝袜| 精品国产乱子伦一区二区三区| 亚洲精品久久午夜乱码| 丁香六月欧美| 国产精品熟女久久久久浪| 亚洲欧美激情在线| 国产精品麻豆人妻色哟哟久久| 大型黄色视频在线免费观看| 91字幕亚洲| 黑人巨大精品欧美一区二区蜜桃| 午夜免费成人在线视频| 久久婷婷成人综合色麻豆| 亚洲国产欧美日韩在线播放| 飞空精品影院首页| 嫩草影视91久久| 人人妻,人人澡人人爽秒播| 亚洲伊人色综图| 97在线人人人人妻| 亚洲欧美色中文字幕在线| 亚洲国产看品久久| h视频一区二区三区| 国产欧美日韩一区二区三| 美女高潮喷水抽搐中文字幕| 日本黄色日本黄色录像| 亚洲熟妇熟女久久| 一个人免费在线观看的高清视频| 日韩视频一区二区在线观看| 免费观看av网站的网址| 十八禁人妻一区二区| 一边摸一边抽搐一进一小说 | 性色av乱码一区二区三区2| 麻豆av在线久日| 久久九九热精品免费| 久9热在线精品视频| 18禁黄网站禁片午夜丰满| 日本vs欧美在线观看视频| 高清av免费在线| 我的亚洲天堂| 一本久久精品| 黄色成人免费大全| 天天躁夜夜躁狠狠躁躁| 亚洲第一av免费看| 91精品三级在线观看| 露出奶头的视频| av网站免费在线观看视频| 女警被强在线播放| 亚洲精品国产一区二区精华液| √禁漫天堂资源中文www| 久久国产亚洲av麻豆专区| 国产精品亚洲一级av第二区| 久久久国产欧美日韩av| 欧美午夜高清在线| 男女免费视频国产| 女警被强在线播放| 亚洲avbb在线观看| 久久国产精品人妻蜜桃| 午夜福利视频精品| 女性被躁到高潮视频| 日韩中文字幕欧美一区二区| 亚洲专区中文字幕在线| 亚洲欧美色中文字幕在线| 欧美午夜高清在线| 亚洲av日韩精品久久久久久密| 久久中文字幕一级| 视频在线观看一区二区三区| 国产成人av教育| www.熟女人妻精品国产| 亚洲自偷自拍图片 自拍| 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 99国产综合亚洲精品| av超薄肉色丝袜交足视频| 久久久国产成人免费| 国产激情久久老熟女| 中文字幕高清在线视频| 麻豆成人av在线观看| 亚洲 国产 在线| 久久这里只有精品19| 亚洲欧洲日产国产| 日日夜夜操网爽| 久久精品亚洲熟妇少妇任你| 在线观看www视频免费| 亚洲美女黄片视频| 欧美激情 高清一区二区三区| 国产三级黄色录像| 精品福利永久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美在线观看 | 后天国语完整版免费观看| 久久精品国产99精品国产亚洲性色 | www.自偷自拍.com| 日韩欧美三级三区| 最近最新中文字幕大全免费视频| 中文字幕人妻熟女乱码| 欧美日韩亚洲国产一区二区在线观看 | 女人高潮潮喷娇喘18禁视频| 欧美变态另类bdsm刘玥| 老司机影院毛片| 国产色视频综合| 亚洲avbb在线观看| 脱女人内裤的视频| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品第一综合不卡| 精品少妇黑人巨大在线播放| 在线看a的网站| av又黄又爽大尺度在线免费看| 精品卡一卡二卡四卡免费| 美女视频免费永久观看网站| 乱人伦中国视频| 在线永久观看黄色视频| 天天操日日干夜夜撸| 精品一区二区三区四区五区乱码| 正在播放国产对白刺激| 9热在线视频观看99| www.自偷自拍.com| 久久精品国产亚洲av香蕉五月 | 久久久久精品人妻al黑| 在线观看免费日韩欧美大片| 桃花免费在线播放| 91老司机精品| 在线 av 中文字幕| 纯流量卡能插随身wifi吗| 两个人免费观看高清视频| 黄色视频,在线免费观看| 国产黄频视频在线观看| 成年女人毛片免费观看观看9 | 久久久久国内视频| 亚洲免费av在线视频| 久久青草综合色| 下体分泌物呈黄色| 免费看a级黄色片| 日韩三级视频一区二区三区| 亚洲精华国产精华精| 久久久久久亚洲精品国产蜜桃av| 亚洲色图综合在线观看| 国产精品国产高清国产av | 不卡一级毛片| 人妻一区二区av| 亚洲五月婷婷丁香| 亚洲五月婷婷丁香| 欧美另类亚洲清纯唯美| 日韩免费高清中文字幕av| 纯流量卡能插随身wifi吗| 高清视频免费观看一区二区| 男女边摸边吃奶| 老司机午夜福利在线观看视频 | 国产精品1区2区在线观看. | 在线观看免费高清a一片| 亚洲三区欧美一区| av在线播放免费不卡| 香蕉丝袜av| 99久久国产精品久久久| 精品久久久精品久久久| 日韩成人在线观看一区二区三区| 国产午夜精品久久久久久| 国产精品久久久久久人妻精品电影 | 一级毛片电影观看| 欧美精品啪啪一区二区三区| 乱人伦中国视频| 天堂动漫精品| 亚洲熟女精品中文字幕| 丰满迷人的少妇在线观看| 丰满饥渴人妻一区二区三| 精品乱码久久久久久99久播| 国产av又大| 真人做人爱边吃奶动态| 男女午夜视频在线观看| 国产亚洲欧美在线一区二区| 免费在线观看黄色视频的| 制服人妻中文乱码| 国产一区二区三区视频了| 日韩三级视频一区二区三区| av福利片在线| 国产av国产精品国产| 欧美精品亚洲一区二区| 精品一品国产午夜福利视频| 黄频高清免费视频| 老司机午夜福利在线观看视频 | 亚洲中文字幕日韩| 一区二区日韩欧美中文字幕| 99国产精品一区二区蜜桃av | 香蕉丝袜av| 国产精品 国内视频| 大片电影免费在线观看免费| 亚洲专区字幕在线| 亚洲少妇的诱惑av| 午夜福利在线免费观看网站| 久久这里只有精品19| 咕卡用的链子| 亚洲全国av大片| 99国产综合亚洲精品| 91麻豆av在线| 侵犯人妻中文字幕一二三四区| 人妻一区二区av| 操出白浆在线播放| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 交换朋友夫妻互换小说| 久久久久久亚洲精品国产蜜桃av| 高清欧美精品videossex| 亚洲成人免费av在线播放| 国产av精品麻豆| 日韩一卡2卡3卡4卡2021年| 热re99久久国产66热| av线在线观看网站| 国产男女超爽视频在线观看| 亚洲人成伊人成综合网2020| 99国产精品99久久久久| 亚洲av成人不卡在线观看播放网| 女性生殖器流出的白浆| 人人妻人人澡人人看| 色综合婷婷激情| 午夜免费成人在线视频| 极品教师在线免费播放| 在线av久久热| 超碰成人久久| 国产不卡一卡二| 国产精品 国内视频| 黄色丝袜av网址大全| 欧美成人午夜精品| 欧美黑人欧美精品刺激| 亚洲天堂av无毛| 黄色毛片三级朝国网站| av线在线观看网站| 99国产综合亚洲精品| 少妇的丰满在线观看| 超碰成人久久| 午夜福利一区二区在线看| 中国美女看黄片| 日本av手机在线免费观看| 老熟妇仑乱视频hdxx| 中文字幕另类日韩欧美亚洲嫩草| 2018国产大陆天天弄谢| a级毛片黄视频| 午夜福利一区二区在线看| 这个男人来自地球电影免费观看| 欧美大码av| 亚洲熟女毛片儿| 视频区欧美日本亚洲| 菩萨蛮人人尽说江南好唐韦庄| 黄色毛片三级朝国网站| 亚洲精品在线观看二区| 99国产综合亚洲精品| 精品午夜福利视频在线观看一区 | 中文字幕制服av| 国产精品自产拍在线观看55亚洲 | 国产麻豆69| 欧美人与性动交α欧美软件| 亚洲精品久久成人aⅴ小说| a在线观看视频网站| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 亚洲精品中文字幕一二三四区 | 国产一区有黄有色的免费视频| 欧美精品一区二区大全| 两个人看的免费小视频| 亚洲 国产 在线| 高清黄色对白视频在线免费看| 午夜久久久在线观看| 亚洲欧美激情在线| 亚洲精品国产精品久久久不卡| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 国产精品.久久久| 成年女人毛片免费观看观看9 | 国产成人一区二区三区免费视频网站| 成人永久免费在线观看视频 | 首页视频小说图片口味搜索| 精品福利观看| 19禁男女啪啪无遮挡网站| 老司机午夜福利在线观看视频 | 人妻 亚洲 视频| 欧美人与性动交α欧美精品济南到| 美国免费a级毛片| kizo精华| 亚洲伊人久久精品综合| 777久久人妻少妇嫩草av网站| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 无遮挡黄片免费观看| 亚洲av欧美aⅴ国产| 久久国产亚洲av麻豆专区| 久久久精品免费免费高清| 精品国产一区二区久久| 曰老女人黄片| 国产在线视频一区二区| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频日本深夜| 欧美亚洲 丝袜 人妻 在线| 两性夫妻黄色片| 一区二区三区乱码不卡18| 午夜福利一区二区在线看| 日韩有码中文字幕| 色老头精品视频在线观看| 亚洲成av片中文字幕在线观看| 99热网站在线观看| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久精品区二区三区| 99国产综合亚洲精品| 亚洲精品国产色婷婷电影| 亚洲 国产 在线| 国产精品欧美亚洲77777| 热re99久久精品国产66热6| 极品教师在线免费播放| 国产片内射在线| 好男人电影高清在线观看| 亚洲av欧美aⅴ国产| 久久国产亚洲av麻豆专区| 考比视频在线观看| 操出白浆在线播放| 国产精品99久久99久久久不卡| 天天添夜夜摸| 精品国产乱子伦一区二区三区| 国产不卡一卡二| 亚洲国产av影院在线观看| 亚洲国产欧美日韩在线播放| cao死你这个sao货| 亚洲 欧美一区二区三区| 男女无遮挡免费网站观看| 视频区图区小说| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 窝窝影院91人妻| h视频一区二区三区| 国产成人一区二区三区免费视频网站| 97人妻天天添夜夜摸| 国产一区二区三区在线臀色熟女 | 亚洲精品在线观看二区| 18在线观看网站| 在线观看舔阴道视频| 午夜福利,免费看| 91麻豆av在线| 大型黄色视频在线免费观看| 1024视频免费在线观看| 欧美乱码精品一区二区三区| 久久av网站| 色综合欧美亚洲国产小说| 男人舔女人的私密视频| 国产黄色免费在线视频| 亚洲成人手机| 一本一本久久a久久精品综合妖精| 精品久久蜜臀av无| 成人av一区二区三区在线看| 久久亚洲真实| 啦啦啦在线免费观看视频4| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 丰满饥渴人妻一区二区三| 亚洲一码二码三码区别大吗| 色综合婷婷激情| 欧美黑人欧美精品刺激| 免费久久久久久久精品成人欧美视频| 日本五十路高清| 久久午夜亚洲精品久久| 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 大片免费播放器 马上看| 久久久水蜜桃国产精品网| 最新美女视频免费是黄的| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 亚洲专区中文字幕在线| 欧美精品一区二区免费开放| 亚洲专区国产一区二区| 18禁美女被吸乳视频| 精品国产国语对白av| 日韩三级视频一区二区三区| av天堂久久9| 一区福利在线观看| 一本色道久久久久久精品综合| www.自偷自拍.com| 美女主播在线视频| 在线观看www视频免费| 视频在线观看一区二区三区| 国产精品国产高清国产av | 国产在线免费精品| 黑人欧美特级aaaaaa片| 午夜福利一区二区在线看| 亚洲国产欧美在线一区| 丝袜喷水一区| 少妇的丰满在线观看| videos熟女内射| 操美女的视频在线观看| 乱人伦中国视频| 久久久国产成人免费| 亚洲三区欧美一区| 久久精品91无色码中文字幕| 老熟妇乱子伦视频在线观看| 国产亚洲精品久久久久5区| 午夜日韩欧美国产| 大香蕉久久网| 国产精品电影一区二区三区 | 国产深夜福利视频在线观看| 一区在线观看完整版| 国产精品久久久久久精品古装| 超色免费av| 麻豆乱淫一区二区| 国产黄色免费在线视频| 久热爱精品视频在线9| 欧美激情高清一区二区三区| 精品一区二区三区av网在线观看 | 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| 黄片播放在线免费| 久久亚洲精品不卡| 国产男女内射视频| 国产淫语在线视频| 免费在线观看黄色视频的| 悠悠久久av| 后天国语完整版免费观看| 亚洲精品在线美女| 亚洲五月婷婷丁香| 建设人人有责人人尽责人人享有的| 久久天躁狠狠躁夜夜2o2o| 97人妻天天添夜夜摸| 久久久久久久久久久久大奶| 手机成人av网站| 亚洲黑人精品在线| 亚洲色图av天堂| av网站免费在线观看视频| 老熟妇乱子伦视频在线观看| 天天操日日干夜夜撸| 成年版毛片免费区| 日韩人妻精品一区2区三区| 九色亚洲精品在线播放| 一级,二级,三级黄色视频| 下体分泌物呈黄色| 欧美亚洲 丝袜 人妻 在线| 亚洲国产成人一精品久久久| 两人在一起打扑克的视频| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 在线观看免费视频网站a站| 在线播放国产精品三级| 欧美激情 高清一区二区三区| 黄片播放在线免费| 99在线人妻在线中文字幕 | 亚洲欧美日韩高清在线视频 | 午夜久久久在线观看| 久久精品aⅴ一区二区三区四区| 国产亚洲午夜精品一区二区久久| h视频一区二区三区| 国产人伦9x9x在线观看| 人人妻人人爽人人添夜夜欢视频| 精品国产乱子伦一区二区三区| 国产一区二区三区综合在线观看|