• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orthogonal analysis of the influencing factors of gas-solid two-phase jet particles

    2020-11-02 13:34:56SONGXinhuaLIUZhenfengLIXiaojieYANHonghao
    實驗流體力學 2020年5期
    關(guān)鍵詞:數(shù)量儀器顆粒

    SONG Xinhua, LIU Zhenfeng, LI Xiaojie, YAN Honghao

    (State Key Laboratory of structural analysis for industrial equipment, Dalian University of Technology, Dalian Liaoning 116024, China)

    Abstract:Since the gas-solid two-phase particle injection technology is widely used, it is of great engineering significance to study its influencing factors.Firstly, to inverstigate two factors, pre-ssure and mass, experiments are arranged by the orthogonal experimental design principle.Then, based on the CFD-DEM (Computational Fluid Dynamics / Discrete Element Method) model, the FLUENT software is used for numerical simulation, and the results are analyzed by range analysis and variance analysis.Finally, a set of jet experiments is designed to obtain the particle injection trajectory, and the photographs are processed by color histogram.The following conclusions are drawn: the influence of pressure is greater than that of mass by range analysis and variance analysis, and the mean value is the smallest when the pressure is 0.3 MPa and the mass is 2 g.When the pressure is 0.3 MPa and the mass is 2 g, the injection effect is optimized, and the shooting effect is the best, which is consistent with the results of numerical simulation.

    Keywords:gas-solid two-phase;orthogonal analysis;CFD-DEM;numerical simulation;color histogram

    0 Introduction

    Gas-solid two-phase particle injection is widely used in agriculture, industry and engineering.Dintwa et al.[1〗described a simulation model of a spinning disc fertilizer spreader, developed for incorporation into an automatic control system, and obtained the movement track and distribution characteristics of fertilizer throwing.Villette et al.[2]defined a mathe-matical model of fertilizer particle motion on a spinning disc, and the study results in an analytical solution for a concave disc equipped with pitched straight vanes.Lei et al.[3]designed a screw combined centralized fertilizer-feeding device for granular fertilizer and determined the key structural parameters of inclined spiral hole.Najjar et al.[4]developed a flexible simulation framework, in which multiphase flow computations are performed that include three-way coupling among phases (mixture-droplet-smoke), conservative coupling approach, and full heat release for the burning mechanisms.Liu and Xing[5]used Euler-Lagrangian method to simulate the gas-solid two-phase flow field in the thrust vector nozzle of solid rocket motor, and studied the effect of solid particles on the thrust vector performance of the nozzle.Xie et al.[6]obtained the structural design formula of pneumatic conveying gas-solid ejector by using the hydrodynamics and empirical formulas of gas-solid two-phase flow, and studied the influence of structure and parameters on the performance of gas-solid ejector.In the primary air passage of a new type of once-through burner of a coal-fired boiler, Huang used a three-dimensional particle dynamic analyzer (3D-PDA) to measure the gas-particle two-phase flow.The gas-solid two-phase velocity distri-bution, turbulent kinetic energy distribution, particle diameter and particle concentration distribution were obtained in the primary air passage[7].Li et al.[8]characterized the effect of oxidation temperatures on the microstructure and micro hardness of Ni/Al2O3composite coatings, as-cold-sprayed and vacuum heat-treated.Hua et al.used discrete phase model and spray rate model to simulate the release and flow process of fire extinguishing agent particles, and analyzed the movement characteristics of ultra-fine particle fire extinguishing agent with particle size of 1~12 μm under obstacles.And the reference valueR(t) and evaluationAwere introduced to quantitatively evaluate the movement characteristics of 1~12 μm ultrafine particle fire extinguishers[9].Li et al.[10]proposed a hybrid (deterministic/stochastic) fundamental model for the major physico-chemical processes involved in an industrial HVOF thermal spray process (Diamond Jet hybrid gun, Sulzer Metco, Westbury, NY, USA).Zhang et al.simu-lated the gas-solid ejector based on the particle trajectory model.The ejection performance was analyzed by using the number of particles ejected from the ejector, the number of remaining particles and the trajectory of particles.It is found that the inlet diameter of the contraction nozzle in the gas-solid ejector has a certain influence on the injection performance[11].Wang et al.[12]used FLUENT software to simulate the hydrodynamic characteristics of gas-solid two-phase flow in a boiling bed of titanium slag spouted bed, and analyzed the flow characteristics and zoning characteristics of gas-solid two-phase flow under different blowing speeds.Wang et al.used a three-component particle-dynamics anemometer to measure the characteristics of two-phase gas-particle flows in a primary air nozzle using a gas/particle two-phase test facility.The jet trajectory of primary air velocities, Reynolds stress and particle concentration profiles were obtained.Based on this, the advantages and disadvantages of increasing the offset angle were analyzed to optimize performance[13].Wang et al.[14]had presented a measurement method to obtain the solid phase particle size and the concentration of gas-solid two-phase flow, based on optical principle and image processing, and an experimental system was built.

    With the development of gas-solid two-phase particle injection technology, it is of great value to study the factors affecting particle injection.Many scholars have studied particle injection factors such as nozzle exit velocity, nozzle distance, nozzle size, injection angle[15-17].However, the factors of the injection pressure and particle quality are not studied.Therefore, based on previous research, this paper combines numerical simulation with orthogonal design theory, and analyzes the influence of spray pressure and particle quality on gas-solid two-phase particle injection.Moreover, it is proved by experiments that this method provides a theoretical reference for the practical application of injection technology.

    1 Fundamental theory

    1.1 Orthogonal experimental design principle

    Orthogonal experimental design is a multi-factor and multi-level design method.According to the orthogonality, some representative points are selected from the comprehensive experiment to carry out the experiment.These points have the advantages of uniform dispersion, neatness and comparability[18-20].In this paper, there are two factors, the injection pressure and the particle mass, and each factor has four levels.The specified parameters of orthogonal table used is listed in Table 1.

    Table 1 Specified parameters表1 具體參數(shù)的選取

    1.2 CFD-DEM model

    The CFD-DEM model uses the averaged Navier-Stokes equation to describe the motion of the gas phase, and uses Newton’s Second Law to describe the motion of the particle phase[21].The governing equation for the CFD-DEM model is[22]:

    The equation of motion of the particles:

    (1)

    Where,mais the particle quality,rais the particle position,Vais the particle volume,pis the pressure,βis the interphase drag coefficient,εgis the gas phase concentration,ugis the gas phase macro speed,vsis the speed of a single particle,gis the acceleration of gravity,Fcont,ais the contact force from the particles collision.Fvdw,ais van der Waals force,Tais the moment,Iais the moment of inertia,Ωais the rotational acceleration, andωais the rotational speed.

    The collision force between two particles is given by,

    Fab,n=-knδnnab-ηnvab,n

    δn=(Ra+Rb)-|rb-ra|

    (2)

    Where,Fab,nis the normal contact force when the particles collide,knis the direction stiffness coefficient,δnis the shape variable when the particles collide,nabis the normal unit vector,ηnis the normal damping coefficient,vab,nis the normal relative speed,RaandRbrepresent the particle radii of the particle a and b, respectively.raandrbare the positions of the particle a and b, respectively.

    The mass conservation equation and the momentum conservation equation for the gas phase are as follows,

    -εgp-Sp+·(εgτg)

    (3)

    Where,ρgis the gas phase density andτgis the gas phase stress.

    The gas-solid phase drag force is given by,

    (4)

    VCis the volume of the calculation grid, and the phase drag coefficientβis given by,

    (5)

    The ideal gas state equation is as follow,

    (6)

    Where,dpis the particle diameter,Mgis the molar mass of the gas,Ris the molar gas constant, andTgis the gas phase temperature.

    The gas phase stress constitutive relationship is as follow,

    (7)

    Where,μgis the shear viscosity of the gas phase, andIrepresents an identity matrix.

    2 Numerical simulation

    2.1 Fluid calculation model

    In this study, the average diameter of granules used in numerical simulation and experiment is 10.67 μm, spherical starch-like granules.When the pressure is 0.2~0.5 MPa, according to the Bernoulli equation[23], the energy conservation equation of one-dimensional defined flow under isentropic conditions is[24-25]:

    (8)

    The isentropic equation is:

    p=Aργ

    (9)

    According to Eq.(8) and Eq.(9), the jet velocity is:

    (10)

    For air,γ=1.4[24],ρ0=1.185 kg/m3[26],p0=0.1 MPa.Whenp=0.2 MPa, the substitution formula (10) calculatesv0.2=359.7 m/s.Similarly, we can getv0.3=466.7 m/s,v0.4=535.7 m/s,v0.5=587.3 m/s.In addition, the diameter of the air compressor outlet piped1=0.008 m, and the diameter of the nozzled2=0.05 m.v′0.2≈v0.2×(d1/d2)2≈9.2 m/s, and the effective injection velocitiesv′ are 9.2, 11.9, 13.7 and 15.0 m/s, respectively.Since the flow rate is less than 0.6 to 0.8 times of the speed of sound, the air can be regarded as an incompressible fluid during the simulation[27], and the reference atmospheric pressure is one atmosphere.The FLUENT is used to calculate the transient jet flow field under each pressure, and the CFD-DEM coupling method is used for the simulation calculation.

    In actual engineering, the air viscosity at room temperatureυ=15.06×10-6m2/s[28], and the equivalent diameterD=0.05 m.The Reynolds number is calculated:Re=vD/υ>4000, so the realizablek-εturbulence model equation is used[29].The kinetic energykand the turbulent dissipation transport equation are shown in Eq.(11):

    (11)

    2.2 Mesh and boundary conditions of model

    2.2.1Meshgeneration

    The trajectory of the particle jet into the box is studied.In order to facilitate the calculation, the model is calculated and analyzed by a two- dimensional model.The schematic diagram of the model is shown in Fig.1(a).The geometric model has two parts, the upper part is a rectangle of 1.0 m, and the lower part of the nozzle has a diameter of 0.05 m and a length of 0.1 m.

    Fig.1 Schematic diagram of the model

    In view of the uncomplicated characteristics of the particle injection model, a common grid structure is divided by the commonly used quadrilateral mesh, the mesh is divided by the workbench mesh, and the FLUENT software is imported for simulation calculation.The grid case is as follows: cell is 1268, face is 2611, and node is 1344.Fig.1(b) is a schematic diagram of the mesh division.

    2.2.2Boundaryconditions

    Each boundary condition is set according to the conditions of the sprayed particles.The initialization method selects “Standard Initialization” and selects “All-Zones”.The inlet boundary of the particle is set to “Velocity-Inlet”, and the boundary of the other face is set to “Wall”.The solid wall is no slip condition, the top wall is set to “Trap”, and the other walls are set to “Reflect”.

    2.3 Analysis and discussion of simulation results

    Particles were put into a rectangular frame with a diameter of 0.05 m and a length of 0.1 m.The simulation experiments were carried out according to the parameters in Table 1.The calculation steps were 500 and the particles were tracked.The simulation calculates the percentage of particle loss in each experiment, that is to say, the ratio of the number of tracked particles to the total number of tracked particles is the amount of particle loss in the simulation process.The data of the 16 computational simulations are shown in Table 2, and the percentage of loss is shown in Fig.2.

    Table 2 Tracking the number of particles trapping and the total number of particles (500 steps)表2 追蹤顆粒逃逸的數(shù)量和追蹤總顆粒數(shù)量(500步)

    Fig.2 Particle loss in orthogonal experiments

    By performing the range analysis of the 16 experiments, the mean value of pressure and mass was the smallest when the pressure was 0.3 MPa and the mass was 2 g.The range of the pressure and the mass are 20.1% and 12.4%, respectively, indicating that the magnitude of the pressure has the greatest impact.Then the variance analysis was performed on the two factors of the pressure and the mass, as shown in Table 3.TheFratios of the pressure and the mass obtained from the variance analysis table were 1.431 and 0.569, respectively, indicating that the influence of pressure was greater.

    Table 3 Variance analysis of pressure and quality impact 表3 壓強和質(zhì)量影響方差分析表

    3 Experimental verification

    3.1 Experimental device diagram

    This experiment mainly observes the flow trajectory of particles under different injection pressures (The dimensions of main instruments in the experiment are shown in Fig.1).The experimental diagram is shown in Fig.3, where A is a compressed air mercury, B is a gas storage chamber, C is a pulse valve, and D is an imaging system, E is where the particles are stored.Using the pulse valve C to eject particles at E.And the instruments used in this experiment are shown in Table 4.

    Table 4 Experimental measurement instrument list表4 實驗測量儀器清單

    Fig.3 Schematic diagram of injection experiment

    3.2 Analysis of experimental results

    Through the above numerical simulation calcu-lation and experimental orthogonal analysis, the results are obtained.When the pressure is 0.3 MPa and the mass is 2 g, the loss optimization is achieved.The experimental parameters were taken as the above results, and the spray experiment was carried out with the designed particle ejection device, and then the image was taken by the imaging system.

    Finally, the image color histogram processing was performed on the captured image[30-31], and the ejection trajectory diagram is shown in the left of Fig.4.Select the captured particle ejection images to perform image color histogram processing.Considering that the RGB color space does not conform to the human perception of color, the HSV space is visually sensed to quantify the HSV space and then its histogram is calculated to reduce the amount of calculation.The color space is converted from RGB to HSV by the rgb2hsv function in MATLAB.The HSV grayscale image obtained by processing the image is shown in the right of Fig.4.

    From Fig.2, we can see that Exp.1, Exp.6 and Exp.8 are the three groups with the lowest particle loss, which are 12.46%, 9.76% and 8.88% respectively.However, the optimal combination obtained by variance analysis is Exp.6.Then the injection experiment was taken on the spot when the pressure was 0.3 MPa and the mass was 2 g.At this time, the whole process of particle injection from the beginning to the top of the box could be captured, so the shooting effect was considered to be the best.The results are in agreement with those obtained by orthogonal experimental simulation, as shown in Fig.4.

    Fig.4 Numerical simulations of the sprayed particles and the trajectory of the shot (P=0.3 MPa, m=2 g)

    4 Conclusion

    The two factors, the pressure and the mass, which affect the gas-solid two-phase jet particles were studied and analyzed.The 16 simulation experiments were arranged based on the principle of orthogonal experimental design.Then, based on CFD-DEM model, FLUENT was used for numerical simulation, and the simulation results were analyzed by orthogonal test.Finally, a set of gas-solid injection device was designed to carry out the injection experiment, and the color histogram of the image was processed.The following conclusions are drawn:

    The range of the pressure and the mass is 20.1% and 12.4%, respectively.TheFratios of pressure and mass are 1.431 and 0.569, respectively.Both methods show that the effect of pressure is greater than that of mass, and the mean value is the smallest when the pressure is 0.3 MPa and the mass is 2 g.

    The image of the particle injection trajectory captured by the injection experiment was processed by color histogram and compared with the trajectory obtained by numerical simulation.The results show that when the pressure is 0.3 MPa and the mass is 2 g, the injection effect is optimized, and the shooting effect is the best.

    Acknowledgements:This project was financially supported by the National Natural Science Foundation of China (11672068, 11672067).

    猜你喜歡
    數(shù)量儀器顆粒
    《現(xiàn)代儀器與醫(yī)療》2022年征訂回執(zhí)
    《現(xiàn)代儀器與醫(yī)療》2022年征訂回執(zhí)
    Efficacy and safety of Mianyi granules (免疫Ⅱ顆粒) for reversal of immune nonresponse following antiretroviral therapy of human immunodeficiency virus-1:a randomized,double-blind,multi-center,placebo-controlled trial
    要讓顆粒都歸倉
    心聲歌刊(2019年1期)2019-05-09 03:21:32
    統(tǒng)一數(shù)量再比較
    我國古代的天文儀器
    疏風定喘顆粒輔料的篩選
    中成藥(2017年4期)2017-05-17 06:09:29
    頭發(fā)的數(shù)量
    我國博物館數(shù)量達4510家
    連花清瘟顆粒治療喉瘖30例
    欧洲精品卡2卡3卡4卡5卡区| 亚洲精华国产精华精| 男女视频在线观看网站免费| www.www免费av| 色播亚洲综合网| 男人的好看免费观看在线视频| 免费观看的影片在线观看| 男人的好看免费观看在线视频| 熟女人妻精品中文字幕| 在线免费十八禁| 精品一区二区三区视频在线| 亚洲人与动物交配视频| 久久久久性生活片| 亚洲精品乱码久久久v下载方式| 国产探花在线观看一区二区| 国产精品亚洲美女久久久| 欧美xxxx性猛交bbbb| 国产成人aa在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区av网在线观看| 色综合婷婷激情| 国产精品99久久久久久久久| 亚洲人成网站在线播放欧美日韩| 亚洲 国产 在线| 国产主播在线观看一区二区| 国产精品自产拍在线观看55亚洲| 桃红色精品国产亚洲av| 亚洲av免费高清在线观看| 国产成人aa在线观看| 内地一区二区视频在线| 小蜜桃在线观看免费完整版高清| 国产乱人伦免费视频| 中文字幕av成人在线电影| 国产不卡一卡二| 成人特级av手机在线观看| videossex国产| 精品无人区乱码1区二区| 蜜桃久久精品国产亚洲av| 午夜福利在线在线| 人人妻人人澡欧美一区二区| 香蕉av资源在线| 国产精品爽爽va在线观看网站| 亚洲五月天丁香| 国产淫片久久久久久久久| 免费看av在线观看网站| 少妇高潮的动态图| 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 久久草成人影院| 久久精品国产亚洲av涩爱 | 内地一区二区视频在线| 成人特级黄色片久久久久久久| 国产免费av片在线观看野外av| 一个人免费在线观看电影| 麻豆av噜噜一区二区三区| 中文资源天堂在线| 亚洲欧美日韩无卡精品| 精品免费久久久久久久清纯| 欧洲精品卡2卡3卡4卡5卡区| 在线天堂最新版资源| 99热网站在线观看| 真人一进一出gif抽搐免费| 亚洲在线观看片| 午夜福利在线观看免费完整高清在 | 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 国产白丝娇喘喷水9色精品| 午夜福利欧美成人| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 午夜福利高清视频| 99九九线精品视频在线观看视频| 亚洲av电影不卡..在线观看| 国产精品亚洲美女久久久| 日本-黄色视频高清免费观看| 一区二区三区高清视频在线| 此物有八面人人有两片| 黄片wwwwww| 少妇被粗大猛烈的视频| 波多野结衣高清作品| 国产精品日韩av在线免费观看| 天天躁日日操中文字幕| 一进一出抽搐动态| 黄色丝袜av网址大全| 中国美白少妇内射xxxbb| 亚洲国产高清在线一区二区三| 美女大奶头视频| 国产精品,欧美在线| 亚洲熟妇中文字幕五十中出| 亚洲狠狠婷婷综合久久图片| 亚洲精华国产精华精| 男人和女人高潮做爰伦理| 成人av在线播放网站| 99热这里只有精品一区| av专区在线播放| av福利片在线观看| 国产一区二区三区av在线 | 免费观看精品视频网站| 网址你懂的国产日韩在线| 神马国产精品三级电影在线观看| 精品乱码久久久久久99久播| 欧美日韩乱码在线| 午夜爱爱视频在线播放| 亚洲国产精品久久男人天堂| 亚洲经典国产精华液单| 少妇的逼好多水| 国产成人aa在线观看| 亚洲国产日韩欧美精品在线观看| 婷婷六月久久综合丁香| 国产亚洲精品久久久com| 成人一区二区视频在线观看| 国产 一区精品| 欧美zozozo另类| 99久久成人亚洲精品观看| 久久精品91蜜桃| 亚洲内射少妇av| 精品无人区乱码1区二区| 欧美人与善性xxx| 色噜噜av男人的天堂激情| 久久久久国内视频| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 天堂影院成人在线观看| 男女啪啪激烈高潮av片| 极品教师在线免费播放| 高清在线国产一区| 嫩草影视91久久| 美女xxoo啪啪120秒动态图| 极品教师在线视频| 精品一区二区三区人妻视频| 亚洲七黄色美女视频| 尤物成人国产欧美一区二区三区| 亚洲精品亚洲一区二区| 嫩草影院入口| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区 | 欧美黑人欧美精品刺激| 很黄的视频免费| 久久精品国产亚洲av涩爱 | 精品久久久久久久久亚洲 | 此物有八面人人有两片| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添av毛片 | 黄色欧美视频在线观看| 搡老岳熟女国产| 国产成人影院久久av| 欧美潮喷喷水| 国内揄拍国产精品人妻在线| 午夜精品久久久久久毛片777| 在线观看舔阴道视频| www日本黄色视频网| 国模一区二区三区四区视频| 亚洲中文日韩欧美视频| 欧美bdsm另类| 日韩亚洲欧美综合| 欧美精品啪啪一区二区三区| 高清日韩中文字幕在线| 狂野欧美白嫩少妇大欣赏| 99久久中文字幕三级久久日本| 男插女下体视频免费在线播放| 日日夜夜操网爽| av在线观看视频网站免费| 欧美成人性av电影在线观看| 啦啦啦观看免费观看视频高清| 日韩欧美国产一区二区入口| 中亚洲国语对白在线视频| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| 午夜老司机福利剧场| 窝窝影院91人妻| 亚洲乱码一区二区免费版| 日本爱情动作片www.在线观看 | 亚洲国产日韩欧美精品在线观看| 亚洲综合色惰| 久久99热6这里只有精品| 中国美白少妇内射xxxbb| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 国产伦在线观看视频一区| 男女下面进入的视频免费午夜| 日本一二三区视频观看| 在线播放无遮挡| 最新中文字幕久久久久| 在现免费观看毛片| 亚洲va日本ⅴa欧美va伊人久久| avwww免费| 午夜免费激情av| 亚洲中文日韩欧美视频| 丰满人妻一区二区三区视频av| 精品人妻熟女av久视频| 波野结衣二区三区在线| a级毛片免费高清观看在线播放| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 久久精品国产亚洲av香蕉五月| a在线观看视频网站| 小蜜桃在线观看免费完整版高清| 免费不卡的大黄色大毛片视频在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 91久久精品电影网| videossex国产| 国产精品人妻久久久久久| 黄色女人牲交| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 美女xxoo啪啪120秒动态图| 观看免费一级毛片| 精品久久久久久久久亚洲 | 成人三级黄色视频| 无人区码免费观看不卡| 日本黄大片高清| 日日干狠狠操夜夜爽| 成人综合一区亚洲| 一区福利在线观看| 成人鲁丝片一二三区免费| 免费观看在线日韩| 一个人免费在线观看电影| 国产在线精品亚洲第一网站| 国产不卡一卡二| 国产美女午夜福利| 国产极品精品免费视频能看的| 在线观看美女被高潮喷水网站| 又黄又爽又刺激的免费视频.| 国产精品福利在线免费观看| 禁无遮挡网站| 国产精品1区2区在线观看.| 欧美日韩中文字幕国产精品一区二区三区| 老女人水多毛片| 最好的美女福利视频网| 久9热在线精品视频| 人妻制服诱惑在线中文字幕| 亚洲狠狠婷婷综合久久图片| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 日韩 亚洲 欧美在线| 国产精品98久久久久久宅男小说| 国产黄色小视频在线观看| 欧美一级a爱片免费观看看| 18禁黄网站禁片免费观看直播| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 综合色av麻豆| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线观看日韩| 乱系列少妇在线播放| 变态另类成人亚洲欧美熟女| 成人午夜高清在线视频| 韩国av一区二区三区四区| 精品午夜福利在线看| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 波野结衣二区三区在线| 免费大片18禁| 99久久精品一区二区三区| 久久久成人免费电影| 麻豆精品久久久久久蜜桃| 999久久久精品免费观看国产| 两个人视频免费观看高清| 精品久久久久久久人妻蜜臀av| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 亚洲第一区二区三区不卡| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 哪里可以看免费的av片| 亚洲不卡免费看| av在线观看视频网站免费| 一本一本综合久久| 一区二区三区激情视频| 国产精品日韩av在线免费观看| 久久久久九九精品影院| 深夜精品福利| 少妇人妻精品综合一区二区 | eeuss影院久久| 成人av在线播放网站| 久久精品国产亚洲av涩爱 | 亚洲国产日韩欧美精品在线观看| 国内精品美女久久久久久| 色哟哟·www| 免费在线观看成人毛片| 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 天堂av国产一区二区熟女人妻| 波多野结衣高清无吗| 最近中文字幕高清免费大全6 | 亚洲人成网站在线播放欧美日韩| 免费高清视频大片| 一级黄片播放器| 亚洲va日本ⅴa欧美va伊人久久| 久久久成人免费电影| 国产人妻一区二区三区在| 国产成人一区二区在线| 国产免费av片在线观看野外av| 乱系列少妇在线播放| 国产精品久久久久久久电影| 成人无遮挡网站| 午夜免费男女啪啪视频观看 | bbb黄色大片| 日韩中文字幕欧美一区二区| 亚洲欧美清纯卡通| 在线天堂最新版资源| 天天躁日日操中文字幕| 成人国产综合亚洲| 一级a爱片免费观看的视频| 日韩亚洲欧美综合| 国产精品一区二区性色av| 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验 | 国产免费av片在线观看野外av| 99久国产av精品| 午夜免费成人在线视频| xxxwww97欧美| 亚洲精品一区av在线观看| 国产美女午夜福利| 大型黄色视频在线免费观看| 日韩 亚洲 欧美在线| 色哟哟哟哟哟哟| 俺也久久电影网| 国产白丝娇喘喷水9色精品| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 偷拍熟女少妇极品色| 久久久久久久久中文| 十八禁网站免费在线| 国产 一区 欧美 日韩| 成人国产麻豆网| 色av中文字幕| 精品久久久久久久久亚洲 | 免费电影在线观看免费观看| 乱码一卡2卡4卡精品| 国产不卡一卡二| 成人无遮挡网站| 美女黄网站色视频| 亚洲aⅴ乱码一区二区在线播放| 婷婷丁香在线五月| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 别揉我奶头 嗯啊视频| 国产女主播在线喷水免费视频网站 | 99热这里只有是精品50| 人人妻人人澡欧美一区二区| 中国美女看黄片| 18+在线观看网站| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 欧美不卡视频在线免费观看| 有码 亚洲区| 成熟少妇高潮喷水视频| 免费在线观看影片大全网站| 免费大片18禁| 真实男女啪啪啪动态图| 久久久成人免费电影| 欧美国产日韩亚洲一区| 色吧在线观看| 99热这里只有精品一区| 中文字幕av成人在线电影| 女人十人毛片免费观看3o分钟| 男人和女人高潮做爰伦理| 国产亚洲精品av在线| 久久精品国产清高在天天线| 99热这里只有是精品在线观看| 国产精品久久久久久久电影| 免费大片18禁| 精品久久久久久久久久免费视频| 村上凉子中文字幕在线| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 国产 一区精品| 国产欧美日韩一区二区精品| 免费看光身美女| 久久精品国产自在天天线| 久99久视频精品免费| h日本视频在线播放| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看| 一本久久中文字幕| 熟妇人妻久久中文字幕3abv| 麻豆国产97在线/欧美| 99久久成人亚洲精品观看| 国产免费av片在线观看野外av| 亚洲图色成人| 美女高潮喷水抽搐中文字幕| 成人欧美大片| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 一级毛片久久久久久久久女| 少妇高潮的动态图| 日韩高清综合在线| 国内精品美女久久久久久| 久久久国产成人免费| 免费在线观看影片大全网站| 很黄的视频免费| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 午夜福利欧美成人| 女的被弄到高潮叫床怎么办 | 麻豆久久精品国产亚洲av| 婷婷色综合大香蕉| 午夜老司机福利剧场| 亚洲va日本ⅴa欧美va伊人久久| or卡值多少钱| 久久久精品大字幕| 日韩中字成人| 无人区码免费观看不卡| 精品一区二区三区视频在线观看免费| 中文字幕熟女人妻在线| 99久久成人亚洲精品观看| 午夜福利18| 国产欧美日韩一区二区精品| 黄色一级大片看看| 精品久久国产蜜桃| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 欧美色视频一区免费| h日本视频在线播放| 亚洲av第一区精品v没综合| 18+在线观看网站| 国产黄a三级三级三级人| 国产色爽女视频免费观看| 五月伊人婷婷丁香| 婷婷丁香在线五月| 人人妻人人澡欧美一区二区| 国产中年淑女户外野战色| 精品人妻偷拍中文字幕| 99在线视频只有这里精品首页| 波野结衣二区三区在线| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 国产 一区 欧美 日韩| 成人一区二区视频在线观看| 老师上课跳d突然被开到最大视频| 午夜福利在线在线| 可以在线观看的亚洲视频| 欧美区成人在线视频| а√天堂www在线а√下载| 国产色爽女视频免费观看| 国内揄拍国产精品人妻在线| 啦啦啦啦在线视频资源| 91午夜精品亚洲一区二区三区 | 欧美+日韩+精品| 亚洲国产欧美人成| 午夜久久久久精精品| 3wmmmm亚洲av在线观看| av中文乱码字幕在线| 成年人黄色毛片网站| 国产黄片美女视频| 日本 欧美在线| 国内精品一区二区在线观看| 最近视频中文字幕2019在线8| 99热精品在线国产| 国产高清视频在线观看网站| 十八禁国产超污无遮挡网站| www.色视频.com| 天天躁日日操中文字幕| 日本三级黄在线观看| 久久久精品大字幕| 变态另类丝袜制服| 99热这里只有是精品50| 高清日韩中文字幕在线| av黄色大香蕉| 深夜精品福利| 国产色婷婷99| 国产精品三级大全| 国产色婷婷99| 琪琪午夜伦伦电影理论片6080| 国产伦精品一区二区三区四那| 欧美日韩中文字幕国产精品一区二区三区| 成人精品一区二区免费| 久久久久久大精品| 麻豆一二三区av精品| 欧美日韩中文字幕国产精品一区二区三区| 国产精品人妻久久久久久| 欧美一区二区亚洲| 久久久久免费精品人妻一区二区| 亚洲性夜色夜夜综合| 国产亚洲精品综合一区在线观看| 俄罗斯特黄特色一大片| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 欧美潮喷喷水| or卡值多少钱| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区 | 一本久久中文字幕| 一区二区三区激情视频| 午夜精品在线福利| 一区二区三区高清视频在线| 乱系列少妇在线播放| 99久久久亚洲精品蜜臀av| 狂野欧美白嫩少妇大欣赏| 黄片wwwwww| 日本一本二区三区精品| 亚洲av成人av| 99精品在免费线老司机午夜| АⅤ资源中文在线天堂| 午夜精品一区二区三区免费看| 日韩欧美一区二区三区在线观看| 精品99又大又爽又粗少妇毛片 | 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 免费看日本二区| 亚洲av美国av| 欧美激情国产日韩精品一区| 国产亚洲精品久久久com| 久久人人精品亚洲av| 高清在线国产一区| 噜噜噜噜噜久久久久久91| 亚洲av二区三区四区| 久久久色成人| 日本黄大片高清| 国产精品嫩草影院av在线观看 | 男女下面进入的视频免费午夜| 中出人妻视频一区二区| 五月伊人婷婷丁香| 婷婷丁香在线五月| 午夜福利欧美成人| 中出人妻视频一区二区| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 97碰自拍视频| 51国产日韩欧美| 国产一区二区三区视频了| 亚洲va在线va天堂va国产| 在线观看免费视频日本深夜| 日本一二三区视频观看| 国产精品一区二区性色av| 精品人妻熟女av久视频| 日韩精品青青久久久久久| 99热6这里只有精品| 亚洲乱码一区二区免费版| 国产69精品久久久久777片| 亚洲国产精品sss在线观看| 国产精品伦人一区二区| 午夜a级毛片| 天堂影院成人在线观看| 88av欧美| a级一级毛片免费在线观看| 亚洲最大成人av| 日韩,欧美,国产一区二区三区 | 亚洲国产色片| ponron亚洲| 99精品久久久久人妻精品| 久久精品人妻少妇| 日韩 亚洲 欧美在线| av在线观看视频网站免费| 女人被狂操c到高潮| 亚洲精品一区av在线观看| 免费看av在线观看网站| 国产高清视频在线观看网站| 亚洲国产精品合色在线| 成年人黄色毛片网站| 国产乱人视频| 免费看av在线观看网站| 一区福利在线观看| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 久久久久久久亚洲中文字幕| 国产高清视频在线观看网站| 亚洲无线观看免费| 久久午夜福利片| 12—13女人毛片做爰片一| 精品无人区乱码1区二区| www日本黄色视频网| 尤物成人国产欧美一区二区三区| 九色成人免费人妻av| 特级一级黄色大片| 最后的刺客免费高清国语| 一进一出抽搐gif免费好疼| 一进一出抽搐动态| 亚洲精品成人久久久久久| av在线老鸭窝| 国产精品日韩av在线免费观看| 免费av观看视频| 亚洲狠狠婷婷综合久久图片| 免费看光身美女| 亚洲欧美清纯卡通| 亚洲成人久久性| 精品无人区乱码1区二区| 久久精品人妻少妇| 成人亚洲精品av一区二区| 亚洲av美国av| 成人永久免费在线观看视频| 久久天躁狠狠躁夜夜2o2o| 1000部很黄的大片| 亚洲一区高清亚洲精品| 日韩欧美一区二区三区在线观看| 精品久久久噜噜| 国产一区二区三区在线臀色熟女| 国内精品一区二区在线观看| 国产精品嫩草影院av在线观看 | 制服丝袜大香蕉在线| 欧美区成人在线视频| 国产麻豆成人av免费视频| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 国产私拍福利视频在线观看| 免费人成在线观看视频色| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 欧美xxxx黑人xx丫x性爽| 欧美三级亚洲精品| 啦啦啦啦在线视频资源| avwww免费| 午夜精品一区二区三区免费看| 免费看美女性在线毛片视频|