榮歡 任師杰 汪梓坪 王飛 周勇
摘要:NAC(NAM、ATAF1/2、CUC1/2)轉(zhuǎn)錄因子是植物特有的一類轉(zhuǎn)錄因子家族,在植物生長發(fā)育、生物及非生物脅迫反應(yīng)中具有重要的調(diào)控作用。NAC蛋白的N端均存在1個高度保守的NAC結(jié)構(gòu)域,而C端是變化的轉(zhuǎn)錄調(diào)控區(qū)。通過總結(jié)前人的研究進(jìn)展,綜述NAC轉(zhuǎn)錄因子在植物分生組織和器官邊界的形成、根的發(fā)育、植物細(xì)胞次生壁的生長、植物衰老、激素調(diào)控和脅迫反應(yīng)等過程中的重要調(diào)控作用,指出今后NAC轉(zhuǎn)錄因子的研究方向。
關(guān)鍵詞:植物;NAC轉(zhuǎn)錄因子;生長發(fā)育;脅迫;NAC生理功能
中圖分類號:S184?文獻(xiàn)標(biāo)志碼: A
文章編號:1002-1302(2020)18-0044-10
收稿日期:2019-10-31
基金項目:江西省教育廳科技計劃(編號:GJJ180172、GJJ160387)。
作者簡介:榮?歡(1998—),男,江西萍鄉(xiāng)人,主要從事生物科學(xué)與生物技術(shù)研究。E-mail:962610432@qq.com。
通信作者:周?勇,博士,講師,主要從事植物功能基因組學(xué)研究,E-mail:yzhoujxan@163.com;王?飛,博士,副教授,主要從事微生物資源與蛋白質(zhì)工程研究,E-mail:wangfei179@163.com。
植物在生長發(fā)育過程中極易受到逆境脅迫的影響。脅迫主要包括干旱、高鹽、低溫、高溫等非生物脅迫和蟲害、病原菌侵入等生物脅迫,這些脅迫通常會影響植物的正常生長發(fā)育。在長期的進(jìn)化過程中,植物產(chǎn)生了一系列生理生化機(jī)制來適應(yīng)、抵御或消除脅迫的影響。其中,基因表達(dá)調(diào)控是調(diào)節(jié)植物逆境脅迫最常見的一種方式。植物細(xì)胞感知逆境脅迫信號后,會通過某些信號途徑將信號傳遞給脅迫應(yīng)答的轉(zhuǎn)錄因子(transcription factor,簡稱TF),轉(zhuǎn)錄因子可以通過其DNA結(jié)合結(jié)構(gòu)域(DNA binding domain,簡稱DBD)和靶基因上游啟動子區(qū)域的特異DNA序列模體(順式作用元件)結(jié)合,從而調(diào)控靶基因在植物的不同組織、不同細(xì)胞或不同環(huán)境條件下的特異表達(dá),從而激活植物抗逆反應(yīng),降低脅迫對植物造成的傷害[1-3]。由于轉(zhuǎn)錄因子在植物生長發(fā)育和應(yīng)對脅迫等過程中具有重要的調(diào)控作用,因此對轉(zhuǎn)錄因子的研究一直是功能基因組研究的重要內(nèi)容。近幾十年來,世界各國科研人員通過基因組測序和功能分析,相繼從不同植物中克隆到了大量的轉(zhuǎn)錄因子[4],希望通過研究它們的功能,來揭示植物的抗逆機(jī)制。
NAC轉(zhuǎn)錄因子是植物特有的一類轉(zhuǎn)錄因子家族,命名取自于矮牽牛(Petunia hybrida)的NAM(no apical meristem)基因、擬南芥(Arabidopsis thaliana)的ATAF1/2基因,以及CUC2(cup-shaped cotyledon)基因的首字母。1996年,Souer等研究人員從矮牽牛中克隆出第1個NAC轉(zhuǎn)錄因子家族成員NAM,它影響矮牽牛頂端分生組織的形成與分化[5]。隨后,NAC轉(zhuǎn)錄因子相繼在擬南芥、水稻、葡萄、小麥、大豆、木薯、番茄、黃瓜等物種中被發(fā)現(xiàn)(表1),是植物中最大的轉(zhuǎn)錄因子家族之一。很多研究表明,NAC轉(zhuǎn)錄因子不僅參與了植物根、莖、葉、花的生長發(fā)育、果實成熟、激素調(diào)控,還參與了生物及非生物脅迫等生理生化反應(yīng)過程的調(diào)控[6-7]。
1?NAC轉(zhuǎn)錄因子的結(jié)構(gòu)
NAC轉(zhuǎn)錄因子最顯著的結(jié)構(gòu)特點是在蛋白質(zhì)的N端存在1個高度保守的NAC結(jié)構(gòu)域(約150~160個氨基酸),而C端是變化的轉(zhuǎn)錄調(diào)控區(qū)(transcriptional activation region,簡稱TAR)(圖1)。NAC結(jié)構(gòu)域是NAC轉(zhuǎn)錄因子的結(jié)合域,可以分為5個亞結(jié)構(gòu)域(A~E),其中亞結(jié)構(gòu)域C和D高度保守且含有核定位信號,可能與DNA的結(jié)合有關(guān),而亞結(jié)構(gòu)域B和E則變化多樣,可能會賦予NAC不同的功能[9]。有研究表明,亞結(jié)構(gòu)域E能參與調(diào)控植物發(fā)育時期或組織特異性,并能夠協(xié)同亞結(jié)構(gòu)域D與DNA結(jié)合[49]。亞結(jié)構(gòu)域A在不同的物種中也高度保守,可能與NAC蛋白形成二聚體有關(guān)[50]。NAC蛋白的C端具有高度的多樣性,但會頻繁出現(xiàn)一些簡單氨基酸的重復(fù)排列,例如Thr(蘇氨酸)、Ser(絲氨酸)、Pro(脯氨酸)、Glu(谷氨酸)或者酸性氨基酸殘基等,這是植物轉(zhuǎn)錄激活結(jié)構(gòu)域的典型特征。這些簡單氨基酸的重復(fù)排列在NAC同一亞家族是保守的,在不同的亞家族之間卻有明顯的差異。一些特殊的NAC蛋白在C端會有一段跨膜區(qū)(transmembrane motifs,簡稱TMs),這種C端具有跨膜特性的NAC轉(zhuǎn)錄因子(NAC with transmembrane motif 1,簡稱NTM1)一般被稱為NTL(NTM1-like)蛋白,必須從膜上被釋放并轉(zhuǎn)運到核中才能行使調(diào)控功能[51-52]。有些NAC轉(zhuǎn)錄因子只有NAC結(jié)構(gòu)域,缺少轉(zhuǎn)錄調(diào)控區(qū);更有的NAC結(jié)構(gòu)域在C端,轉(zhuǎn)錄調(diào)控區(qū)在N端,中間含有一個保守的鋅指結(jié)構(gòu)。
通過X射線觀察擬南芥ANAC019的NAC結(jié)構(gòu)域的晶體結(jié)構(gòu),發(fā)現(xiàn)它是以數(shù)個螺旋元件包圍一個螺旋狀的結(jié)構(gòu),并和β-折疊組成一種未知的結(jié)構(gòu)[50],而且NAC結(jié)構(gòu)域可通過鹽橋等作用形成一側(cè)帶正電荷的蛋白二聚體[50,53],這可能是它們結(jié)合DNA的基本形式。
2?NAC轉(zhuǎn)錄因子的生理功能
NAC轉(zhuǎn)錄因子因其在結(jié)構(gòu)上有一定的共性和特性,其家族成員在功能上也有一定的共同點和多樣性。但在植物不同部位、生長的不同時期,特定的NAC轉(zhuǎn)錄因子發(fā)揮的作用也不盡相同。總體來說,NAC轉(zhuǎn)錄因子對植物生長調(diào)控主要表現(xiàn)在如下幾個方面。
2.1?參與植物分生組織和器官邊界的形成
矮牽牛NAM基因主要在分生組織和器官原基邊界的細(xì)胞內(nèi)表達(dá),nam突變體缺少莖頂端分生組織(shoot apical meristem,簡稱SAM),器官發(fā)育異常,導(dǎo)致幼苗大部分死亡,少部分存活下來的植株在成苗期花器官也會出現(xiàn)發(fā)育異常,說明NAM基因可能在分生組織器官原基的形成中起著一定的作用[5]。擬南芥AtNAM在胚胎SAM的整個區(qū)域均大量表達(dá),暗示著參與AtNAM也參與SAM的形成[54]。CUC蛋白與矮牽牛NAM蛋白屬于同一亞家族,擬南芥cuc1cuc2雙基因突變體中子葉、萼片和雄蕊融合,難以形成SAM,而單基因的突變體卻沒有明顯的表型,說明它們參與植物頂端分生組織的形成,且存在功能的冗余[55]。進(jìn)一步研究發(fā)現(xiàn),CUC1在擬南芥胚的頂端分生組織和花器官原基的邊界處表達(dá),處于STM(SHOOT MERISTEMLESS)基因的上游,可以激活很多SAM相關(guān)基因的表達(dá),超量表達(dá)CUC1可以激活芽尖組織周緣細(xì)胞,誘導(dǎo)子葉不定芽的形成[56-57]。有趣的是,CUC1也可以通過一種不依賴STM的途徑促進(jìn)SAM的形成,該途徑受到AS1(ASYMMETRIC1)和AS2基因的負(fù)調(diào)控[58]。此外,CUC1可以正調(diào)控LIGHT-DEPENDENT SHORT HYPOCOTYLS 4(LSH4)及其同源基因LSH3的表達(dá),而在莖尖超量表達(dá)LSH4會抑制植物營養(yǎng)生長階段葉片的生長,以及生殖生長階段花中額外的芽或芽器官的形成[59]。CUC3基因主要在花器官原基邊界表達(dá),其表達(dá)量會被CUC1和CUC2所促進(jìn),超表達(dá)CUC3能促進(jìn)胚后期的莖分生組織和器官邊界的形成[60-61]。玉米ZmNAM1/2和ZmCUC3在胚芽鞘與葉原基的邊界處大量表達(dá),參與莖尖分生組織的形成[62]。由此可見,植物NAM亞族基因在分生組織和器官邊界的形成中起著關(guān)鍵的作用。
2.2?調(diào)控根的發(fā)育
擬南芥NAC1基因受生長素(auxin)的誘導(dǎo),主要在根尖和側(cè)根生長原基表達(dá),超量表達(dá)NAC1能促進(jìn)側(cè)根發(fā)育,而反義表達(dá)NAC1能抑制TIR1(transport inhibitor responsive protein 1)誘導(dǎo)的側(cè)根發(fā)育,而生長素應(yīng)答因子AIR3(auxin-induced in rootcultures 3)和DBP(DNA-binding protein)基因表達(dá)也受到NAC1的誘導(dǎo),說明NAC1可以介導(dǎo)生長素信號以促進(jìn)側(cè)根的形成[63]。進(jìn)一步研究表明,擬南芥SINAT5蛋白能促進(jìn)E3泛素復(fù)合體與NAC1的連接,進(jìn)而降低NAC1蛋白水平,減弱生長素信號,從而限制側(cè)根的發(fā)育和伸長[64]。OsNAC2也可以通過整合生長素和細(xì)胞分裂素(cytokinin)信號途徑來調(diào)控根的發(fā)育[65]。ANAC092/AtNAC2/ORE1基因也在根中特異表達(dá),參與側(cè)根的形成與發(fā)育[66]。進(jìn)一步研究表明,ANAC092可以結(jié)合ARF8(AUXIN RESPONSE FACTOR 8)和PIN4(PIN-FORMED 4)的啟動子,通過控制生長素信號途徑來負(fù)調(diào)控根的發(fā)育[67]。TaRNAC1是小麥根中特異表達(dá)的NAC轉(zhuǎn)錄因子,在根中超量表達(dá)TaRNAC1的轉(zhuǎn)基因小麥根長、生物量和干旱抗性明顯增加[68]。在擬南芥中超量表達(dá)一些來自于其他物種的NAC基因,也能促進(jìn)側(cè)根的形成,如BnNAC14[69]、GmANC20[70]、GmNAC109[71]、CiNAC3和CiNAC4[72]基因等。
2.3?調(diào)節(jié)植物細(xì)胞次生壁的生長
一些NAC轉(zhuǎn)錄因子會調(diào)節(jié)細(xì)胞次生壁的生長。在擬南芥中,nst1nst2雙突變體均表現(xiàn)出花藥內(nèi)皮層缺乏次生壁,花藥異常開裂,表明NST1(NAC SECONDARY WALL THICKENING PROMOTING FACTOR1)和NST2參與花粉花藥次生壁的形成,而且存在功能的冗余[73]。在擬南芥nst-1nst-3雙敲除轉(zhuǎn)基因植株中,除維管導(dǎo)管以外,維管束間纖維與木質(zhì)部次生壁的加厚被完全抑制,表明NST1和NST3也參與調(diào)控木質(zhì)組織中次生壁的正常形成[74],它們之間也存在部分功能的冗余[75]。苜蓿MtNST1是擬南芥NST1/2/3的同源基因,MtNST1的Tnt1逆轉(zhuǎn)座子插入突變體出現(xiàn)花粉囊無法裂開,維管素纖維不再木質(zhì)化[76]。擬南芥SND1(SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1)在莖稈維管束間纖維和木質(zhì)纖維中特異表達(dá),異位超量表達(dá)SND1基因,會使非厚壁的正常細(xì)胞大量沉積次級細(xì)胞壁而成為厚壁細(xì)胞,表明SND1與纖維次級壁的厚度有關(guān)[77]。敲除SND1基因不能明顯抑制次級纖維壁的加厚,而snd1nst1雙突變體抑制的表型非常明顯,細(xì)胞中纖維素、木聚糖、木質(zhì)素等成分含量明顯降低,說明SND1和NST1共同參與調(diào)控纖維素次生壁的生長[78]。擬南芥VND6(vascular-related NAC Domain 6)和VND7分別在主根的后生木質(zhì)部和原生木質(zhì)部中表達(dá),超量表達(dá)VND6、VND7均能導(dǎo)致根的后生木質(zhì)部細(xì)胞或原生木質(zhì)部細(xì)胞發(fā)育異常,而抑制VND6、VND7的表達(dá)則會抑制后生木質(zhì)部或原生木質(zhì)部的發(fā)育,同時VND7能恢復(fù)snd1nst1雙突變體抑制次級纖維壁加厚的表型,說明它們在調(diào)控擬南芥根原生木質(zhì)部導(dǎo)管的分化中起著關(guān)鍵作用[79]。進(jìn)一步研究表明,SND1及其同源蛋白NST1、NST2、VND6和VND7通過調(diào)控下游基因MYB類蛋白因子(如MYB46、MYB58、MYB63等)的表達(dá),最終激活次生壁的纖維素、木聚糖和木質(zhì)素合成的相關(guān)基因(如LAC4等),促進(jìn)不同類型細(xì)胞次生壁的生物合成[80-83]。此外,一些SND1的同源基因(如PtVNSs/PtrWNDs等)能夠恢復(fù)NST1和NST3雙突變引起的維管束間纖維細(xì)胞次生壁的缺陷,它們的超量表達(dá)會引起楊樹葉片和擬南芥幼苗的次生壁增厚[84-85]。水稻OsSWNs和玉米ZmSWNs也能互補(bǔ)擬南芥snd1nst1雙突變體在次生細(xì)胞壁加厚方面缺陷的表型[86]。這些結(jié)果表明,在植物界中與SND1同源的NAC轉(zhuǎn)錄因子調(diào)控次生壁的生物合成機(jī)制可能是普遍存在的。
NAC轉(zhuǎn)錄因子對植物次生壁生長有著雙向作用,既可能促進(jìn)其生長,又可能抑制其生長。擬南芥ANAC012在開花莖和根的形成層區(qū)特異表達(dá),超量表達(dá)ANAC012會顯著抑制木纖維中次生壁的形成,但輕微地增加了木質(zhì)部導(dǎo)管的細(xì)胞壁厚度[87]。擬南芥XND1(xylem NAC domain 1)在木質(zhì)部中高度表達(dá),超量表達(dá)XND1的轉(zhuǎn)基因植株下胚軸原生木質(zhì)部區(qū)域薄壁細(xì)胞的次生壁生長會受到明顯的抑制,顯示出極端矮化的表型[88]。
2.4?調(diào)控植物衰老
有研究表明,一些NAC轉(zhuǎn)錄因子能夠間接或直接地加速或延緩植物衰老過程。NAM-B1是野生二粒小麥的一個NAC轉(zhuǎn)錄因子,能正調(diào)控衰老,促進(jìn)營養(yǎng)成分從營養(yǎng)器官向籽粒轉(zhuǎn)移[89]。AtNAP(NAC-like,activated by APETALA 3/PISTILLATA)是一個典型的葉片衰老相關(guān)基因,超量表達(dá)AtNAP的轉(zhuǎn)基因植株明顯早衰,atnap突變體則表現(xiàn)出延緩葉片衰老的表型[90]。進(jìn)一步研究發(fā)現(xiàn),AtNAP可以被脫落酸(abscisic acid,簡稱ABA)所誘導(dǎo),可以和SAG113(SENESCENCE-ASSOCIATED GENE113)的啟動子結(jié)合,形成一個ABA-AtNAP-SAG113蛋白調(diào)控鏈來控制葉片衰老時的氣孔運動和失水速率,進(jìn)而調(diào)控葉片衰老進(jìn)程[91]。水稻中AtNAP的同源基因OsNAP可以互補(bǔ)atnap的表型,在調(diào)控水稻衰老發(fā)育過程中也發(fā)揮著重要作用[92-93]。此外,在金絲慈竹(Bambusa emeiensis ‘Viridiflavus)中的同源基因BeNAC1也能互補(bǔ)atnap的表型,在擬南芥中超量表達(dá)BeNAC1也會產(chǎn)生不同的早衰表型[94]。超量表達(dá)甜瓜CmNAC60基因的擬南芥轉(zhuǎn)基因植株葉片衰老也明顯加速[95]。另一個同源基因GhNAP也能通過調(diào)節(jié)ABA介導(dǎo)的葉片衰老途徑來調(diào)控棉花的產(chǎn)量和纖維質(zhì)量[96]。擬南芥ANAC092/AtNAC2/ORE1[97-98]、ANAC032[99]等既能正調(diào)控依賴年齡的葉片衰老,也在鹽脅迫誘導(dǎo)的葉片衰老過程中起著重要的作用。一些NAC轉(zhuǎn)錄因子可以直接結(jié)合在葉綠素降解途徑相關(guān)基因的啟動子上,通過調(diào)節(jié)葉綠素的代謝來調(diào)控葉片衰老進(jìn)程,如OsNAP[92]、ANAC016[100]、BrNAC055[101]、SlNAP2[102]等。大多數(shù)調(diào)控葉片衰老的NAC轉(zhuǎn)錄因子都是以正調(diào)控的方式來調(diào)控葉片衰老,但也有少量的NAC轉(zhuǎn)錄因子是以負(fù)調(diào)控的方式進(jìn)行調(diào)控的,如ONAC106[103]、DRL1[104]等。
2.5?參與激素調(diào)控
很多NAC轉(zhuǎn)錄因子的表達(dá)量受到ABA的誘導(dǎo),參與ABA的生物合成,或者介導(dǎo)ABA的信號轉(zhuǎn)導(dǎo)途徑。如擬南芥ATAF1可以直接調(diào)節(jié)ABA合成基因NCED3的表達(dá),來調(diào)控ABA的生物合成[105]。擬南芥VNI2(VND-INTERACTING2)是一個NAC轉(zhuǎn)錄因子,其表達(dá)量受ABA誘導(dǎo),可以結(jié)合RD(RESPONSIVE TO DEHYDRATION)和COR(COLD-REGULATED)基因的啟動子,通過調(diào)控RD和COR基因的表達(dá)量來介導(dǎo)鹽脅迫和葉片衰老途徑[106]。在擬南芥中超量表達(dá)ANAC072/RD26能提高ABA誘導(dǎo)相關(guān)基因和脅迫誘導(dǎo)相關(guān)基因的表達(dá)量,對ABA的敏感性增強(qiáng),且增強(qiáng)了采后果實的抗逆性,而在ANAC072/RD26受到抑制的植株中這些基因的表達(dá)量同樣受到抑制,對ABA不敏感,表明ANAC072/RD26在脅迫應(yīng)答和ABA信號轉(zhuǎn)導(dǎo)途徑中起著重要作用[107]。水稻SNAC2(stress-responsive NAC 2)基因也受到ABA的誘導(dǎo)表達(dá),它的超量表達(dá)植株表現(xiàn)出耐冷和抗鹽的表型,并對ABA敏感[108]。此外,OsNAP也可以通過介導(dǎo)ABA的信號轉(zhuǎn)導(dǎo)途徑來增強(qiáng)水稻的抗逆性,在OsNAP的超量表達(dá)轉(zhuǎn)基因植株中,很多脅迫相關(guān)基因和脅迫相關(guān)轉(zhuǎn)錄因子的表達(dá)量明顯上升[109]。由此可見,介導(dǎo)ABA的信號轉(zhuǎn)導(dǎo)途徑的NAC轉(zhuǎn)錄因子多數(shù)與逆境信號傳導(dǎo)途徑有關(guān)。
NAC轉(zhuǎn)錄因子是茉莉酸(jasmonic acid,簡稱JA)信號的調(diào)控因子。超量表達(dá)ANAC072/RD26的轉(zhuǎn)基因植株也增強(qiáng)了對茉莉酸甲酯(methyl jasmonate,簡稱MeJA)的敏感性,因此ANAC072/RD26可能同時介導(dǎo)ABA和MeJA的信號轉(zhuǎn)導(dǎo)途徑[107]。擬南芥ATAF1是ABA信號通路的一個負(fù)調(diào)控因子,但也能誘導(dǎo)JA途徑相關(guān)防御信號基因的表達(dá)[110]。OsNAP也可能通過MeJA信號傳導(dǎo)途徑正調(diào)控水稻葉片衰老途徑[93]。NAC轉(zhuǎn)錄因子RIM1是水稻矮縮病毒繁殖的宿主因子,rim1突變體植株表現(xiàn)出根生長受抑制,編碼JA生物合成相關(guān)基因的表達(dá)量明顯上升,而且在JA處理下突變體植株和野生型植株一致,沒有內(nèi)源JA的積累,說明RIM1是JA信號的負(fù)調(diào)控因子[111]。
NAC也可以參與生長素、細(xì)胞分裂素、乙烯和赤霉素(gibberellins,簡稱GA)等的信號轉(zhuǎn)導(dǎo)途徑[65-66,112]。擬南芥NAC1基因受生長素誘導(dǎo)并且介導(dǎo)生長素信號以促進(jìn)側(cè)根生長發(fā)育[63]。擬南芥AtNAC2受高鹽誘導(dǎo),這種誘導(dǎo)在乙烯超量突變體eto1-1中被增強(qiáng),在乙烯不敏感突變體etr1-1、ein2-1和生長素敏感突變體tir1-1中受到抑制,而在ABA敏感突變體abi2-1、abi3-1和abi4-1中沒有顯著變化,說明AtNAC2的鹽脅迫響應(yīng)參與了乙烯和生長素信號途徑,與ABA信號途徑無關(guān)[66]。在擬南芥中,NTL8(NTM 1-like 8)的表達(dá)受高鹽誘導(dǎo)和GA的抑制,NTL8可以經(jīng)過不依賴ABA的GA途徑介導(dǎo)擬南芥種子萌發(fā)過程中鹽的調(diào)節(jié)[113]。
2.6?參與脅迫反應(yīng)
植物在生長發(fā)育過程中極易受干旱、低溫、高溫、高鹽等非生物脅迫和蟲害、病原菌等生物脅迫的影響,植物細(xì)胞會產(chǎn)生對這些外界脅迫的感知,并通過多種復(fù)雜的信號傳導(dǎo)途徑將其傳遞給控制脅迫應(yīng)答的轉(zhuǎn)錄因子,從而激活植物抗逆反應(yīng),降低逆境對植物造成的損害。NAC轉(zhuǎn)錄因子在這些過程中扮演著重要的角色。
很多NAC基因的表達(dá)量直接受到非生物逆境的調(diào)控,如大豆中有超過1/3(58/152)的NAC基因是潛在的脅迫響應(yīng)基因[12]。在非生物脅迫中,絕大多數(shù)的報道集中在耐冷、耐旱和抗鹽等方面。在水稻中超量表達(dá)內(nèi)源基因SNAC1[114]、OsNAC6 [115]、SNAC2 [108]、ONAC045 [116]、OsNAP [109]、ONAC106 [103]、ONAC022 [117]、OsNAC2 [118]等,或外源基因ATAF1 [119]、EcNAC67 [120]等,均能一定程度地表現(xiàn)出耐冷、耐旱和抗鹽的單一表型或者綜合表型。在擬南芥中異源超表達(dá)不同物種來源的NAC成員也有類似的結(jié)果[71,121-127]。絕大部分NAC是正調(diào)控脅迫反應(yīng),但也有少部分NAC能負(fù)調(diào)控脅迫反應(yīng)。如OsNAC95在水稻抗旱和耐冷脅迫反應(yīng)中表現(xiàn)出相反的角色,它可以負(fù)調(diào)控抗旱脅迫,正調(diào)控耐冷脅迫[128]。擬南芥ANAC069能通過降低活性氧(reactive oxygen species,簡稱ROS)的清除能力和脯氨酸含量,來負(fù)調(diào)控高鹽和滲透脅迫[129]。蘋果MdNAC029/MdNAP以C-repeat binding factor(CBF)依賴的方式負(fù)調(diào)控植物的抗冷能力[130]。玉米ZmNAC071也通過負(fù)調(diào)控ROS清除能力來負(fù)調(diào)控ABA反應(yīng)和滲透脅迫[131]。NAC轉(zhuǎn)錄因子調(diào)控非生物脅迫反應(yīng)絕大多數(shù)是通過ABA依賴的途徑來進(jìn)行的,也可以依賴其他激素的信號轉(zhuǎn)導(dǎo)途徑,如JA [93,132-133]、GA/油菜素內(nèi)酯(brassinolide,簡稱BR)[134]等。
一些報道表明,NAC轉(zhuǎn)錄因子也參與生物脅迫。如水稻OsNAC6對抵抗稻瘟病有正調(diào)控作用[115]。OsNAC19可能在MeJA信號途徑中參與水稻對稻瘟病菌的響應(yīng)[135]。擬南芥中ATAF1 [136]和ATAF2 [137]分別對抗灰霉病和枯萎病有負(fù)調(diào)控作用。在大麥和擬南芥中超量表達(dá)ATAF1的同源基因HvNAC6可以增強(qiáng)耐滲透細(xì)胞對白粉病菌的抗性[138-139],而超量表達(dá)ATAF1在棉花中的同源基因GhATAF1卻增強(qiáng)了對灰葡萄孢菌的敏感性[132]。
3?展望
NAC家族轉(zhuǎn)錄因子是植物特有的一類轉(zhuǎn)錄因子,廣泛參與植物生長發(fā)育及脅迫反應(yīng)。到目前為止,NAC轉(zhuǎn)錄因子已經(jīng)在幾十種植物中被發(fā)現(xiàn),但不同物種來源的NAC成員可能具有不同的生物學(xué)功能,如調(diào)控淀粉合成[140-141]、種子活力[142]、果實發(fā)育[143-144]、大豆抗毒素合成[145]、開花[146-147]、鋅的轉(zhuǎn)運[148]等。因此,廣泛研究NAC成員的功能不僅能揭示NAC蛋白的調(diào)控網(wǎng)絡(luò),而且通過控制NAC基因或NAC蛋白的表達(dá),提高作物的抗逆性,進(jìn)而提升產(chǎn)量。
參考文獻(xiàn):
[1]Singh K B,F(xiàn)oley R C,Onate-Sanchez L. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology,2002,5(5):430-436.
[2]Chen W J,Tong Z. Networks of transcription factors with roles in environmental stress response[J]. Trends in Plant Science,2004,9(12):591-596.
[3]Huang G T,Ma S L,Bai L P,et al. Signal transduction during cold,salt,and drought stresses in plants[J]. Molecular Biology Reports,2012,39(2):969-987.
[4]Jin P,Zhang H,Kong L,et al. PlantTFDB 3.0:a portal for the functional and evolutionary study of plant transcription factors[J]. Nucleic Acids Research,2014,42:1182-1187.
[5]Souer E,Vanhouwelingen A,Kloos D,et al. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159-170.
[6]Nakashima K,Takasaki H,Mizoi J,et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):97-103.
[7]Shao H B,Wang H Y,Tang X L. NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Frontiers in Plant Science,2015,6:902.
[8]Nuruzzaman M,Manimekalai R,Sharoni A M,et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene,2010,465(1/2):30-44.
[9]Ooka H,Satoh K,Doi K,et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research:an International Journal for Rapid Publication of Reports on Genes and Genomes,2003,10(6):239-247.
[10]Fang Y J,Jun Y,Xie K B,et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Molecular Genetics and Genomics,2008,280(6):547-563.
[11]Hu R B,Guang Q,Kong Y Z,et al. Comprehensive analysis of NAC domain transcription factor gene family in populus trichocarpa[J]. BMC Plant Biology,2010,10(1):145.
[12]Dung T L,Nishiyama R,Watanabe Y,et al. Genome-wide survey and expression analysis of the Plant-Specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research,2011,18(4):263-276.
[13]Su H Y,Zhang S Z,Yuan X W,et al. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple[J]. Plant Physiology and Biochemistry,2013,71:11-21.
[14]Singh A K,Sharma V,Pal A K,et al. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.)[J]. DNA Research,2013,20(4):403-423.
[15]Shang H H,Li W,Zou C S,et al. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr: chromosomal location,structure,phylogeny,and expression patterns[J].J Integr Plant Biol,2013,55(7):663-676.
[16]Heng S,Hu M L,Li J Y,et al. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton[J]. BMC Plant Biology,2018,18(1):150.
[17]Puranik S,Sahu P P,Mandal S N,et al. Comprehensive genome-wide survey,genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.)[J]. PLoS One,2013,8(5):e64594.
[18]Nian W,Yu Z,Xin H P,et al. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera[J]. Plant Cell Reports,2013,32(1):61-75.
[19]Viswanathan S,Jagannadham P K,Parameswaran C,et al. NAC transcription factor genes:genome-wide identification,phylogenetic,motif and cis-regulatory element analysis in pigeonpea[Cajanus cajan (L.) Millsp.][J]. Molecular Biology Reports,2014,41(12):7763-7773.
[20]Liu T K,Song X M,Duan W K,et al. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage[J]. Plant Molecular Biology Reporter,2014,32(5):1041-1056.
[21]Shiriga K,Sharma R,Kumar K,et al. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize[J]. Meta Gene,2014,2:407-417.
[22]Cenci A,Guignon V,Roux N,et al. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots[J]. Plant Molecular Biology,2014,85(1/2):63-80.
[23]Ha C V,Esfahani M N,Watanabe Y,et al. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development,dehydration and ABA treatments[J]. PLoS One,2014,9(12):e114107.
[24]Wei H,Wei Y X,Xia Z Q,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in cassava[J]. PLoS One,2015,10(8):e0136993.
[25]Lei L,Song L,Wang Y J,et al. Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula[J]. Physiology and Molecular Biology of Plants,2017,23(2):343-356.
[26]Su H Y,Zhang S Z,Yin Y L,et al. Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum[J]. Journal of Plant Biochemistry and Biotechnology,2015,24(2):176-183.
[27]Wu Z Y,Xu X Q,Xiong W D,et al. Genome-wide analysis of the NAC gene family in physic nut (Jatropha curcas L.)[J]. PLoS One,2015,10(6):e0131890.
[28]Jun Y,Zhang L H,Bo S,et al. Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon[J]. PLoS One,2015,10(3):e0122027.
[29]Zhuo X K,Zheng T C,Zhang Z Y,et al. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume[J]. Genes,2018,9(10):494.
[30]Ma J H,Tong D D,Zhang W L,et al. Identification and analysis of the NAC transcription factor family in Triticum urartu[J]. Yi Chuan,2016,38(3):243-253.
[31]Guérin C,Roche J,Allard V,et al. Genome-wide analysis,expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.)[J]. PLoS One,2019,14(3):e0213390.
[32]Saidi M N,Mergby D,Brini F . Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum)[J]. Plant Physiology & Biochemistry,2017,112:117-128.
[33]Wang Y X,Liu Z W,Wu Z J,et al. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant[Camellia sinensis (L.) O. Kuntze][J]. PLoS One,2016,11(11):e0166727.
[34]Karanja B K,Xu L,Wang Y,et al. Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish(Raphanus sativus L.)[J].PeerJ,2017,5:e4172.
[35]Wei S W,Gao L W,Zhang Y D,et al. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress[J]. Plant Cell Reports,2016,35(9):1827-1839.
[36]Baranwal V K,Khurana P. Genome-wide analysis,expression dynamics and varietal comparison of NAC gene family at various developmental stages in Morus notabilis[J]. Molecular Genetics and Genomics,2016,291(3):1305-1317.
[37]Liu M Y,Ma Z T,Sun W J,et al. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum)[J]. BMC Genomics,2019,20(1):113.
[38]Wei L,Li X X,Chao J T,et al. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence[J]. Frontiers in Plant Science,2018,9:1900.
[39]Hussain R M,Mohammed A,Xing F,et al. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars[J]. BMC Plant Biology,2017,17(1):55.
[40]Zhang X M,Yu H J,Sun C,et al. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus[J]. Plant Physiology and Biochemistry,2017,113:98-109.
[41]Liu X W,Wang T,Bartholomew E S,et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber(Cucumis sativus L.)[J].Hortic Res,2018,5(1):31.
[42]Zhang Y J,Li D H,Wang Y,et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum[J]. PLoS One,2018,13(6):e0199262.
[43]Feng L,Guo X H,Liu J X,et al. Genome-wide identification,characterization,and expression analysis of the NAC transcription factor in Chenopodium quinoa[J]. Genes,2019,10(7):500.
[44]Diao W P,Snyder J,Wang S B,et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.):chromosome location,phylogeny,structure,expression patterns,cis-elements in the promoter,and interaction network[J]. International Journal of Molecular Sciences,2018,19(4):1028.
[45]Moyano E,Martínez-Rivas F J,Blanco-Portales R,et al. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits[J]. PLoS One,2018,13(5):e0196953.
[46]Gong X,Zhao L Y,Song X F,et al. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri)[J]. BMC Plant Biology,2019,19(1):161.
[47]Song C,Xin L,Zhang D W,et al. Genome-wide analysis of NAC gene family in Betula pendula[J]. Forests,2019,10(9):741.
[48]He Q,Liu Y H,Zhang M,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in pineapple[J]. Tropical Plant Biology,2019,12(4):255-267.
[49]Olsen A N,Ernst H A,Leggio L L,et al. Preliminary crystallographic analysis of the NAC domain of ANAC,a member of the plant-specific NAC transcription factor family[J]. Acta Crystallographica Section D-Biological Crystallography,2004,60(1):112-115.
[50]Ernst H A,Olsen A N,Larsen S,et al. Structure of the conserved domain of ANAC,a member of the NAC family of transcription factors[J]. EMBO Reports,2004,5(3):297-303.
[51]Kim Y S,Kim S Y,Park J E,et al. A Membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[52]Ya-Ni C,Slabaugh E,Brandizzi F. Membrane-tethered transcription factors in Arabidopsis thaliana:novel regulators in stress response and development[J]. Current Opinion in Plant Biology,2008,11(6):695-701.
[53]Chen Q F,Wang Q,Xiong L Z,et al. A structural view of the conserved domain of rice stress-responsive NAC1[J]. Protein & Cell,2011,2(1):55-63.
[54]Duval M,Hsieh T F,Kim S Y,et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily[J]. Plant Molecular Biology,2002,50(2):237-248.
[55]Aida M,Ishida T,F(xiàn)ukaki H,et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell,1997,9(6):841-857.
[56]Ken-Ichiro H,Takada S,Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation[J]. The Plant Journal,2003,36(5):687-696.
[57]Takada S,Hibara K,Ishida T,et al. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation[J]. Development (Cambridge,England),2001,128(7):1127-1135.
[58]Ori N,Eshed Y,Chuck G,et al. Mechanisms that control knox gene expression in the Arabidopsis shoot[J]. Development (Cambridge,England),2000,127(24):5523-5532.
[59]Takeda S,Hanano K,Kariya A,et al. CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3,two members of the ALOG gene family,in shoot organ boundary cells[J]. Plant Journal,2011,66(6):1066-1077.
[60]Ken-Ichiro H,Karim M R,Takada S,et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation[J]. The Plant Cell,2006,18(11):2946-2957.
[61]Vroemen C W,Mordhorst A P,Albrecht C,et al. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis[J]. Plant Cell,2003,15(7):1563-1577.
[62]Zimmermann R,Werr W. Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L.[J]. Plant Molecular Biology,2005,58(5):669-685.
[63]Xie Q,F(xiàn)rugis G,Colgan D F,et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development,2000,14(23):3024-3036.
[64]Qi X,Hui-Shan G,Dallman G,et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature,2002,419(693):167-170.
[65]Mao C,He J,Liu L,et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal,2019,18(2):429-442.
[66]He X J,Mu R L,Cao W H,et al. AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J]. The Plant Journal,2005,44(6):903-916.
[67]Xi D,Xu C,Wang Y X,et al. Arabidopsis ANAC092 regulates auxin-mediated root development by binding to the ARF8 and PIN4 promoters[J]. Journal of Integrative Plant Biology,2019,61(9):1015-1031.
[68]Chen D,Chai S C,Mcintyre C L,et al. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length,biomass and drought tolerance[J]. Plant Cell Reports,2018,37(2):225-237.
[69]Hegedus D,Yu M,Baldwin D,et al. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress[J]. Plant Molecular Biology,2003,53(3):383-397.
[70]Hao Y J,Wei W,Song Q X,et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. The Plant Journal,2011,68(2):302-313.
[71]Yang X F,Kim M Y,Ha J M,et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science,2019,10:1036.
[72]Han X M,F(xiàn)eng Z Q,Xing D,et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis[J]. BMC Plant Biology,2015,15(1):208.
[73]Mitsuda N,Seki M,Shinozaki K,et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence[J]. The Plant Cell,2005,17(11):2993-3006.
[74]Mitsuda N,Iwase A,Hiroyuki Y,et al. NAC transcription factors,NST1 and NST3,are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. The Plant Cell,2007,19(1):270-280.
[75]Mitsuda N,Ohme-Takagi M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity[J]. The Plant Journal,2008,56(5):768-778.
[76]Zhao X,Gallego-Giraldo L,Wang H Z,et al. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula[J]. The Plant Journal,2010,63(1):100-114.
[77]Zhong R Q,Demura T,Ye Z H. SND1,a NAC domain transcription factor,is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J]. The Plant Cell,2006,18(11):3158-3170.
[78]Zhong R Q,Richardson E A,Ye Z H. Two NAC domain transcription factors,SND1 and NST1,function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis[J]. Planta,2007,225(6):1603-1611.
[79]Yamaguchi M,Mitsuda N,Ohtani M,et al. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation[J]. The Plant Journal,2011,66(4):579-590.
[80]Zhong R Q,Richardson E A,Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis[J]. The Plant Cell,2007,19(9):2776-2792.
[81]Mccarthy R L,Zhong R,Ye Z H. MYB83 is a direct target of SND1 and Acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant and Cell Physiology,2009,50(11):1950-1964.
[82]Zhou J L,Lee C,Zhong R Q,et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis[J]. The Plant Cell,2009,21(1):248-266.
[83]Zhong R Q,Lee C,Zhou J L,et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. The Plant Cell,2008,20(10):2763-2782.
[84]Zhong R,Lee C,Ye Z H. Functional characterization of poplar wood-associated NAC domain transcription factors[J]. Plant Physiology,2010,152(2):1044-1055.
[85]Ohtani M,Nishikubo N,Bo X,et al. A NAC domain protein family contributing to the regulation of wood formation in poplar[J]. The Plant Journal,2011,67(3):499-512.
[86]Zhong R,Lee C,Mccarthy R L,et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors[J]. Plant and Cell Physiology,2011,52(10):1856-1871.
[87]Jae-Heung K,Seung H Y,Andrew H P,et al. ANAC012,a member of the plant-specific NAC transcription factor family,negatively regulates xylary fiber development in Arabidopsis thaliana[J]. The Plant Journal,2007,50(6):1035-1048.
[88]Zhao C S,Avci U,Emily H G,et al. XND1,a member of the NAC domain family in Arabidopsis thaliana,negatively regulates lignocellulose synthesis and programmed cell death in xylem[J]. The Plant Journal,2007,53(3):425-436.
[89]Uauy C,Distelfeld A,F(xiàn)ahima T,et al. A NAC gene regulating senescence improves grain protein,Zinc,and Iron content in wheat[J]. Science,2006,314(583):1298-1301.
[90]Guo Y F,Gan S S. AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J]. The Plant Journal:for Cell and Molecular Biology,2006,46(4):601-612.
[91]Zhang K W,Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiology,2012,158(2):961-969.
[92]Liang C Z,Wang Y Q,Zhu Y N,et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(27):10013-10018.
[93]Yong Z,Huang W F,Li L,et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Biology,2013,13(1):132.
[94]Chen Y X,Kai Q,Kuai B K,et al. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis‘Viridiflavus)[J]. Physiologia Plantarum,2011,142(4):361-371.
[95]Cao S X,Zhang Z B,Wang C H,et al. Identification of a novel melon transcription factor CmNAC60 as a potential regulator of leaf senescence[J]. Genes,2019,10(8):584.
[96]Kai F,Bibi N,Gan S S,et al. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum[J]. Journal of Experimental Botany,2015,66(15):4669-4682.
[97]Kim J H,Woo H R,Kim J,et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis[J]. Science,2009,323(5917):1053-1057.
[98]Balazadeh S,Siddiqui H,Allu A D,et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence[J]. The Plant Journal:for Cell and Molecular Biology,2010,62(2):250-264.
[99]Mahmood K,El-Kereamy A,Sung-Hyun K,et al. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana[J]. Plant and Cell Physiology,2016,57(10):2029-2046.
[100]Sakuraba Y,Su-Hyun H,Sang-Hwa L,et al. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription[J]. Plant Cell Reports,2016,35(1):155-166.
[101]Fan Z Q,Tan X L,Chen J W,et al. BrNAC055,a novel transcriptional activator,regulates leaf senescence in Chinese flowering cabbage by modulating reactive oxygen species production and chlorophyll degradation[J]. Journal of Agricultural and Food Chemistry,2018,66(36):9399-9408.
[102]Ma X M,Zhang Y J,Veronika T,et al. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato[J]. Plant Physiology,2018,177(3):1286-1302.
[103]Sakuraba Y,Piao W L,Lim J H,et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant and Cell Physiology,2015,56(12):2325-2339.
[104]Zhu Z G,Li G R,Yan C H,et al. DRL1,encoding a NAC transcription factor,is involved in leaf senescence in grapevine[J]. International Journal of Molecular Sciences,2019,20(11):2678.
[105]Jensen M K,Lindemose S,Masi F D,et al. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana[J]. FEBS Open Bio,2013,3(1):321-327.
[106]Yang S D,Seo P J,Yoon H K,et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[J]. The Plant Cell,2011,23(6):2155-2168.
[107]Fujita M,F(xiàn)ujita Y,Maruyama K,et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant Journal,2004,39(6):863-876.
[108]Hu H,You J,F(xiàn)ang Y,et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Molecular Biology,2008,67(1/2):169-181.
[109]Chen X,Wang Y F,Lv B,et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant and Cell Physiology,2014,55(3):604-619.
[110]Lu P L,Chen N Z,An R,et al. A novel drought-inducible gene,ATAF1,encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Molecular Biology,2007,63(2):289-305.
[111]Yoshii M,Yamazaki M,Rakwal R,et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. The Plant Journal,2010,61(5):804-815.
[112]Xu C,Lu S C,Wang Y F,et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice[J]. The Plant Journal,2015,82(2):302-314.
[113]Kim S G,Lee A K,Yoon H K,et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[114]Hu H,Dai M,Yao J,et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(35):12987-12992.
[115]Nakashima K,Tran L S,Van Nguyen D,et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal,2007,51(4):617-630.
[116]Zheng X N,Chen B,Lu G J,et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications,2009,379(4):985-989.
[117]Hong Y B,Zhang H J,Huang L,et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Frontiers in Plant Science,2016,7:4.
[118]Shen J B,Lv B,Luo L Q,et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice[J]. Scientific Reports,2017,7(1):40641.
[119]Liu Y C,Jie S,Wu Y R. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice[J]. Journal of Plant Research,2016,129(5):955-962.
[120]Rahman H,Ramanathan V,Nallathambi J,et al. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice[J]. BMC Biotechnology,2016,16(S1):35.
[121]Guan H R,Xin L,F(xiàn)ei N,et al. OoNAC72,a NAC-Type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2019,10:890.
[122]Pang X Y,Xue M,Ren M Y,et al. Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses[J]. Genetics and Molecular Biology,2019,42(3):624-634.
[123]Yong Y,Zhang Y,Lyu Y. A Stress-Responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J]. International Journal of Molecular Sciences,2019,20(13):3225.
[124]Borgohain P,Saha B,Agrahari R,et al. SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism[J]. Protoplasma,2019,256(4):1065-1077.
[125]He K,Zhao X,Chi X Y,et al. A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis[J]. Journal of Plant Physiology,2019,233:84-93.
[126]Yang X W,Kang H,Chi X Y,et al. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Science,2018,277:229-241.
[127]Cao H S,Li W,Muhammad A N,et al. Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2017,8:2052.
[128]Lei H,Hong Y B,Zhang H J,et al. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology,2016,16(1):203.
[129]He L,Shi X X,Wang Y M,et al. Arabidopsis ANAC069 binds to C[A/G]CG[T/G]sequences to negatively regulate salt and osmotic stress tolerance[J].Plant Mol Biol, 2017,93(4/5):369-387.
[130]An J P,Rui L,Qu F J,et al. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway[J]. Journal of Plant Physiology,2018,221:74-80.
[131]Lin H,Jing B,Xu J Y,et al. Novel maize NAC transcriptional repressor ZmNAC071 confers enhanced sensitivity to ABA and osmotic stress by downregulating stress-responsive genes in transgenic Arabidopsis[J]. Journal of Agricultural and Food Chemistry,2019,67(32):8905-8918.
[132]Xin H,Zhu L F,Lian X,et al. GhATAF1,a NAC transcription factor,confers abiotic and biotic stress responses by regulating phytohormonal signaling networks[J]. Plant Cell Reports,2016,35(10):2167-2179.
[133]Fang L C,Su L Y,Sun X M,et al. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis[J]. Journal of Experimental Botany,2016,67(9):2829-2845.
[134]Shahnejat-Bushehri S,Tarkowska D,Sakuraba Y,et al. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling[J]. Nature Plants,2016,2(3):16013.
[135]Lin R M,Zhao W S,Meng X B,et al. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Science,2007,172(1):120-130.
[136]Wang X E,Basnayake B S,Zhang H J,et al. The Arabidopsis ATAF1,a NAC transcription factor,is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens[J]. Molecular Plant-Microbe Interactions,2009,22(10):1227-1238.
[137]Delessert C,Kazan K,Wilson I W,et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis[J]. The Plant Journal,2005,43(5):745-757.
[138]Chen Y J,Perera V,Christiansen M W,et al. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew[J]. Plant Molecular Biology,2013,83(6):577-590.
[139]Jensen M K,Jesper H R,Gregersen P L,et al. The HvNAC6 transcription factor:a positive regulator of penetration resistance in barley and Arabidopsis[J]. Plant Molecular Biology,2007,65(1/2):137-150.
[140]Peng X J,Wang Q,Yu W,et al. A maize NAC transcription factor,ZmNAC34,negatively regulates starch synthesis in rice[J]. Plant Cell Reports,2019,38(12):1473-1484.
[141]Zhang Z Y,Dong J Q,Chen J,et al. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(23):11223-11228.
[142]Li W J,Xue H,Yi C,et al. A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal[J]. New Phytologist,2020,225(4):1667-1680.
[143]Gao Y,Wei W,Zhao X D,et al. A NAC transcription factor,NOR-like1,is a new positive regulator of tomato fruit ripening[J]. Horticulture Research,2018,5(1):75.
[144]Carrasco-Orellana C,Stappung Y,Mendez-Yaez A,et al. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit[J]. Scientific Reports,2018,8(1):10524.
[145]Jahan M A,Harris B,Lowery M,et al. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean[J]. BMC Genomics,2019,20(1):149.
[146]Guo S Y,Dai S J,Prashant K S,et al. A membrane-bound NAC-like transcription factor OsNTL5 represses the flowering in Oryza sativa[J]. Frontiers in Plant Science,2018,9:555.
[147]Zhang H H,Cui X Y,Guo Y X,et al. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time[J]. Plant Molecular Biology,2018,98(6):471-493.
[148]Bin Z,Huo D A,Hong X X,et al. The Salvia miltiorrhiza NAC transcription factor SmNAC1 enhances Zinc content in transgenic Arabidopsis[J]. Gene,2019,688:54-61.