• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magneto-Optical Properties of Wider Gap Semiconductors ZnMnTe and ZnMnSe Films Prepared by MBE

    2020-10-19 02:21:22

    Abstract—The II-VI based magnetic semiconductors with a direct and wide optical bandgap are expected to show high potential for optical applications utilizing short wavelength laser diodes (LDs),such as 532-nm green and 475-nm blue LDs.We have confirmed that the Faraday rotation θF in the ZnMnTe and ZnMnSe films deposited on quartz glass (QG) and sapphire (SA) substrates by using molecular beam epitaxy (MBE) is large near the absorption edge.This paper reports the magneto-optical properties of ZnMnTe and ZnMnSe films synthesized on the QG and SA substrates,and shows the result of a direct Faraday rotation observation successfully made for the ZnMnTe films under 1.28-kHz alternating magnetic fields.The optical absorption characteristics of the ZnMnTe films grown on the SA substrates by MBE are discussed by comparing them with the optical absorption properties and photoluminescence spectra of the II-VI ZnTe parent single crystals.

    1.Introduction

    The II-VI semiconductors ZnTe crystals which do not have transition metal ions,such as Mn,have actively been studied to detect terahertz electric fields[1]-[3].Another area of intensive studies on II-VI semiconductors is the field of quantum engineering which includes heterojunctions[4],[5],quantum wells (2D structure)[6],[7],quantum wires(1D),and quantum dots (0D)[8],[9].On the other hand,the II-VI based magnetic semiconductors of thecomposition with a direct and wide optical bandgap[10],[11]show the promise for magneto-optical applications utilizing short wavelength laser diodes (LDs),such as a 532-nm green or 475-nm blue beam.The wavelengths of LDs used for high-density optical recordings have become shorter.The required optical setups need an isolator that works effectively for shortwave LDs to eliminate back reflections of the laser beam.In addition to the optical isolators,the development of magneto-optical sensors that work on a short optical wavelength has been expected[12],[13].The II-VI magnetic semiconductors Zn1–xMnxTe and Zn1–xMnxSe have the absorption edge at 428 nm to 544 nm and 428 nm to 458 nm,respectively[14].When increasing the Mn concentrationx,the shift of the absorption edge to the higher energy gap for these materials is small compared with the prototype II-VI magnetic semiconductor Cd1–xMnxTe.It will be discussed in subsection 3.1.The Faraday rotation angleθFfor the ZnMnTe films deposited on quartz glass (QG) and sapphire (SA) substrates is large near the absorption edge[15],[16].Zn1–xMnxTe forms a ternary alloy of a zinc-blende structure withxup to 0.86,and Zn1–xMnxSe exhibits a zinc-blende structure forx<0.30 and a wurtzite structure for 0.30

    The specific values of the Faraday rotation in the room temperature region have not been shown for the ZnMnTe and ZnMnSe films synthesized on the QG and SA substrates by molecular beam epitaxy (MBE) so far.This fact motivated us to carry out the materials research on II-VI magnetic semiconductors.The presented paper reports the magneto-optical characteristics of those films,and describes the results of the Faraday rotations for the ZnMnTe films subject to alternating magnetic fields from a practical viewpoint of their applications.

    Fig.1.Schematic band structure near the Γ point for an open-gap zinc-blende magnetic semiconductor(left side) and a schematic picture of spin splitting of the top of the valence band (Γ8) and the bottom of the conduction band (Γ6) in a magnetic field (right side).The diagram shows the electric-dipole-allowed transitions(shown by arrows) for the two circular polarizations rotating transverse to the applied field (the Faraday geometry designated by σ+ and σ–).The Faraday geometry transitions marked with A and D are significantly stronger than those marked with B and C[12].

    2.Experimental Procedure

    2.1.Film Preparation and Measuring Equipment

    Magnetic semiconductor films were synthesized on the transparent QG and SA ((0001) orientation C-cutα-Al2O3) substrates heated to 300 °C by using MBE.Deposition was carried out at an average rate of 1.0 ?/s to 1.5 ?/s for 6 h to 8 h using a 5N ZnTe effusion cell heated to 465 °C to 475 °C and a 4N MnTe cell at 1035 °C to 1040 °C.Using this system,2-mm-thick to 3-mm-thick ZnMnTe films with the Mn mole-fractionxfrom 0.18 to 0.27 were prepared on the 0.5-mm-thick QG and SA substrates.The ZnMnSe films were prepared similarly using a 5N ZnSe effusion cell heated to 640 °C to 650 °C and a 4N MnSe cell at 820 °C to 850 °C,and their magneto-optical properties were compared with those of ZnMnTe films.An X-ray diffractometer using Cu-Kαradiation and reflection high energy electron diffraction (RHEED) were used to observe crystallinity.A (111) diffraction spectrum of weak intensity was observed by the X-ray diffractometer for the ZnMnTe and ZnMnSe films deposited on the QG substrates.Fig.2 (a) shows a weak diffraction spectrum of (111) observed for the Zn0.75Mn0.25Te film deposited on the QG substrate.Although the films are considered to have a certain amount of crystallinity,RHEED that monitors the crystal growth on the surface of films during deposition showed a ring pattern which gives an indication of the polycrystalline film growth.The films were assumed to be polycrystalline grown perpendicularly to the surface of QG substrates.Fig.2 (b) shows the diffraction spectra observed in the Zn0.73Mn0.27Te film grown on the SA substrate.As shown in Fig.2 (b),the (220) spectrum of strong intensity is exhibited at 2θ=41.9°,although the quite smaller (111) diffraction peak is also observed at 2θ=25.3°.Moreover,the streaked pattern of RHEED was observed,indicating the single-crystal growth.The (220) epitaxial growth of the ZnMnTe film on SA is considered to be due to a specificface of the hexagonal (0001) C-cut α-Al2O3crystal observed at 2θ=42.65°.Fig.3 represents the crystal structure of zinc-blend.Mn is substituted for the atoms of the group II element.The group VI element,Te or Se,is arranged in the center of a tetrahedrally bonded structure.The <111>and <220>directions of the zinc-blend crystal are indicated in Fig.3.

    Fig.2.X-ray diffraction spectra of ZnMnTe films: (a) Zn0.75Mn0.25Te film deposited on the QG substrate and (b)Zn0.73Mn0.27Te film grown on the SA substrate.

    Fig.3.Zinc-blend structure.Mn is substituted for the atoms of the group II element Zn in Zn1–xMnxTe and Zn1–xMnxSe.The group VI element Te or Se is arranged in the center of a tetrahedron.The <111>and <220>directions are indicated in the zinc-blend crystal.

    When the concentration of Mn++is small (x<0.01),the Mn++spins have been regarded as isolated,i.e.,independent from another[17].In that case,the magnetizationMis described by the Brillouin function and,this situation leads to the Curie-Weiss law in dependence on temperature.For magnetic semiconductors of arbitraryx,the magnetizationMis not expressed by the standard Brillouin function because of the Mn-Mn interaction.In this case,Mhas been considered to be expressed by the Curie-Weiss law in the form:

    whereCis the Curie constant of the paramagnetic phase,Tdenotes the temperature,His the magnetic field,andΘis the Curie temperature.Fig.4 shows the magnetic properties of the ZnMnTe films observed by using a vibrating sample magnetometer.Fig.4 (a) shows the magnetization curves for the Zn0.73Mn0.27Te film measured at–173 °C (100 K) and the room temperature (RT:300 K) in the field range of ±20 kOe.Fig.4 (b) is anM-Tcurve measured for the Zn0.73Mn0.27Te film grown on the SA substrate in relation to the temperature in the range of–195 °C (77 K) to RT.When applying the Curie-Weiss law to theM-Tcurve of Fig.4 (b),the Curie temperatureΘwas calculated at about–207 °C (66 K).The ZnMnTe film is considered to be paramagnetic at RT.

    Fig.4.Magnetic properties of ZnMnTe films:(a) magnetization curves observed in the Zn0.73Mn0.27Te film at –173 °C(100 K) and RT (300 K) and (b) magnetization M observed in the Zn0.73Mn0.27Te film grown on the SA substrate in relation to the temperature.

    Atomic concentrations were determined as mole fractions through an energy dispersion spectral analysis.The thickness of the films was measured by using a Talystep profilometer.The Faraday rotation angleθFat RT was observed in the wavelength range of 460 nm to 700 nm by using a spectrophotometer.

    2.2.AC Faraday Signal Measuring Equipment

    We made direct observations of the Faraday rotation for the ZnMnTe films subject to alternating magnetic fields.Fig.5 shows the equipment used for the measurement.It has a NdFeB ring magnet (with an outer diameter of 40 mm) driven by a servomotor at a 6000-rpm maximum rotation speed.The magnet has 32 poles along the periphery of the ring.Fig.6 shows the locations of the ring magnet,a film,and the Hall sensor used to obtain a reference signal.Fig.7 plots the magnetic flux distribution of the ring magnet.This equipment can produce an AC field at a maximum frequency of 1.6 kHz.The Faraday rotation of the film was measured at a point located 2 mm away from the outer periphery of the ring magnet,where the magnetic field is 620 Gauss (62 mT).532-nm,3-mW green LD was used as the light source and an avalanche photodiode as the detector.After passing through a bandpass filter,the signal from the detector was measured by a digital oscilloscope.At 532 nm,the films exhibit a negative Faraday rotation(i.e.,a counterclockwise rotation of the polarized light).On the other hand,the bare QG substrates exhibit a positive Faraday rotation.Therefore,the net signal was reduced by the substrates.

    Fig.5.Equipment for observing the Faraday effect under alternating magnetic fields.

    Fig.6.Locations of the ring magnet,a specimen film,and the Hall sensor used for getting a reference signal.

    Fig.7.Flux distribution for a 32-pole ring magnet.

    3.Results and Discussion

    3.1.Bandgap Energy and Absorption Characteristics

    3.2.Faraday Rotation for ZnMnTe and ZnMnSe Films

    The ZnMnTe and ZnMnSe films of the zinc-blend open gap,which exhibit a Faraday transition by the Zeeman effect,are considered to be paramagnetic at RT.The magneto-optical effect (the Faraday effect) in those films is directly related to the interaction between thedelectrons of the transition metal ions and thesandpelectrons of host semiconductors.The Faraday rotation angleθFis expressed in the form[17]:

    whereKis a constant,χis the magnetic susceptibility,Egis the bandgap energy,is the photon energy,andlis the film thickness.The constantKis written in the form:

    Fig.8.Linear interpolation of Eg between the AIIBVI and MnBVI magnetic semiconductors.

    Table 1:Values of bandgap energy for the ZnMnTe and ZnMnSe films on the QG and AS substrates

    Fig.9.Transparency for the ZnMnTe and ZnMnSe films.

    whereF0is the oscillator strength andβ–αis thesp-dexchange constant.Equation (2) shows thatθFis large (→±∞) near the optical absorption edge.

    Fig.10 shows the variation of the Faraday angle with the wavelength measured at RT in the Zn1–xMnxTe and Zn1–xMnxSe films deposited on the QG and SA substrates.A negative peak value of the Faraday rotation angleθFat RT occurs near 550 nm for the Zn1–xMnxTe films that have an absorption edge at 520 nm to 530 nm,and near 450 nm for the Zn1–xMnxSe films that have an absorption edge at 450 nm to 460 nm.The Faraday rotation spectra of the Zn1–xMnxTe films are not noticeably changed when the Mn concentration is altered.The rotation angleθFmeasured for the Zn1–xMnxTe films in the wavelength range of 550 nm to 660 nm also exhibits a negative value.The substrates exhibited a small positive value of rotation.θFof the SA substrate is a fixed value of about +0.02 °/cm-G for wavelengths and that of the QG substrate is a fixed value of about +0.03 °/cm-G.The Faraday spectra in Fig.10 have had the substrate spectra subtracted off.Whereas the difference in the Mn concentration was clearly reflected toθFof the ZnMnSe films,the differences in the Mn concentration and types of substrates (QG and SA) were not clear in theθFdata observed in the ZnMnTe films.The values of the Faraday rotation angleθFdepend on the thickness of films as well as the Mn concentration.The results suggest that the Zn1–xMnxTe and Zn1–xMnxSe films can be useful for green and blue LDs,respectively.

    Fig.10.Faraday rotation angle versus wavelength at RT for the Zn1–xMnxTe and Zn1–xMnxSe films on the QG and SA substrates.

    3.3.Green Laser Application of the ZnMnTe Film at RT

    Fig.11 plots the Faraday effect signal measured for the Zn0.82Mn0.18Te film deposited on QG using the ring magnet and 532-nm,3-mW green LD.The upper curve graphs the Faraday rotation of the film and the lower one shows a reference signal of the fields measured when a Hall element is placed near the ring magnet.The rotating ring magnet produces an alternating field of 620-Gauss amplitude at a frequency of 1.28 kHz.The angle between the polarizer and analyzer axes was approximately 10°.As seen in Fig.11,an undistorted Faraday rotation signal of 18 mVP-Phas been observed for the ZnMnTe film.The signal is attenuated by about 25% due to the opposing Faraday rotation of the 0.5-mm-thick substrates.Similar Faraday rotation signals were observed for the Zn0.80Mn0.20Te and Zn0.75Mn0.25Te films.Using the present films and equipment,the signal to noise ratio (SNR) was 40 dB.The advantage of an optical field sensor is its anti-noise properties,since the sensor does not use electrical wires.

    Fig.11.Faraday-effect signal observed for the Zn0.82Mn0.18Te film at a frequency of 1.28 kHz in an alternating magnetic field of 620-Gauss (62-mT) amplitude.

    4.Conclusion

    Magnetization in the II-VI paramagnetic semiconductor films stems from spin rotations,not from domain wall motions,therefore the films respond linearly to magnetic fields.It is expected that the films will have good response at high frequencies as well.In this study,we showed that the wide-gap ZnMnTe films work efficiently for 532-nm green LDs.Although we have not confirmed the operation of the ZnMnSe films,we believe that they will be useful in green and blue laser applications.

    Two groups of films prepared on the QG substrates and SA ones are entirely different in crystallinity.The films on QG are basically polycrystal films deposited on the amorphous glass substrate,and those on SA are epitaxial single crystal films grown on the hexagonal crystal substrate.However,a value difference inθFbetween the ZnMnTe films on QG and the ZnMnTe films on SA could not clearly be confirmed.The result is considered to show that the magneto-optical effect is not practically influenced by the crystallinity of the magnetic films.

    The Faraday rotation near the absorption edge and optical transparency are in a trade-off relation.The transmittance of films decreased gradually with shortening the wavelength of light from 700 nm to the optical absorption edge as shown in Fig.9,and the decrease of transparency observed in the wavelength range of 550 nm to 700 nm for the ZnMnTe films is felt somewhat large.We evaluated the absorption characteristics of ZnTe films grown on the SA and ZnTe single crystal substrates by MBE.Those films also exhibited similar absorption characteristics to those of the ZnMnTe films at the same wavelength range of 550 nm to 700 nm.The multiple reflections of the thin ZnMnTe/ZnTe films may have concern in the decrease of transparency.On the other hand,the bulk ZnTe single crystal plate obtained from the Bridgeman crystal growth keeps high and constant transparency from 800 nm to the absorption edge as shown in Fig.A1 in the appendix[20].The optical absorption is still a subject for further study.From a practical point of view,we are interested in an unstrained ZnMnTe single crystal that is grown by using the Bridgeman method.

    Appendix

    Transparent Characteristics of Bulk ZnTe Crystals at RT

    Whereas the transmittance of the ZnMnTe films grown on the SA substrates by MBE decreased gradually with shortening the wavelength of light from 700 nm to the optical absorption edge as shown in Fig.9,the undoped ZnTe (100)/(111) and P-doped (111) single crystals with a shape of 10.0 mm in length,10.0 mm in width,and 0.5 mm in thickness kept a high and constant transmittance in that wavelength region as shown in Fig.A1.The transmittance of the O-doped ZnTe (111) single crystal is somewhat lowered near the optical absorption edge.Undoped ZnTe single crystals exhibited the photoluminescence(PL) spectrum of very low intensity at 558 nm (green) brought by a direct-gap transition at RT,and PL of very high intensity at the wavelength of 565 nm at RT was observed for the P-doped ZnTe single crystal.PL of the P-doped ZnTe has been considered to be due to a charge transition from the conduction band to the acceptor level formed by the impurity P atoms,and that transition produces PL of very high intensity[20].The observed value 0.04 eV on ΔEgindicated in Fig.A1 is considered to show the energy difference between the energy of the acceptor level and that for the top of the valence band.The O-doped ZnTe single crystal exhibits the high intensity of PL at 680 nm(red) at RT as shown in Fig.A2.The group VI element Te is partially replaced with the impurity VI element O,which has the same electron-arrangement as Te,and PL has been considered to be due to luminescence arising from the energy of the excited O atoms bound by an isoelectric trap[20].Fig.A3 shows the optical transparency of the ZnMnTe and ZnTe films grown on the SA and ZnTe single crystal substrates.In the optical wavelength range of 500 nm to 800 nm,the transparent properties of the ZnMnTe and ZnTe films on SA were almost the same,and the ZnTe films grown on the ZnTe single crystal substrates also exhibited lower transparency.

    Fig.A1.Optical transparency of the ZnTe single crystals measured at RT.

    Fig.A2.PL intensity of the unstrained and strained O-doped (111)single crystal slab samples.PL is observed at RT.The high intensity of PL observed at 680 nm (red) has been considered to be due to isoelectric trap[20].

    Fig.A3.Optical transparency of the ZnMnTe and ZnTe films grown on SA and ZnTe single crystal substrates.Data was obtained at RT.

    Although the RHEED observation exhibited the (111) growth of the ZnTe film grown on the ZnTe substrate as shown in Fig.A4,the film looked metallic a little and was not stoichiometric in the composition of Zn and Te.Therefore,the decrease of transparency in this case (the ZnTe film grown on the ZnTe single crystal substrate) is considered to be due to an influx of excessive Zn atoms,which produces free electrons,into the film from the ZnTe substrate.Fig.A5 shows the optical transparency of the O-doped single crystal slab samples:Unpolished (unstrained) and polished (strained) to a mirror plane by using 1-μm diamond slurry.After polishing,the transmittance of the strained ZnTe single crystal drastically decreased,and the PL intensity decreased greatly as well.The decrease of the transmittance and PL intensity mostly recovered after annealing at 300 °C for 24 h in a vacuum.Two causes of the internal distortion in the films deposited on the SA crystal substrates are considered as follows:1) A lattice distortion brought by the thermal distortion in film preparation and 2) a lattice mismatch between the crystal lattice of the film and that of substrate brought through the epitaxial growth.

    Fig.A4.RHEED pattern:(111) growth of the ZnTe film on the ZnTe single crystal (111) substrate.

    Fig.A5.Optical transparency observed at RT for the O-doped (111)single crystal slab sample (10.0 mm×10.0 mm×0.5 mm):Unpolished(unstrained) and polished (strained).

    Acknowledgment

    The authors are indebted to Dr.A.Okada from Mitsubishi Electric Corporation and Dr.S.Seto from Ishikawa National College of Technology for supporting their study on the II-VI magnetic semiconductors.

    国产亚洲午夜精品一区二区久久| 桃花免费在线播放| 亚洲成色77777| 尾随美女入室| 亚洲精品美女久久av网站| 看十八女毛片水多多多| 丝袜美腿诱惑在线| 亚洲精品aⅴ在线观看| 90打野战视频偷拍视频| 久久女婷五月综合色啪小说| 狠狠婷婷综合久久久久久88av| 免费女性裸体啪啪无遮挡网站| 亚洲av中文av极速乱| 日本av免费视频播放| 男人操女人黄网站| av在线观看视频网站免费| 哪个播放器可以免费观看大片| 日韩制服骚丝袜av| 18禁裸乳无遮挡动漫免费视频| av网站在线播放免费| 久久久精品94久久精品| 啦啦啦中文免费视频观看日本| 午夜老司机福利剧场| 亚洲精品第二区| 超碰97精品在线观看| 久久精品国产鲁丝片午夜精品| 秋霞伦理黄片| 久久精品国产亚洲av涩爱| 免费高清在线观看日韩| 狠狠婷婷综合久久久久久88av| 国产精品国产三级专区第一集| av免费在线看不卡| 激情五月婷婷亚洲| 精品少妇内射三级| 亚洲精品日韩在线中文字幕| 美女大奶头黄色视频| 一级,二级,三级黄色视频| 99香蕉大伊视频| 18禁裸乳无遮挡动漫免费视频| 男女国产视频网站| 久久青草综合色| 午夜福利影视在线免费观看| 一二三四在线观看免费中文在| 建设人人有责人人尽责人人享有的| 999精品在线视频| 天天躁狠狠躁夜夜躁狠狠躁| av视频免费观看在线观看| 女性生殖器流出的白浆| 在线天堂最新版资源| 男的添女的下面高潮视频| 免费人妻精品一区二区三区视频| 国产国语露脸激情在线看| 亚洲成国产人片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕av电影在线播放| 卡戴珊不雅视频在线播放| 欧美国产精品va在线观看不卡| 免费看av在线观看网站| 国产野战对白在线观看| 人妻 亚洲 视频| 亚洲中文av在线| 老鸭窝网址在线观看| 日本wwww免费看| 久久久国产一区二区| 日本爱情动作片www.在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩精品网址| 国产午夜精品一二区理论片| 老司机影院毛片| 熟女电影av网| 国产精品.久久久| a级毛片在线看网站| 欧美日韩一级在线毛片| 日韩三级伦理在线观看| 天堂8中文在线网| av不卡在线播放| 热re99久久精品国产66热6| 久久久久久人人人人人| 国产精品久久久av美女十八| 伦精品一区二区三区| 在线看a的网站| 91国产中文字幕| 桃花免费在线播放| 在线观看三级黄色| 亚洲国产精品一区三区| 99九九在线精品视频| 女性被躁到高潮视频| 少妇 在线观看| 九九爱精品视频在线观看| 巨乳人妻的诱惑在线观看| 黄片小视频在线播放| 欧美日韩综合久久久久久| 午夜福利网站1000一区二区三区| 亚洲精品,欧美精品| 日本vs欧美在线观看视频| 熟女少妇亚洲综合色aaa.| 最近中文字幕高清免费大全6| 99久久精品国产国产毛片| 亚洲欧美一区二区三区国产| 久久久久久久大尺度免费视频| 男女无遮挡免费网站观看| 国产欧美亚洲国产| 欧美激情高清一区二区三区 | 亚洲欧美一区二区三区黑人 | 亚洲精品成人av观看孕妇| 亚洲精品国产av蜜桃| 久久精品aⅴ一区二区三区四区 | 免费人妻精品一区二区三区视频| 99热国产这里只有精品6| 又粗又硬又长又爽又黄的视频| 国精品久久久久久国模美| 欧美精品亚洲一区二区| 纯流量卡能插随身wifi吗| 成年动漫av网址| 人人妻人人澡人人爽人人夜夜| 日韩av不卡免费在线播放| 久久久久精品久久久久真实原创| 国产精品三级大全| 国精品久久久久久国模美| 国产黄色视频一区二区在线观看| 精品99又大又爽又粗少妇毛片| av视频免费观看在线观看| 99re6热这里在线精品视频| 欧美精品一区二区大全| 国产成人免费观看mmmm| av一本久久久久| 人妻人人澡人人爽人人| 天堂俺去俺来也www色官网| 黑人巨大精品欧美一区二区蜜桃| 这个男人来自地球电影免费观看 | 久久99一区二区三区| 欧美精品一区二区免费开放| 国产男人的电影天堂91| 青青草视频在线视频观看| 亚洲综合精品二区| 欧美亚洲日本最大视频资源| 日韩电影二区| 国产精品一区二区在线观看99| 欧美xxⅹ黑人| 亚洲色图 男人天堂 中文字幕| 99热网站在线观看| xxxhd国产人妻xxx| 男人爽女人下面视频在线观看| 女的被弄到高潮叫床怎么办| 赤兔流量卡办理| 亚洲第一区二区三区不卡| 免费观看a级毛片全部| 少妇的丰满在线观看| 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 十八禁高潮呻吟视频| 亚洲,欧美精品.| 欧美最新免费一区二区三区| 免费高清在线观看视频在线观看| 久久久久久伊人网av| 国产视频首页在线观看| 亚洲精品国产av成人精品| 久久久久久久大尺度免费视频| 国产av一区二区精品久久| www.av在线官网国产| 最近中文字幕2019免费版| 亚洲久久久国产精品| 亚洲欧美精品自产自拍| 人人妻人人澡人人爽人人夜夜| 国产精品偷伦视频观看了| 久久久国产一区二区| 国产老妇伦熟女老妇高清| 天堂俺去俺来也www色官网| 免费黄频网站在线观看国产| 高清视频免费观看一区二区| 高清黄色对白视频在线免费看| 日韩不卡一区二区三区视频在线| 欧美另类一区| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 免费高清在线观看日韩| 亚洲av成人精品一二三区| 啦啦啦中文免费视频观看日本| 啦啦啦啦在线视频资源| 久久久精品免费免费高清| 天天操日日干夜夜撸| av片东京热男人的天堂| 青春草亚洲视频在线观看| 午夜激情av网站| 在线观看免费视频网站a站| 免费观看av网站的网址| 精品国产乱码久久久久久小说| 成人影院久久| 777米奇影视久久| 美女xxoo啪啪120秒动态图| 男人爽女人下面视频在线观看| 少妇精品久久久久久久| 午夜福利在线免费观看网站| 91国产中文字幕| 男女国产视频网站| 女性被躁到高潮视频| 精品人妻一区二区三区麻豆| 久久久国产精品麻豆| 日本色播在线视频| 午夜激情久久久久久久| 午夜日韩欧美国产| 中文字幕制服av| 亚洲欧美成人精品一区二区| 欧美精品一区二区大全| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 自线自在国产av| 欧美人与善性xxx| 久久久久久久久久久久大奶| 日韩三级伦理在线观看| 好男人视频免费观看在线| 女人被躁到高潮嗷嗷叫费观| 尾随美女入室| 午夜日本视频在线| 成年女人毛片免费观看观看9 | 久久热在线av| 黄色视频在线播放观看不卡| tube8黄色片| 肉色欧美久久久久久久蜜桃| 少妇人妻久久综合中文| 啦啦啦在线免费观看视频4| 建设人人有责人人尽责人人享有的| 1024香蕉在线观看| 免费人妻精品一区二区三区视频| 激情五月婷婷亚洲| 国产片特级美女逼逼视频| 亚洲国产毛片av蜜桃av| 丝袜美腿诱惑在线| 菩萨蛮人人尽说江南好唐韦庄| xxxhd国产人妻xxx| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 午夜av观看不卡| av在线播放精品| 国产乱人偷精品视频| 大香蕉久久网| 国产麻豆69| 国产精品嫩草影院av在线观看| 亚洲国产看品久久| 午夜日本视频在线| 成人漫画全彩无遮挡| 欧美成人精品欧美一级黄| 国产探花极品一区二区| 国产国语露脸激情在线看| 一级毛片我不卡| 美女午夜性视频免费| 日韩一本色道免费dvd| 成人漫画全彩无遮挡| 亚洲国产看品久久| 不卡视频在线观看欧美| 搡女人真爽免费视频火全软件| 热99国产精品久久久久久7| 精品一区二区三卡| 日韩一本色道免费dvd| 久久综合国产亚洲精品| 黄色 视频免费看| 美女高潮到喷水免费观看| 菩萨蛮人人尽说江南好唐韦庄| 又黄又粗又硬又大视频| 天天影视国产精品| 一级片免费观看大全| 成人漫画全彩无遮挡| 久久久久久久国产电影| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 国产 精品1| 亚洲,欧美,日韩| 人人妻人人澡人人看| 精品久久久精品久久久| 两个人免费观看高清视频| 亚洲天堂av无毛| 亚洲国产欧美网| 精品视频人人做人人爽| 久久精品久久久久久噜噜老黄| 不卡av一区二区三区| av视频免费观看在线观看| 欧美bdsm另类| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 水蜜桃什么品种好| 亚洲精品aⅴ在线观看| 欧美日韩国产mv在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最近的中文字幕免费完整| 国产av码专区亚洲av| 久久97久久精品| 欧美激情 高清一区二区三区| 国产亚洲欧美精品永久| 午夜福利视频在线观看免费| 日日撸夜夜添| 久久精品国产亚洲av天美| 免费人妻精品一区二区三区视频| 丝袜脚勾引网站| 丝袜美腿诱惑在线| 一级毛片我不卡| 国产一区二区激情短视频 | 国产av精品麻豆| 日日爽夜夜爽网站| 成年人免费黄色播放视频| 国产高清国产精品国产三级| 精品人妻在线不人妻| 可以免费在线观看a视频的电影网站 | 亚洲国产看品久久| 亚洲av福利一区| 国产在线一区二区三区精| av免费观看日本| 国产精品一二三区在线看| 美女大奶头黄色视频| 日本欧美国产在线视频| 精品国产乱码久久久久久男人| 91精品伊人久久大香线蕉| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久免费视频了| 中文字幕人妻丝袜一区二区 | 韩国av在线不卡| 欧美精品人与动牲交sv欧美| a 毛片基地| 欧美xxⅹ黑人| 老司机影院成人| 欧美最新免费一区二区三区| 9191精品国产免费久久| 成人亚洲欧美一区二区av| 黄色毛片三级朝国网站| 久久久久国产网址| 在线观看美女被高潮喷水网站| 一级爰片在线观看| 成年女人毛片免费观看观看9 | 国产精品久久久久成人av| 亚洲av电影在线进入| 日日摸夜夜添夜夜爱| 不卡视频在线观看欧美| 久久97久久精品| 精品少妇黑人巨大在线播放| 亚洲 欧美一区二区三区| 尾随美女入室| 黄色怎么调成土黄色| 国产毛片在线视频| 午夜免费鲁丝| 91精品三级在线观看| 美女xxoo啪啪120秒动态图| 国产成人午夜福利电影在线观看| 久久久久人妻精品一区果冻| 欧美黄色片欧美黄色片| 在线观看国产h片| av视频免费观看在线观看| 有码 亚洲区| 国产淫语在线视频| 欧美国产精品一级二级三级| 亚洲精品一二三| 亚洲欧洲日产国产| 少妇被粗大的猛进出69影院| 国产精品一区二区在线不卡| 亚洲精品一二三| 国产人伦9x9x在线观看 | 在线观看免费高清a一片| 黄色配什么色好看| 啦啦啦视频在线资源免费观看| 中文字幕人妻丝袜一区二区 | 女人被躁到高潮嗷嗷叫费观| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 免费播放大片免费观看视频在线观看| 久久久久久人妻| 日本av免费视频播放| 超碰97精品在线观看| 亚洲美女黄色视频免费看| 久久精品久久久久久久性| 久久精品亚洲av国产电影网| 另类精品久久| 99香蕉大伊视频| 中文字幕制服av| 欧美bdsm另类| 高清在线视频一区二区三区| 中文字幕色久视频| 精品一品国产午夜福利视频| 久久ye,这里只有精品| 两个人免费观看高清视频| 黑人猛操日本美女一级片| 秋霞伦理黄片| 亚洲av电影在线观看一区二区三区| 日韩在线高清观看一区二区三区| 午夜免费鲁丝| videosex国产| av电影中文网址| 99精国产麻豆久久婷婷| 国产精品熟女久久久久浪| 满18在线观看网站| 侵犯人妻中文字幕一二三四区| 1024视频免费在线观看| 国产乱来视频区| 大香蕉久久成人网| 18禁动态无遮挡网站| 欧美日韩一级在线毛片| 97在线人人人人妻| 亚洲综合色网址| 精品一品国产午夜福利视频| 国产精品一区二区在线不卡| 老汉色av国产亚洲站长工具| 亚洲国产欧美网| 丝袜美腿诱惑在线| 亚洲国产精品成人久久小说| 国产极品天堂在线| 三级国产精品片| 国产精品成人在线| 亚洲精品国产av蜜桃| 精品国产一区二区久久| 一个人免费看片子| 多毛熟女@视频| 国产精品不卡视频一区二区| 免费观看性生交大片5| 国产成人精品福利久久| 一区二区三区乱码不卡18| 中文字幕人妻丝袜制服| 曰老女人黄片| 国产极品天堂在线| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 国产免费又黄又爽又色| 免费av中文字幕在线| 日韩在线高清观看一区二区三区| 一区二区三区四区激情视频| 人体艺术视频欧美日本| 黄色配什么色好看| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 在线免费观看不下载黄p国产| 成人手机av| 国产欧美日韩一区二区三区在线| 成人国产av品久久久| 国产在线免费精品| 久久午夜福利片| 亚洲第一区二区三区不卡| 下体分泌物呈黄色| 两性夫妻黄色片| 在线亚洲精品国产二区图片欧美| 99久久中文字幕三级久久日本| 精品国产一区二区三区四区第35| 成人18禁高潮啪啪吃奶动态图| 国产在线视频一区二区| 性色avwww在线观看| 亚洲欧美精品自产自拍| 国产日韩欧美视频二区| 最新中文字幕久久久久| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 黄色一级大片看看| av电影中文网址| av网站免费在线观看视频| 男人添女人高潮全过程视频| 男女国产视频网站| 免费大片黄手机在线观看| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 一区在线观看完整版| 日日啪夜夜爽| 国产精品三级大全| 国产在线视频一区二区| 婷婷色综合www| 国产精品 国内视频| 性色av一级| 国产欧美日韩综合在线一区二区| 国产成人精品一,二区| 丰满乱子伦码专区| 国产成人精品福利久久| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 亚洲国产精品国产精品| 午夜久久久在线观看| 久久亚洲国产成人精品v| 免费观看无遮挡的男女| 最近最新中文字幕大全免费视频 | 国产精品久久久久久精品电影小说| 久久99精品国语久久久| 国产在线一区二区三区精| av网站在线播放免费| 亚洲,欧美精品.| av卡一久久| 国产成人精品无人区| 国产亚洲一区二区精品| 亚洲美女视频黄频| 欧美97在线视频| 精品第一国产精品| 成人亚洲欧美一区二区av| 人妻少妇偷人精品九色| 日韩中字成人| 欧美在线黄色| 日韩成人av中文字幕在线观看| 国产av精品麻豆| 国产精品免费视频内射| 免费在线观看黄色视频的| 国产日韩欧美在线精品| 天堂8中文在线网| 精品国产一区二区三区久久久樱花| 国产片特级美女逼逼视频| 国产精品无大码| 亚洲av在线观看美女高潮| 欧美日韩亚洲国产一区二区在线观看 | 99久久综合免费| 亚洲精品aⅴ在线观看| 亚洲av综合色区一区| 亚洲综合色惰| kizo精华| 咕卡用的链子| 国产极品天堂在线| 亚洲少妇的诱惑av| 国产人伦9x9x在线观看 | 国产精品99久久99久久久不卡 | 91精品国产国语对白视频| 亚洲av日韩在线播放| 超碰97精品在线观看| 亚洲一级一片aⅴ在线观看| 亚洲精华国产精华液的使用体验| 王馨瑶露胸无遮挡在线观看| 老鸭窝网址在线观看| 女人被躁到高潮嗷嗷叫费观| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| av不卡在线播放| 91aial.com中文字幕在线观看| 日本91视频免费播放| 亚洲国产精品一区三区| 在线天堂最新版资源| 一区二区三区激情视频| 成人国语在线视频| 久久av网站| 国产在视频线精品| 青草久久国产| 亚洲国产毛片av蜜桃av| 日韩成人av中文字幕在线观看| av.在线天堂| 亚洲精品在线美女| 日韩中文字幕视频在线看片| 亚洲男人天堂网一区| 婷婷色综合www| 两性夫妻黄色片| 亚洲欧美色中文字幕在线| 天堂8中文在线网| 亚洲第一区二区三区不卡| 成人二区视频| 大片电影免费在线观看免费| 国产一区二区激情短视频 | 免费在线观看黄色视频的| 美女中出高潮动态图| 日日爽夜夜爽网站| 精品人妻偷拍中文字幕| 99久久人妻综合| 国产片内射在线| 国产男女超爽视频在线观看| 亚洲三区欧美一区| 日韩三级伦理在线观看| 捣出白浆h1v1| 黄色视频在线播放观看不卡| 亚洲国产av新网站| 亚洲第一青青草原| 国产精品久久久久成人av| 亚洲熟女精品中文字幕| 男女无遮挡免费网站观看| 一二三四中文在线观看免费高清| 欧美精品人与动牲交sv欧美| 老熟女久久久| 在线观看国产h片| 欧美日韩一区二区视频在线观看视频在线| 婷婷色av中文字幕| 2018国产大陆天天弄谢| 90打野战视频偷拍视频| 国产乱来视频区| 久久久久视频综合| 在线天堂中文资源库| a级毛片黄视频| 免费在线观看黄色视频的| 赤兔流量卡办理| 精品久久久精品久久久| 国产精品一国产av| 久久婷婷青草| videossex国产| 亚洲美女黄色视频免费看| 日韩视频在线欧美| 午夜福利视频精品| 亚洲人成电影观看| 欧美av亚洲av综合av国产av | 亚洲美女搞黄在线观看| 青春草亚洲视频在线观看| 成年美女黄网站色视频大全免费| 亚洲国产成人一精品久久久| 男女高潮啪啪啪动态图| 你懂的网址亚洲精品在线观看| 亚洲国产欧美日韩在线播放| 97在线视频观看| 在线天堂最新版资源| 欧美 日韩 精品 国产| www.熟女人妻精品国产| 一级毛片黄色毛片免费观看视频| 成人二区视频| 国产精品 欧美亚洲| 夫妻性生交免费视频一级片| 亚洲精品在线美女| 国产激情久久老熟女| 99国产综合亚洲精品| 亚洲国产欧美日韩在线播放| 欧美另类一区| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产av蜜桃| 久久久久人妻精品一区果冻| 在线看a的网站| 国产在线一区二区三区精| 我的亚洲天堂| a级毛片在线看网站| 丝袜喷水一区| av国产精品久久久久影院| 视频在线观看一区二区三区| 老女人水多毛片| 久久国产亚洲av麻豆专区| av在线观看视频网站免费| 日韩电影二区|