• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Artificial Electron Heating Effects on Polar Mesospheric Winter Echoes

    2020-10-19 02:21:40

    Abstract—In this paper,an analytical model is used to analyze the modulated polar mesospheric winter echoes(PMWE).The winter parameters were introduced to simulate the effects of different parameters during the artificial electron heating of PMWE.The important role of the charged dust particle in the creation of PMWE is confirmed again.It is found that during the heating of PMWE,the increases of the dust size,dust charge,electron temperature,initial electron density,and ion-neutral collision frequency cause the increase of the electron density irregularity,and hence the PMWE strength.However,with increasing the dust density,the electron density irregularity and the PMWE strength decrease.

    1.Introduction

    The phenomenon of radar echoes observed in the mesopause region during the summer in the polar latitude range (80 km to 90 km) is called polar mesospheric summer echoes (PMSE)[1].Noctilucent clouds (NLC) occur at the lower edge of PMSE,with a comparatively greater dust size.Recently,a new method of mesospheric dust analysis is presented[2].Atmospheric and solar parameters affected the properties of NLC differently[3].Latteck and Bremer showed the positive correlation of PMSE with the solar radiation and geomagnetic disturbance[4].The theoretical explanations of the PMSE origin,dust particle size,charge number,and irregular structure of the dusty plasma and its corresponding dynamics are not yet fully understood.A corresponding phenomenon of PMSE formed due to nanometer size particles of meteoric origin has also been observed in winter in the polar latitude range (55 km to 80 km) and is called polar mesospheric winter echoes (PMWE)[5].PMWE is rarer and much weaker than PMSE.No greater attention has been paid to it,therefore the main features and physical mechanism of it are not clear[6].The nature of PMWE is recently investigated with medium-frequency (MF) and Program of the Antarctic Syowa mesosphere-stratosphere-troposphere/incoherent scatter (PANSY) radars,operating at well separated frequencies of 2.4 MHz and 47 MHz,respectively[7].The spectra of the received signal were analyzed by using the tri-static observation of PMWE with the European Incoherent Scatter (EISCAT) very high frequency(VHF) radar[8].Using numerical simulation in the source region of PMWE/PMSE,the fluctuation in the plasma,dust density,and electric field has been studied[9].During high frequency (HF) heating,PMWE intensity shows a small recovery and an increase of about 15% after the heating has been switched off[10].Using the VHF radar,the electron temperature was estimated around 5 times greater than the neutral or ion temperature during the heating-on period[11].These effects are the results of electrons charging onto dust due to HF heating.Because of the electrons attachment,the dust particles are charged negatively[11].These observations show that the active modulation of PMWE due to the enhanced electron temperature depends upon mesospheric smoke particles around PMWE altitudes.The first active modulation experiment of PMWE was performed using the VHF (224 MHz) radar with a 10-s heating cycle,and observed 93% suppression of the signal strength[12].The same experiment as shown in [12]was performed for a relatively large heating cycle (20 s on and 160 s off) and presented 50% suppression of turnon and turn-off PMWE overshoot[13].

    Havnes and Kassa modeled the effects of PMWE heating experiments[14].By neglecting the finite diffusion time-scale and considering the Boltzmann approximation,this model was not perfect and was limited to low dust densities,small dust sizes,and small wavelengths.On the other hand,to simulate the temporal evolution of modulated PMSE,the models in [15]and [16]work well for all the Braggs wavelengths[15],[16].The numerical simulation model of artificial electron heating effects on PMWE as well as on PMSE[14],[15]is an effective diagnostic tool.Based on the PMSE analytical model with the parameters in the polar winter mesosphere,we can find one new analytical way to analyze the effect of powerful HF radio waves on PMWE.

    In this article,the temporal variation of PMWE during the heating-on period is analyzed using the analytical model.In order to understand the physics behind the creation of PMWE,the variations in dusty plasma parameters during heating are analyzed and discussed.

    2.Experimental Observations

    The observations shown in Fig.1 were carried out on October 24,2006 by the EISCAT VHF radars.In this experiment,the VHF radar was run with the arc_dlayer_ht mode.The range of the VHF radar is from 60 km to 140 km.The height and time resolution is 300 m and 2 s,respectively.Incoherent scatter measurements with the EISCAT radars are normally analyzed in terms of electron number densities or“apparent” electron number densities.However,in our case,the EISCAT tool “The Grand Unified Incoherent Scatter Design and Analysis Program”(GUISDAP) is used for the analysis of raw data.The term “apparent electron density” is used to clarify the fact that the signal does not result from the real electron density but due to the coherent scatter of PMWE which adds to the incoherent scatter.Such derived apparent electron number densities are then converted into volume reflectivities.

    Fig.1.Epoch average of PMWE measured by the EISCAT VHF radar.Color bar indicates volume reflectivity in m–1.Vertical lines indicate the heating-on period.

    In Fig.1,the radar echoes at PMWE altitudes are represented by the volume reflectivity (“backscatter cross section per unit volume”) which is obtained by using the relation:

    HereηandNeare the volume reflectivity and apparent electron density,respectively.Whereasσis the half cross section of an electron (σ=4.99×10?29m2).In Fig.1 the epoch analysis is performed for four heating cycles corresponding to time from 11:32:42 UT to 11:44:42 UT,because these cycles correspond to obvious PMWE.Fig.1 clearly shows that during the heating-on period the PMWE intensity decreases significantly.

    Fig.2.Temporal evolution of PMWE for the same four heating cycles shown in Fig.1 heating on between the vertical dashed-dotted lines.

    In Fig.2,the PMWE response to HF heating for the same four cycles of Fig.1 is shown.It is clear that the PMWE intensity decreases just after the heating switchon at 20 s.During the heating-on period,the PMWE intensity shows great variation in strength.Just after the heating switch-off at 40 s,the PMWE intensity quickly increases but its strength is much smaller than the PMSE overshoot[17].

    3.Analytical PMWE Model

    Launching radio waves from the ground to heat the PMSE/PMWE source region increases the temperature of dusty plasma.At the beginning of heating experiments,its switch-off was found when the heating starts,the PMSE signal strength is weakened significantly.After the heating switch-off,the temperature gradient of electrons in the dusty plasma increases,consequently leading to stronger radar echoes.It is quickly realized that radio wave heating can be used to diagnose the dusty plasma parameters in the PMSE/PMWE region.Recently,it is shown that in the ionosphere,the direction of electromagnetic wave propagation can be measured from the ground based transmitter[18].

    In addition,experiments also show that the radio wave energy changes the distribution of electron density of the target area,thereby artificially achieving an overall change in the ionospheric properties.The electron density irregularity is destroyed by diffusion due to radio wave heating.In previous numerical simulation work,it has been observed that if the irregularity is in about meter scale or less,then due to ambipolar diffusion there is an ion density enhancement in the region of the reduced electron density[16].

    In order to add the winter parameters in the PMSE heating model of Scales and Chen[16],we analyze the ambipolar diffusion effect during the heating of PMWE and the charging of dust particles by electrons.Before the HF heating switch-on,the mesospheric electrons are in equilibrium with the densityne0.However,when the heating switches on,the electromagnetic radio waves change the electron density,which is given as

    where,on the left side,tdenotes the time andxdenotes the one dimensionx-axis,neis the electron density,andDais the ambipolar diffusion coefficient.The term on the right side of (2) indicates the electron density reduction due to charging,wherekis the rate coefficient of electrons absorbed onto dust andndis the dust density.AndDais given as

    whereKis the Boltzman constant;TeandTiare the electron and ion temperatures,respectively.Heremiis the ion mass,Zd0is the number of charges on the dust particle in equilibrium,υinis the ion-neutral collision frequency,andne0andnd0are the electron and dust densities in equilibrium,respectively.The rate coefficient of electrons absorbed onto dust is given as

    whereIeis the electron current,eis the charge on electron,rdis the dust radius,υte0is the electron thermal speed before heating,andrhis the ratio of the electron temperature during heating to that before heating.The change in the electron density irregularity in a relatively fixed space near dust particles is given as

    whereδne(t) is the change in the electron density due to heating,tis time,δne0is the change in the electron density at equilibrium,δnd0is the change in the dust density at equilibrium,andτdis the diffusion time.The remaining parameters are already defined in the text.In this study,the PMWE parameters for simulation were selected asTe=Ti=150 K,mi=50 amu,rh=4,nd0=1×109m?3,ne0=1×1010m?3,δne0=4.9×107m?3,δnd0=2×108m?3,andrd=10 nm.

    4.Dusty Plasma Parameters

    The detail of physical processes of dusty plasma creation and evolution in the near earth-space environment was given in [19].Numerical results show that in weakly ionized dusty plasma,the electrical conductivity changes significantly due to the dust charge,radius,and density.Consequently,it causes changes in ionospheric properties[20].In this section,we present the temporal evolution of dusty plasma parameters and only consider the heating-on period.Here in all cases,the heater is switched on for 975 s.

    4.1.Dust Particle Radius

    When the dust density is relatively low,the dust radius has a great effect on the charging time.Fig.3 presents the temporal evolution of PMWE during the radio wave heating for different dust sizes.From Fig.3,it is clear that just after the heating switch-on the electron density irregularity amplitude shows an increase for the increasing dust radius.The amplitude of the irregularity increases linearly with the increase of the dust radius.It is worthy to mention that the speed of electron irregularity decay is approximately positively related to the dust radius,i.e.the largest radius (5 nm)shows the fastest decay.

    Fig.3.Effect of dust radius on electron density irregularity.Time starts from 0 s whereas the heating starts at 25 s.

    4.2.Charge on Dust Particle

    Dust particles are charged by electrons and ions.As the thermal velocity of the electron is much faster than the ions,consequently dust particles are usually negatively charged.Because of large mass and the small thermal velocity,the charging time of the ion onto dust is much larger than the electron charging time.It is shown that the ion charging time onto the uncharged dust grain is about 100 s[21].This indicates that ion charging is of much less importance during the switch-on of the radio wave heating.So in practice,positively charged dust particles are negligible.The dust charge directly affects the ambipolar diffusion coefficient.Most dust particles absorb only 1 electron,and the number of negative charges on dust can be increased by electron absorption or turbulence.Fig.4 presents the effect of dust charging on the electron density irregularity.For simulation,the assumed dust charges areZd0=1,2,3,and 4,which is the number of charges residing on the dust grain surface.It is clear that a greater number of electrons absorbed on the dust result in a greater electron irregularities amplitude.The difference in peak values of different dust charges is not large and the dust charging effect shows a good linear relationship with the electron density irregularity amplitude.

    Fig.4.Effect of dust charging on electron density irregularity.Time starts from 0 s whereas heating starts at 25 s.

    4.3.Electronic Temperature

    The electron temperature is an important dusty plasma parameter.Lübkenet al.[22]showed at the VHF radar the observations of “mesopause jump” which means the decrease in the temperature is associated with the increase of the mesopause altitude.After the heating is turned on,the electron temperature in the target area significantly increased.This increase in the electron temperature is expected to increase the dust charging and as a result,the electron and dust densities irregularities are changed.

    Before heating,the electron temperature is taken to be equal to the ion temperatureTe=Ti=150 K.For the simulation shown in Fig.5,rhis the ratio of the electron temperature during heating to that before heating,which is set asrh=2,4,6,and 8.Atrh=2,the amplitude of the electron irregularity is not very large.But asrhincreases,the amplitude of the electron density irregularity also increases significantly.However fromrh=6 to 8,the increase of the amplitude is comparatively small.

    Fig.5.Effect of electron temperature on electron density irregularity.Time starts from 0 s whereas heating starts at 25 s.

    4.4.Initial Electron Density

    In ionosphere,the background electron density varies,when PMWE occurs.It also increases due to the ionization produced by the particle precipitation.This increase in the electron density changes the PMWE response to HF heating.Fig.6 shows the variation in the electron density irregularity with varying the initial electron density during heating.The simulation result shows that the electron irregularity is positively correlated with the initial electron density,i.e.,for increasingne0,the irregularity amplitude also increases.

    4.5.Collision Frequency

    PMWE occurs at the bottom of the ionospheric D-region,where the gravity is dominated by neutral gas with the considerable background electron density.The collision frequency of the ion and neutral gas exists within a certain range.Fig.7 shows the simulation result for different collision frequencies.After the heating is turned on,the electron irregularity amplitude increases non-linearly with the increasing ion-neutral collision frequency.

    Fig.6.Effect of initial electron density on electron density irregularity.Time starts from 0 s whereas heating starts at 25 s

    Fig.7.Effect of ion-neutral collision frequency (vin) on electron density irregularity.Ion-neutral collision frequency is in Hz.Time starts from 0 s whereas heating starts at 25 s.

    4.6.Dust Particle Density

    The dust density also significantly affects the temporal evolution of electron density irregularities of PMWE during heating.Both the diffusion and charging time scales are not significantly affected by increasing the dust density as long as the ratioZdnd/neis smaller than one.Similarly,for the dust density variation(0.1<δnd0/nd0<0.5),the electron density irregularity is not affected significantly[21].

    However,for the high dust density (50% of the background plasma density),the amplitude of the electron density irregularity is greatly suppressed.Fig.8 shows the effect of the dust density on the electron density irregularity and hence on radar echoes.It is obvious that with increasing the dust density,the electron density irregularity decreases non-linearly.The irregularity amplitude decreases largely when the dust density increases from 1×109m?3to 2×109m?3.

    Fig.8.Effect of dust particle density on electron density irregularity.Dust density is in m?3.Time starts from 0 s whereas heating starts at 25 s.

    5.Conclusions

    Using the analytical model,the effect of different dusty plasma parameters on PMWE during the heating switch-on period has been analyzed.In the creation of PMWE,the important role of the charged dust particle is confirmed again.It is found that the heating of PMWE by increasing most of the dusty plasma parameters,including the dust radius and dust charges,initial electron density,ion-neutral collision frequency,and the electron temperature,can increase the electron density irregularity amplitude and hence the PMWE strength.On the other hand,increasing the dust density can cause the decrease in the electron density irregularity amplitude and hence the PMWE strength.

    Acknowledgment

    The authors thank the EISCAT Scientific Association,which is supported by the research councils of China,Finland,France,Germany,Japan,Norway,Sweden,and the UK.

    午夜福利在线免费观看网站| 亚洲熟女精品中文字幕| 视频在线观看一区二区三区| 亚洲人成电影观看| 一区二区三区精品91| 精品熟女少妇八av免费久了| 久9热在线精品视频| 波多野结衣一区麻豆| 一区二区av电影网| 亚洲欧美成人综合另类久久久| 久久精品久久久久久噜噜老黄| av片东京热男人的天堂| 国产男人的电影天堂91| 久久久精品94久久精品| 亚洲国产精品一区三区| 我的亚洲天堂| 大片免费播放器 马上看| 婷婷色综合www| 9热在线视频观看99| 国产亚洲一区二区精品| 在线亚洲精品国产二区图片欧美| 涩涩av久久男人的天堂| 一区二区日韩欧美中文字幕| 午夜福利,免费看| 五月开心婷婷网| 久久人妻熟女aⅴ| 亚洲精品久久久久久婷婷小说| 久9热在线精品视频| 久久久久久亚洲精品国产蜜桃av| 午夜av观看不卡| 精品福利永久在线观看| 国产在线视频一区二区| 久久久国产精品麻豆| 亚洲国产精品一区二区三区在线| 亚洲一区二区三区欧美精品| 久9热在线精品视频| 国产精品亚洲av一区麻豆| 欧美另类一区| 高清不卡的av网站| 老司机深夜福利视频在线观看 | 麻豆乱淫一区二区| 欧美+亚洲+日韩+国产| 国产xxxxx性猛交| 国产一区有黄有色的免费视频| 一区福利在线观看| 亚洲国产日韩一区二区| 国产亚洲精品久久久久5区| 一区二区三区精品91| 免费不卡黄色视频| 国产视频首页在线观看| 国产成人a∨麻豆精品| 老司机在亚洲福利影院| 韩国高清视频一区二区三区| 狠狠精品人妻久久久久久综合| 国产亚洲精品第一综合不卡| 赤兔流量卡办理| av有码第一页| 免费观看人在逋| 日韩一本色道免费dvd| 免费在线观看黄色视频的| 国产男人的电影天堂91| 国产精品一区二区免费欧美 | 国产在视频线精品| 9热在线视频观看99| 亚洲欧美一区二区三区国产| 中文字幕制服av| 男女无遮挡免费网站观看| 亚洲久久久国产精品| 一级毛片黄色毛片免费观看视频| 最新的欧美精品一区二区| 国产国语露脸激情在线看| 午夜免费男女啪啪视频观看| 90打野战视频偷拍视频| 纵有疾风起免费观看全集完整版| 午夜av观看不卡| 国产男人的电影天堂91| 久久精品久久精品一区二区三区| 一本大道久久a久久精品| 亚洲熟女毛片儿| av在线app专区| 久久av网站| 一级毛片黄色毛片免费观看视频| 又大又爽又粗| 少妇人妻久久综合中文| 黑人猛操日本美女一级片| 真人做人爱边吃奶动态| 中文乱码字字幕精品一区二区三区| 久久久精品区二区三区| 国产野战对白在线观看| 欧美激情 高清一区二区三区| 成人亚洲欧美一区二区av| 亚洲激情五月婷婷啪啪| 麻豆国产av国片精品| 久久久久视频综合| 欧美日韩视频高清一区二区三区二| 女人爽到高潮嗷嗷叫在线视频| 黄网站色视频无遮挡免费观看| videos熟女内射| 久久av网站| 男女之事视频高清在线观看 | 国产成人av激情在线播放| 日韩免费高清中文字幕av| 丰满饥渴人妻一区二区三| 亚洲精品一区蜜桃| 久久精品熟女亚洲av麻豆精品| 国产精品二区激情视频| 亚洲七黄色美女视频| 亚洲美女黄色视频免费看| 亚洲伊人久久精品综合| 男女国产视频网站| 国产免费一区二区三区四区乱码| 99国产精品一区二区三区| 丰满饥渴人妻一区二区三| 日本91视频免费播放| a级片在线免费高清观看视频| 亚洲中文av在线| 久久人妻熟女aⅴ| 大香蕉久久成人网| 操美女的视频在线观看| 夫妻午夜视频| 高清不卡的av网站| 婷婷色综合www| 性色av一级| 国产野战对白在线观看| 久久亚洲精品不卡| 日韩,欧美,国产一区二区三区| 免费观看av网站的网址| 免费高清在线观看视频在线观看| 又大又黄又爽视频免费| 日本猛色少妇xxxxx猛交久久| 欧美久久黑人一区二区| 9191精品国产免费久久| 欧美精品亚洲一区二区| 狠狠精品人妻久久久久久综合| 精品视频人人做人人爽| 一二三四社区在线视频社区8| 90打野战视频偷拍视频| 久久天躁狠狠躁夜夜2o2o | 亚洲午夜精品一区,二区,三区| 丰满饥渴人妻一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲国产成人精品v| 国产精品一区二区在线观看99| 国产女主播在线喷水免费视频网站| 成年人黄色毛片网站| 在线av久久热| 中国国产av一级| 欧美乱码精品一区二区三区| 一区二区三区激情视频| 无遮挡黄片免费观看| 人妻一区二区av| 国产成人精品在线电影| 久久天躁狠狠躁夜夜2o2o | 午夜91福利影院| 9热在线视频观看99| 日韩制服丝袜自拍偷拍| 亚洲视频免费观看视频| 亚洲欧美精品自产自拍| 久久久精品国产亚洲av高清涩受| 黄色a级毛片大全视频| 一边摸一边抽搐一进一出视频| 亚洲精品国产av蜜桃| 80岁老熟妇乱子伦牲交| 黄频高清免费视频| bbb黄色大片| 欧美日韩视频高清一区二区三区二| 亚洲午夜精品一区,二区,三区| 亚洲精品一区蜜桃| 国产免费现黄频在线看| 精品国产乱码久久久久久小说| 午夜免费鲁丝| 亚洲精品国产区一区二| 赤兔流量卡办理| 美女大奶头黄色视频| 国产一区亚洲一区在线观看| 久久精品国产综合久久久| 999久久久国产精品视频| 免费在线观看完整版高清| 电影成人av| 亚洲伊人色综图| 亚洲中文av在线| 亚洲美女黄色视频免费看| 久久影院123| 九色亚洲精品在线播放| 另类精品久久| 蜜桃在线观看..| 亚洲精品日韩在线中文字幕| 黄色视频在线播放观看不卡| 欧美成人午夜精品| 美女午夜性视频免费| 免费女性裸体啪啪无遮挡网站| 日本午夜av视频| 天堂8中文在线网| 建设人人有责人人尽责人人享有的| 午夜福利一区二区在线看| 亚洲一码二码三码区别大吗| 一本—道久久a久久精品蜜桃钙片| 王馨瑶露胸无遮挡在线观看| 另类精品久久| 午夜福利,免费看| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品一级二级三级| 成年人午夜在线观看视频| 日本欧美视频一区| 黑丝袜美女国产一区| bbb黄色大片| 在线观看免费高清a一片| 国产精品久久久久久精品古装| 宅男免费午夜| 这个男人来自地球电影免费观看| www.精华液| 97人妻天天添夜夜摸| 男女无遮挡免费网站观看| 在线看a的网站| 国产精品人妻久久久影院| 高清欧美精品videossex| 久久久国产欧美日韩av| 亚洲九九香蕉| 操美女的视频在线观看| 一本综合久久免费| 国产亚洲av片在线观看秒播厂| 老司机影院毛片| 少妇人妻久久综合中文| 咕卡用的链子| 国产野战对白在线观看| 久久人妻福利社区极品人妻图片 | 久久久国产欧美日韩av| 一级毛片黄色毛片免费观看视频| 首页视频小说图片口味搜索 | 男女免费视频国产| 熟女少妇亚洲综合色aaa.| 水蜜桃什么品种好| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 精品第一国产精品| 美女国产高潮福利片在线看| 精品国产一区二区三区四区第35| 亚洲av日韩在线播放| av网站在线播放免费| 9热在线视频观看99| 成人午夜精彩视频在线观看| 国产精品 国内视频| 亚洲欧洲日产国产| 老司机影院成人| 国产精品香港三级国产av潘金莲 | 九色亚洲精品在线播放| 另类亚洲欧美激情| 欧美日韩成人在线一区二区| 我的亚洲天堂| 在线亚洲精品国产二区图片欧美| 看十八女毛片水多多多| 免费不卡黄色视频| 2021少妇久久久久久久久久久| 男人添女人高潮全过程视频| 国产精品 国内视频| 制服人妻中文乱码| 丰满饥渴人妻一区二区三| 十八禁网站网址无遮挡| 国产成人av教育| 精品国产国语对白av| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av | 国产视频首页在线观看| 国产精品一二三区在线看| 91精品三级在线观看| 亚洲人成电影免费在线| 亚洲国产最新在线播放| 午夜影院在线不卡| 日韩人妻精品一区2区三区| 丰满迷人的少妇在线观看| 老汉色∧v一级毛片| 视频区欧美日本亚洲| 各种免费的搞黄视频| 水蜜桃什么品种好| 99国产精品免费福利视频| 操出白浆在线播放| 一本大道久久a久久精品| 十八禁高潮呻吟视频| 久久中文字幕一级| xxx大片免费视频| 又紧又爽又黄一区二区| 欧美日本中文国产一区发布| 国产欧美日韩综合在线一区二区| 人妻人人澡人人爽人人| 欧美97在线视频| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 老司机靠b影院| 久久女婷五月综合色啪小说| 首页视频小说图片口味搜索 | 电影成人av| 黄片播放在线免费| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片 | 欧美97在线视频| 最新的欧美精品一区二区| av国产精品久久久久影院| 女人高潮潮喷娇喘18禁视频| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 国产精品久久久久久精品古装| 90打野战视频偷拍视频| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 久久久久精品人妻al黑| 在线av久久热| 欧美成人午夜精品| 国产三级黄色录像| 狂野欧美激情性xxxx| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区| 极品人妻少妇av视频| www日本在线高清视频| 午夜免费男女啪啪视频观看| 国产熟女午夜一区二区三区| 大片免费播放器 马上看| 亚洲成人免费av在线播放| 人成视频在线观看免费观看| 免费av中文字幕在线| 黄色 视频免费看| 免费观看人在逋| 中国国产av一级| 亚洲少妇的诱惑av| 交换朋友夫妻互换小说| 激情五月婷婷亚洲| 久久久久久免费高清国产稀缺| 国产高清不卡午夜福利| 2018国产大陆天天弄谢| 国产一级毛片在线| 99国产综合亚洲精品| 国产亚洲午夜精品一区二区久久| 999精品在线视频| 久久人妻熟女aⅴ| 久久久久久久久免费视频了| 午夜免费成人在线视频| 伊人亚洲综合成人网| xxxhd国产人妻xxx| 国产在线观看jvid| 1024视频免费在线观看| 亚洲欧美日韩高清在线视频 | 夜夜骑夜夜射夜夜干| 色94色欧美一区二区| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 中国国产av一级| 午夜免费男女啪啪视频观看| 男女高潮啪啪啪动态图| 宅男免费午夜| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av涩爱| 黄片播放在线免费| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 成人免费观看视频高清| 99九九在线精品视频| 亚洲人成77777在线视频| 亚洲av片天天在线观看| 成在线人永久免费视频| 丰满少妇做爰视频| 51午夜福利影视在线观看| 中文字幕精品免费在线观看视频| 精品免费久久久久久久清纯 | 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 青草久久国产| 中文字幕制服av| 欧美日韩一级在线毛片| 久久精品国产a三级三级三级| 久9热在线精品视频| 欧美精品亚洲一区二区| 久久国产精品大桥未久av| 久久久国产一区二区| 婷婷色av中文字幕| 51午夜福利影视在线观看| 久久久久久久精品精品| 欧美av亚洲av综合av国产av| 亚洲天堂av无毛| 99热全是精品| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频| 大香蕉久久网| 午夜91福利影院| 人体艺术视频欧美日本| www日本在线高清视频| 国产女主播在线喷水免费视频网站| 亚洲一区中文字幕在线| 天天躁夜夜躁狠狠久久av| 久久久久国产精品人妻一区二区| 青草久久国产| 999久久久国产精品视频| 亚洲欧美成人综合另类久久久| 亚洲av成人不卡在线观看播放网 | av国产久精品久网站免费入址| 人体艺术视频欧美日本| 女性被躁到高潮视频| 永久免费av网站大全| 欧美精品亚洲一区二区| 久久精品亚洲av国产电影网| 狠狠精品人妻久久久久久综合| 少妇人妻 视频| 极品少妇高潮喷水抽搐| 久久久久国产一级毛片高清牌| 日韩 欧美 亚洲 中文字幕| 亚洲国产中文字幕在线视频| 免费看不卡的av| 亚洲国产精品一区三区| www.av在线官网国产| 大片免费播放器 马上看| 人体艺术视频欧美日本| 一边摸一边抽搐一进一出视频| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| 在线观看免费日韩欧美大片| 亚洲专区中文字幕在线| 日韩大片免费观看网站| 日韩欧美一区视频在线观看| 两个人看的免费小视频| 国产欧美亚洲国产| 亚洲国产最新在线播放| 人成视频在线观看免费观看| 韩国高清视频一区二区三区| 人人妻人人澡人人看| 日本五十路高清| 国产精品人妻久久久影院| 久久亚洲精品不卡| 丰满人妻熟妇乱又伦精品不卡| 搡老岳熟女国产| 99热国产这里只有精品6| 国产黄色视频一区二区在线观看| 国产熟女欧美一区二区| 亚洲,一卡二卡三卡| 亚洲视频免费观看视频| 亚洲综合色网址| 精品亚洲成a人片在线观看| 亚洲天堂av无毛| 亚洲精品成人av观看孕妇| 男女之事视频高清在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 香蕉国产在线看| 欧美精品亚洲一区二区| 国产熟女欧美一区二区| xxxhd国产人妻xxx| 考比视频在线观看| 欧美日韩福利视频一区二区| 2021少妇久久久久久久久久久| 19禁男女啪啪无遮挡网站| 精品一区在线观看国产| 国产在线观看jvid| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 又紧又爽又黄一区二区| 国产成人精品久久久久久| 亚洲中文日韩欧美视频| 国产成人一区二区在线| www.熟女人妻精品国产| 精品一区二区三卡| 十分钟在线观看高清视频www| www.自偷自拍.com| 69精品国产乱码久久久| 亚洲熟女毛片儿| 男女高潮啪啪啪动态图| 精品人妻一区二区三区麻豆| 日韩一区二区三区影片| 欧美97在线视频| 久久人妻熟女aⅴ| 婷婷丁香在线五月| 国产精品久久久久成人av| 亚洲第一av免费看| 男女之事视频高清在线观看 | 欧美人与性动交α欧美软件| 国产真人三级小视频在线观看| 亚洲七黄色美女视频| 爱豆传媒免费全集在线观看| 9191精品国产免费久久| 日本五十路高清| 欧美在线一区亚洲| 丰满迷人的少妇在线观看| 侵犯人妻中文字幕一二三四区| 国产精品久久久人人做人人爽| 色精品久久人妻99蜜桃| 热re99久久国产66热| 日韩电影二区| 亚洲七黄色美女视频| 国产精品欧美亚洲77777| 老熟女久久久| 国产成人精品无人区| 制服人妻中文乱码| 亚洲av成人不卡在线观看播放网 | 男女床上黄色一级片免费看| 午夜老司机福利片| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 久久久久久亚洲精品国产蜜桃av| 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放| 午夜老司机福利片| 水蜜桃什么品种好| 午夜福利免费观看在线| 久久久国产一区二区| 另类精品久久| 精品国产乱码久久久久久男人| 欧美另类一区| 自线自在国产av| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 欧美97在线视频| 99精品久久久久人妻精品| 一本大道久久a久久精品| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 超碰成人久久| 在线精品无人区一区二区三| 精品久久久久久电影网| 丝袜脚勾引网站| 国产精品九九99| 精品欧美一区二区三区在线| 热re99久久精品国产66热6| 最近中文字幕2019免费版| 国产高清videossex| 波多野结衣av一区二区av| 男女边摸边吃奶| 中文字幕高清在线视频| 欧美黑人精品巨大| 久久精品久久久久久噜噜老黄| 午夜激情av网站| 亚洲七黄色美女视频| 欧美乱码精品一区二区三区| 国产又色又爽无遮挡免| 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 中文字幕另类日韩欧美亚洲嫩草| 欧美久久黑人一区二区| av欧美777| 狂野欧美激情性xxxx| 日韩制服丝袜自拍偷拍| 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡 | 另类精品久久| 精品福利永久在线观看| 99国产精品99久久久久| a级片在线免费高清观看视频| 中文精品一卡2卡3卡4更新| 伊人久久大香线蕉亚洲五| 久久免费观看电影| 亚洲欧美一区二区三区久久| 亚洲,欧美,日韩| 成人三级做爰电影| 老熟女久久久| 久久精品久久久久久噜噜老黄| 国产欧美日韩一区二区三区在线| 香蕉国产在线看| 亚洲五月色婷婷综合| 日本a在线网址| 国产1区2区3区精品| 亚洲,欧美,日韩| 亚洲国产欧美一区二区综合| 人人澡人人妻人| 亚洲人成网站在线观看播放| 国产成人91sexporn| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品国产三级国产专区5o| 麻豆av在线久日| 亚洲精品第二区| 汤姆久久久久久久影院中文字幕| 亚洲三区欧美一区| 久久精品国产亚洲av高清一级| 国产成人a∨麻豆精品| 亚洲久久久国产精品| svipshipincom国产片| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 欧美 日韩 精品 国产| 男女边摸边吃奶| 欧美精品亚洲一区二区| 亚洲七黄色美女视频| 无限看片的www在线观看| 大香蕉久久网| 50天的宝宝边吃奶边哭怎么回事| 一区福利在线观看| 亚洲精品乱久久久久久| videos熟女内射| 国产极品粉嫩免费观看在线| 在线观看www视频免费| 1024视频免费在线观看| 久久久久网色| 国产亚洲精品久久久久5区| 欧美精品啪啪一区二区三区 | 日韩制服丝袜自拍偷拍| 亚洲天堂av无毛| 亚洲欧美激情在线| 国产福利在线免费观看视频| 一级毛片我不卡| 国产亚洲欧美在线一区二区| 亚洲精品av麻豆狂野| 国产在线视频一区二区| 欧美久久黑人一区二区| 宅男免费午夜| av一本久久久久| 国产午夜精品一二区理论片| 亚洲综合色网址| 欧美av亚洲av综合av国产av| 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 欧美日韩亚洲综合一区二区三区_| 日日摸夜夜添夜夜爱| 男女床上黄色一级片免费看| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 大码成人一级视频| 丁香六月天网| 18禁黄网站禁片午夜丰满| 国产成人欧美| 久9热在线精品视频| 精品国产超薄肉色丝袜足j|