• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of the pore size distribution functionfor a deformable soil

    2020-10-15 02:04:34ZhouLinZhaiQian

    Zhou Lin Zhai Qian

    (Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University,Nanjing 210096, China)(The Capital Construction Department, Southeast University, Nanjing 210096, China)

    Abstract:In order to obtain an indirect estimation method of the pore size distribution function (PSDF) for a deformable soil, both the soil-water characteristic curve in the form of gravimetric water content (w-SWCC) and the shrinkage curve (SC) are used as the input parameters. The w-SWCC defines the relationship between the gravimetric water content and soil suction. The SC illustrates the variation of the void ratio with respect to different water contents. 10 points in the w-SWCC were selected as initial conditions. By adopting different void ratios, a group of soil-water characteristic curve in the form of the degree of saturation (S-SWCC) can be obtained. Based on Kelvin’s capillary law, the S-SWCCs can be converted into a group of PSDFs. In the group of PSDFs, each PSDF represents the geometric pore space in soil corresponding to a given void ratio. From the proposed methodology, it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed. The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry (MIP) test. In addition, the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.

    Key words:pore size distribution function; simulation; unimodal; bimodal

    Both the mechanical and hydraulic properties of soil are crucial for the geotechnical design in practical engineering. It is noted that the hydraulic properties of soil are mainly governed by the pore size distribution which can be expressed by using a mathematical equation called the pore size distribution function (PSDF). Tuli et al.[1]indicated that both water and air flow in soil are governed by the geometrical pore space in soil. Much research[210]indicated that both the air and water coefficient of permeability for a saturated/unsaturated soil can be estimated from the PSDF. Vanapalli et al.[1113]indicated that the shear strength of the unsaturated soil can also be estimated from the PSDF. Zhai et al.[14]also proposed a method to estimate the tensile strength of the unsaturated sandy soils from the PSDF. Therefore, the concept of PSDF is crucial for engineers to understand the mechanical and hydraulic properties of the soil.

    The soil-water characteristic curve (SWCC) is commonly considered to be analogous to the PSDF[2,7,9,15]. It is noted that the PSDF can behave with one peak point (normally named as the unimodal shape of SWCC) or two peak points (normally named as the bimodal shape of SWCC). The measured SWCC in the gravimetric water content, w-SWCC, for a deformable soil can be in a bimodal shape but the converted SWCC in the degree of saturation, S-SWCC, for the same soil can be in a unimodal shape. The discrepancy in the shapes of w-SWCC and S-SWCC has rarely been discussed.

    In this paper, the framework from Zhai et al.[16]was used for the simulation of the variation of the PSDF when the soil undergoes a de-saturation process. It shows that the soil has an initial bimodal shape PSDF and gradually changes into a unimodal shape PSDF with the increase in the soil suction during the de-saturation process. The experimental data from the published literature shows good agreements with the simulated results from the method proposed in this study.

    1 Pore Size Distribution Function

    Childs et al.[1718]proposed the concept of the PSDF and the PSDF was firstly used by Childs and Collis-George[2]for the calculation of the water flow in soil. Diamond[19]introduced two methodologies for the determination of the PSDF. One is the mercury intrusion porosimetry method which is commonly named as the MIP test and the other is the capillary condensation method which is commonly named as the SWCC test. Recently, Spaans et al.[2023]showed that the PSDF can also be determined indirectly using the soil freezing characteristic curve (SFCC). However, the SFCC is out the scope of this paper and not discussed.

    In the SWCC measurements, the experimental data is collected as the discrete points and these data points are finally represented by a continuous mathematical equation. This continuous mathematical equation is commonly named as the SWCC equation, which is widely used by engineers to estimate the degree of saturations corresponding to different soil suctions. Many researchers proposed different forms of SWCC equations[15,2426]. Based on Refs.[79], the S-SWCC can be considered as the integration of the PSDF. As a result, the SWCC equation can also be used to represent the PSDF. In this study, Fredlund and Xing’s equation[15], which is one of the most popular SWCC equations, is adopted.

    (1)

    whereaf,S,nf,S,mf,Sare the fitting parameters for the S-SWCC equation;Cris an input value for a rough estimation of the residual suction;Sis the degree of saturation; andψis the soil suction. Fredlund and Xing[15]illustrated that Eq.(1) was the integration of the PSDF. As a result, the PSDF can be obtained by differentiating Eq.(1). In addition, due to a wide range of suction or pores size, both the SWCC and PSDF are commonly plotted in a semi-log scale (i.e., suction or pore size are in log scale). As a result, the mathematical equation for the representation of the PSDF can be obtained as follows:

    (2)

    where psd(ψ) is the pore size density. As illustrated in Eq.(2), the PSDF can be represented by fitting parametersaf,S,nf,S,mf,Sin Fredlund and Xing’s equation[15]. The values of these fitting parameters are crucial for the shapes of the PSDF.

    2 Framework for the Simulation of PSDF

    It is noted that the soil with an initial loose condition can be compressed during the de-saturation process. The soil volume change during the de-saturation process can be described by the shrinkage curve (SC) and Fredlund et al.[27]proposed a mathematical equation for the representation of the SC.

    (3)

    whereashis the minimum void ratio;bshis the slope of the line of tangency; andcshis the curvature of the shrinkage curve.

    In this paper, Fredlund et al.’s equation[27]was used to calculate the void ratios of soil corresponding to different water contents. On the other hand, Zhai et al.[16]proposed a framework for the estimation of w-SWCCs of soil with different densities. Both the measured data of w-SWCC for the soil under a loose condition and the shrinkage curve are used as the input parameters for the development of the framework. The proposed framework of PSDFs is developed by the steps as follows:

    1) Use Fredlund and Xing’s equation[15]to fit with the measured w-SWCC data and the obtained SWCC is called SWCC0, which represents the PSDF of soil under an initial loose condition.

    2) Use Fredlund et al.’s equation[27]to fit with measured shrinkage curve and determine the fitting parameters in Fredlund et al.’s equation[27].

    3) Divide SWCC0 into certain segments by points 1 toN, as illustrated in Fig.1, and calculate the void ratios of each point, using Fredlund et al.’s equation[27], as illustrated in Fig.2.

    4) Develop the framework of S-SWCCs, as shown in Fig.3, considering different void ratios as illustrated in Tab.1. As shown in Tab.1,Gsis the specific gravity of soil, which is a constant, andGsw/edefines the degree of saturationS.

    Fig.1 A typical bimodal shape w-SWCC

    Fig.2 A typical shrinkage curve

    Fig.3 Family of the converted S-SWCCs

    5) Convert the S-SWCCs in the framework into PSDFs, as illustrated in Fig.4, using Kelvin’s capillary law.

    As shown in Fig.2, the void ratios from Point 6 to Point 10 are constant, which indicates that there is no more volume change after Point 5. As a result, the final point (Point 10) is adopted to calculate the S-SWCC for the soil under the densest condition. The calculated degrees of saturation considering different void ratios are illustrated in Tab.1.

    Tab.1 Converted degrees of saturation for the development of the proposed framework

    Fig.4 Changes in PSDF due to shrinkage of soil during the w-SWCC measurement

    Fredlund and Xing’s equation[15]was adopted to fit with the calculated degree of saturations, as shown in Tab.1, and obtain SWCC0 to SWCCN. The experimental data shows bimodal shapes, and the methodology suggested by Zhai et al.[28]was used in the fitting procedure. Consequently, the fitted curves from SWCC0to SWCC10are obtained and illustrated in Fig.3. Subsequently, the best fitted SWCCs in Fig.3 are differentiated to obtain psd(ψ), as shown in Fig.4.

    As the characteristics of pore-size distribution of soil can be clearly explored by the MIP test, the MIP test results from the published literature are adopted for the verification of the proposed model. Most of the results from the MIP test are presented as the accumulated volume (or segments of volume) with respect to the diameter of pores. Therefore,to be consistent with the MIP testing results, Fig.4 is further converted by using Kelvin’s capillary law and illustrated in Fig.5. During the conversion, a constant angleαis assumed to be zero and the segments of volume with respect to different radii of the pores are obtained by multiplying the pore-size density by the porosity.

    Fig.5 Illustration of the converted pore size density

    As illustrated in Fig.5, the pore size density changes from psd0(r) to psd10(r) with the decrease in the void ratio. Both psd0(r) and psd1(r) exhibit the bimodal shapes while the other psd(r) shows the unimodal shapes. In other words, the PSDF of soil can be changed from a bimodal shape to a unimodal shape with the decrease in the void ratios. In addition, it seems that the pores with radii less than 10m are not compressed any more with the decrease in the void ratios and the pore radius corresponding to the maximum density (or peak point) decreases with the decrease in void ratios. As a result, Fig.5 indicates that the pores in the soil are compressed gradually from large pores to small pores during the de-saturation process and there is a certain range of small pores that cannot be compressed with the increase in soil suction.

    3 Comparison between Estimated PSDF from the Framework and Measured Data from MIP test

    To verify the conclusions from the proposed framework (see Fig.5), both the experimental data of SWCC measurement and the SC are required as the input parameters. Meanwhile, the MIP testing results are also required for the verification of the estimated PSDF. In this case, the experimental data for the Chataignier clay from Li et al.[29]were selected and adopted in this paper. Both the measured SWCC and the shrinkage curve for the Chataignier clay are shown in Fig.6 and Fig,7, respectively. The MIP testing results for the Chataignier clay with different void ratios are illustrated in Fig.8. As the measured SWCC exhibits a bimodal shape, the procedure recommended by Zhai et al.[28]was used to fit Fredlund and Xing’s equation[15]with the experimental data. The fitting parameters for the bimodal SWCC are illustrated in Fig.6.

    Fig.6 The measured w-SWCC for the Chataignier clay from Li et al.[30]

    Fig.7 The measured shrinkage curve for the Chataignier clay from Li et al.[29]

    Fig.8 The MIP testing results for the Chataignier clay with different soil suctions

    Fredlund et al.’s equations[27]are used to fit with the experimental data as shown in Fig.7. The methodology from Zhai et al.[16]was used to develop the framework of PSDFs following the steps illustrated in Section 2. The estimated S-SWCCs, psd(ψ) and psd(r) are illustrated in Fig.9.

    (a)

    The trends of the estimated psd(r) as shown in Fig.9(c)are consistent with the MIP testing results as shown Fig.8. It should be noted that psd(r) illustrated in Fig.9(c) was estimated from the measuredw-SWCC which collects limited data points within the entire suction range. In other words, the spans between the SWCC data are much wider than those between the MIP testing data. As a result, the estimated psd(r) is less accurate than that obtained from the MIP tests. However, the results in Fig.8 and Fig.9(c) indicate that the trends of psd(r) from both methods are matched well with each other. It is also observed that there is a slight discrepancy between the pore radii corresponding to the peak point from the estimated framework and MIP test due to the constant contact angle adopted in the analyses. Based on Kelvin’s capillary law, the correlation between suction and pore radius is affected by the contact angle. Recently, many reports[3034]indicated that the contact angle of soil may not necessarily have to be zero. Therefore, the discrepancy can be minimized by adopting a contact angle greater than zero.

    From Fig.8 and Fig.9(c), it is also observed that the initial loose soil has a bimodal shape PSDF and the shape can be gradually changed to a unimodal shape. Therefore, it is more accurate to indicate the void ratio (or stress level) of soil before describing the shape of the SWCC (or PSDF) for the soil since it can exhibit a bimodal shape under a loose condition while exhibiting a unimodal under a dense condition.The conclusion agrees with the observations from Dieudonné et al[3536].

    4 Conclusion

    A simulation method of the PSDF for the deformable soil was proposed. The simulated results illustrating the variation of the PSDF were compared with the experimental results by using the MIP tests. In the low suction range, which is corresponding to a high void ratio, the experimental results from MIP tests show that PSDF for the Chataignier clay behaves in a bimodal shape. With the increase in the suction levels, the PSDFs gradually change from a bimodal shape into a unimodal shape. The simulated results from the proposed method indicate that a bimodal PSDF for a soil under a loose condition, corresponding to a high void ratio, can be gradually changed into a unimodal PSDF with the decrease in the void ratio. As a result, the simulated results agree well with the experimental data from the MIP test. The proposed method provides an alternative method for the estimation of the variation of PSDF for a deformable soil.

    亚洲男人天堂网一区| 国产1区2区3区精品| 狂野欧美激情性xxxx| 国产精品 欧美亚洲| 性少妇av在线| 欧美日韩福利视频一区二区| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区黑人| 亚洲av美国av| 免费高清视频大片| av在线播放免费不卡| 免费av毛片视频| 80岁老熟妇乱子伦牲交| 免费高清视频大片| 欧美日韩乱码在线| 99国产综合亚洲精品| 免费人成视频x8x8入口观看| 久久精品亚洲av国产电影网| a在线观看视频网站| bbb黄色大片| 一级作爱视频免费观看| 久久久国产成人精品二区 | 夜夜看夜夜爽夜夜摸 | 天堂中文最新版在线下载| 男女床上黄色一级片免费看| 黄片小视频在线播放| 国产三级黄色录像| 久久九九热精品免费| 亚洲精品国产色婷婷电影| 老熟妇乱子伦视频在线观看| 欧美午夜高清在线| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 曰老女人黄片| 午夜免费观看网址| 日韩大码丰满熟妇| 最新美女视频免费是黄的| 又紧又爽又黄一区二区| 一区福利在线观看| 一区二区三区精品91| 欧美黄色淫秽网站| www.熟女人妻精品国产| √禁漫天堂资源中文www| 国产在线精品亚洲第一网站| 丁香六月欧美| 欧美性长视频在线观看| 韩国精品一区二区三区| 日本免费a在线| 十分钟在线观看高清视频www| 亚洲中文日韩欧美视频| 99久久久亚洲精品蜜臀av| 十八禁网站免费在线| 成人手机av| 丰满迷人的少妇在线观看| 亚洲熟女毛片儿| 1024香蕉在线观看| 男人操女人黄网站| 精品国产国语对白av| 亚洲国产欧美日韩在线播放| 亚洲自拍偷在线| 国产av一区二区精品久久| 深夜精品福利| 日韩欧美免费精品| 日韩大码丰满熟妇| 很黄的视频免费| 亚洲精品国产一区二区精华液| 黑人欧美特级aaaaaa片| 窝窝影院91人妻| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区mp4| 久久人人97超碰香蕉20202| 波多野结衣av一区二区av| 他把我摸到了高潮在线观看| av有码第一页| 51午夜福利影视在线观看| 午夜免费激情av| 美女 人体艺术 gogo| 天堂影院成人在线观看| 91九色精品人成在线观看| 亚洲人成网站在线播放欧美日韩| 99国产极品粉嫩在线观看| 久久久国产欧美日韩av| 久久天堂一区二区三区四区| 亚洲精品美女久久av网站| 中文字幕人妻丝袜制服| 欧美日韩视频精品一区| 欧洲精品卡2卡3卡4卡5卡区| 国产无遮挡羞羞视频在线观看| 十八禁网站免费在线| 欧美日韩一级在线毛片| 日韩国内少妇激情av| 国产不卡一卡二| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人一区二区三| 久久婷婷成人综合色麻豆| 另类亚洲欧美激情| 久久精品国产亚洲av高清一级| 日本一区二区免费在线视频| xxx96com| 水蜜桃什么品种好| 在线观看一区二区三区激情| 午夜福利免费观看在线| 国产av又大| 国产高清国产精品国产三级| 女性被躁到高潮视频| 男女午夜视频在线观看| 欧美激情极品国产一区二区三区| 一级片免费观看大全| 国产欧美日韩一区二区精品| 精品日产1卡2卡| 真人做人爱边吃奶动态| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费成人在线视频| 日韩欧美一区二区三区在线观看| 免费女性裸体啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 高清av免费在线| 亚洲午夜理论影院| 国产99白浆流出| av视频免费观看在线观看| 久久久精品欧美日韩精品| 嫁个100分男人电影在线观看| 在线av久久热| 日日摸夜夜添夜夜添小说| 国产精品1区2区在线观看.| av天堂在线播放| 欧美黑人欧美精品刺激| 高清黄色对白视频在线免费看| bbb黄色大片| 国产aⅴ精品一区二区三区波| 欧美 亚洲 国产 日韩一| 动漫黄色视频在线观看| 久久狼人影院| 黄色视频,在线免费观看| 欧美色视频一区免费| www.精华液| 午夜91福利影院| 久久婷婷成人综合色麻豆| 亚洲激情在线av| 51午夜福利影视在线观看| 热99re8久久精品国产| 黄色a级毛片大全视频| 欧美激情久久久久久爽电影 | 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 日韩av在线大香蕉| 夜夜夜夜夜久久久久| 黄色怎么调成土黄色| 国产精品98久久久久久宅男小说| 国产三级在线视频| 日韩三级视频一区二区三区| 桃红色精品国产亚洲av| 亚洲国产中文字幕在线视频| 国产亚洲精品一区二区www| 老司机靠b影院| 国产一卡二卡三卡精品| 国产成人精品无人区| 精品无人区乱码1区二区| 怎么达到女性高潮| 一级黄色大片毛片| 男人舔女人下体高潮全视频| 叶爱在线成人免费视频播放| 一进一出抽搐动态| 日日夜夜操网爽| 欧美成人午夜精品| 日韩欧美一区视频在线观看| 午夜亚洲福利在线播放| 久久这里只有精品19| 日日夜夜操网爽| 超碰97精品在线观看| 亚洲久久久国产精品| 亚洲五月天丁香| 人妻久久中文字幕网| 欧美乱色亚洲激情| 在线观看一区二区三区激情| 一个人免费在线观看的高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久久久久免费视频 | 午夜福利,免费看| 亚洲一区二区三区欧美精品| 校园春色视频在线观看| 99国产精品一区二区三区| 国产av在哪里看| 琪琪午夜伦伦电影理论片6080| tocl精华| 9色porny在线观看| 97人妻天天添夜夜摸| 国产xxxxx性猛交| 亚洲人成77777在线视频| 国产欧美日韩综合在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 中文亚洲av片在线观看爽| 国产主播在线观看一区二区| 欧美成人性av电影在线观看| 成年女人毛片免费观看观看9| 亚洲一区二区三区不卡视频| 一二三四社区在线视频社区8| 午夜免费激情av| 国内久久婷婷六月综合欲色啪| a级毛片黄视频| 一级a爱片免费观看的视频| av在线天堂中文字幕 | 国产精品乱码一区二三区的特点 | 久久天堂一区二区三区四区| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 激情在线观看视频在线高清| 日韩 欧美 亚洲 中文字幕| 男女之事视频高清在线观看| 久久久久久亚洲精品国产蜜桃av| netflix在线观看网站| 大型av网站在线播放| 精品一区二区三区四区五区乱码| 国产精品电影一区二区三区| 亚洲一区二区三区色噜噜 | 日本一区二区免费在线视频| 黄色毛片三级朝国网站| 欧美一区二区精品小视频在线| 国产欧美日韩精品亚洲av| 波多野结衣一区麻豆| 亚洲欧美日韩高清在线视频| 亚洲一区二区三区色噜噜 | 国产国语露脸激情在线看| 热re99久久国产66热| av天堂在线播放| 天天添夜夜摸| e午夜精品久久久久久久| 精品国产国语对白av| 国产男靠女视频免费网站| 大陆偷拍与自拍| e午夜精品久久久久久久| 一本大道久久a久久精品| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| av片东京热男人的天堂| 精品久久久精品久久久| 色在线成人网| 亚洲国产精品一区二区三区在线| 99久久综合精品五月天人人| 亚洲国产精品合色在线| 久久亚洲精品不卡| 亚洲一区二区三区欧美精品| 最近最新中文字幕大全电影3 | 日韩高清综合在线| 天堂影院成人在线观看| 国产精品一区二区精品视频观看| 国产蜜桃级精品一区二区三区| 午夜福利在线观看吧| 制服人妻中文乱码| 在线观看www视频免费| 长腿黑丝高跟| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 亚洲自拍偷在线| 最近最新中文字幕大全免费视频| 免费久久久久久久精品成人欧美视频| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 中文字幕av电影在线播放| 国产深夜福利视频在线观看| 黄色视频,在线免费观看| 久久草成人影院| 日韩国内少妇激情av| 精品一区二区三卡| 91成年电影在线观看| 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲| 午夜福利欧美成人| 日韩人妻精品一区2区三区| 黄片播放在线免费| 国产深夜福利视频在线观看| 午夜精品久久久久久毛片777| 亚洲专区国产一区二区| 亚洲av熟女| 国产成人精品久久二区二区免费| 国产黄a三级三级三级人| av天堂久久9| 国产又爽黄色视频| 女人被狂操c到高潮| 午夜精品国产一区二区电影| 69精品国产乱码久久久| 超碰97精品在线观看| 一级,二级,三级黄色视频| 老司机深夜福利视频在线观看| 久久香蕉国产精品| 精品久久久久久久久久免费视频 | 日韩一卡2卡3卡4卡2021年| 国产一区二区三区视频了| a级毛片在线看网站| 久久精品亚洲精品国产色婷小说| 天堂√8在线中文| 国产av一区在线观看免费| 亚洲第一av免费看| 中出人妻视频一区二区| 成人三级黄色视频| 精品久久久久久电影网| 嫩草影视91久久| 99riav亚洲国产免费| netflix在线观看网站| 一区二区日韩欧美中文字幕| 国产色视频综合| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 日本a在线网址| 国产成人精品久久二区二区免费| 天堂√8在线中文| 最新美女视频免费是黄的| 日本 av在线| 老司机午夜福利在线观看视频| 国产精品影院久久| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 成人手机av| 精品少妇一区二区三区视频日本电影| 久久久久国内视频| 亚洲五月色婷婷综合| 一夜夜www| 精品久久久久久久久久免费视频 | 天堂动漫精品| 日韩有码中文字幕| 国产亚洲精品一区二区www| av欧美777| 欧美成狂野欧美在线观看| 色综合婷婷激情| 两个人免费观看高清视频| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 美女大奶头视频| 久久午夜亚洲精品久久| 日韩免费高清中文字幕av| 精品国产美女av久久久久小说| 在线观看日韩欧美| 不卡av一区二区三区| 亚洲男人天堂网一区| 亚洲免费av在线视频| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 在线观看www视频免费| 99国产综合亚洲精品| 亚洲精品国产色婷婷电影| 欧美+亚洲+日韩+国产| 久久久久久久久久久久大奶| 国产精品野战在线观看 | aaaaa片日本免费| 成人永久免费在线观看视频| 久久天堂一区二区三区四区| 午夜老司机福利片| 亚洲av五月六月丁香网| 视频区欧美日本亚洲| 国产人伦9x9x在线观看| 久久久国产成人精品二区 | 99riav亚洲国产免费| 精品高清国产在线一区| 在线观看免费视频网站a站| 亚洲五月婷婷丁香| 国产成+人综合+亚洲专区| 免费在线观看完整版高清| av片东京热男人的天堂| 亚洲熟女毛片儿| 99国产综合亚洲精品| 9色porny在线观看| 亚洲第一av免费看| 中文字幕人妻熟女乱码| av免费在线观看网站| 国产精品av久久久久免费| xxx96com| 国产一区在线观看成人免费| 免费在线观看黄色视频的| 又紧又爽又黄一区二区| 国产精品成人在线| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 亚洲国产欧美日韩在线播放| 午夜老司机福利片| 久久人人精品亚洲av| 亚洲免费av在线视频| 亚洲成人精品中文字幕电影 | 18禁观看日本| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区蜜桃| 最新在线观看一区二区三区| 欧美在线黄色| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 我的亚洲天堂| videosex国产| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 99国产精品一区二区三区| 国产成人精品久久二区二区91| 亚洲av五月六月丁香网| 高清毛片免费观看视频网站 | 久久久久久久久久久久大奶| 亚洲三区欧美一区| 欧美日韩视频精品一区| www.自偷自拍.com| 成人国语在线视频| 国产精品香港三级国产av潘金莲| 国产片内射在线| 在线免费观看的www视频| 黄片播放在线免费| 欧美日韩中文字幕国产精品一区二区三区 | a级毛片在线看网站| 又紧又爽又黄一区二区| 国产欧美日韩一区二区精品| 久久久久亚洲av毛片大全| 色婷婷av一区二区三区视频| 美女午夜性视频免费| svipshipincom国产片| 在线永久观看黄色视频| 免费观看精品视频网站| 亚洲性夜色夜夜综合| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美一区二区综合| 日本黄色视频三级网站网址| 视频区图区小说| 国产亚洲精品第一综合不卡| 亚洲国产中文字幕在线视频| 深夜精品福利| 亚洲国产欧美网| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 欧美精品一区二区免费开放| 久久欧美精品欧美久久欧美| 精品欧美一区二区三区在线| 亚洲视频免费观看视频| 国产精品电影一区二区三区| 国产有黄有色有爽视频| 热re99久久国产66热| 国产一区二区三区综合在线观看| 免费av中文字幕在线| 波多野结衣av一区二区av| 一进一出抽搐动态| 久久久久久免费高清国产稀缺| 老鸭窝网址在线观看| 欧美国产精品va在线观看不卡| 五月开心婷婷网| 黑人猛操日本美女一级片| 久久久国产欧美日韩av| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 成人永久免费在线观看视频| 日本撒尿小便嘘嘘汇集6| 一边摸一边抽搐一进一出视频| av有码第一页| 淫妇啪啪啪对白视频| 在线永久观看黄色视频| 老司机福利观看| 美女大奶头视频| 日本撒尿小便嘘嘘汇集6| 999久久久国产精品视频| 欧美乱妇无乱码| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| 韩国av一区二区三区四区| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 在线永久观看黄色视频| 一级片'在线观看视频| 亚洲成人免费av在线播放| 色婷婷av一区二区三区视频| 动漫黄色视频在线观看| 日本免费a在线| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 精品国产乱子伦一区二区三区| 亚洲激情在线av| 男女高潮啪啪啪动态图| 在线观看一区二区三区| 亚洲成国产人片在线观看| 日本五十路高清| 国产成人av教育| 纯流量卡能插随身wifi吗| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 精品免费久久久久久久清纯| 女人爽到高潮嗷嗷叫在线视频| 琪琪午夜伦伦电影理论片6080| 久久青草综合色| 久久精品国产清高在天天线| 在线播放国产精品三级| 一区二区日韩欧美中文字幕| 一级片'在线观看视频| 国产在线观看jvid| 首页视频小说图片口味搜索| 精品人妻1区二区| 精品一区二区三区四区五区乱码| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 亚洲精品国产区一区二| 久久九九热精品免费| 亚洲 欧美 日韩 在线 免费| 日韩大码丰满熟妇| 欧美成人午夜精品| 中国美女看黄片| 亚洲五月色婷婷综合| 1024视频免费在线观看| 欧美精品亚洲一区二区| 人成视频在线观看免费观看| 欧美不卡视频在线免费观看 | 两人在一起打扑克的视频| 神马国产精品三级电影在线观看 | 亚洲专区字幕在线| 久久中文字幕一级| 美国免费a级毛片| 精品国产乱码久久久久久男人| av电影中文网址| 香蕉丝袜av| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 淫秽高清视频在线观看| 中文字幕av电影在线播放| 亚洲熟妇熟女久久| 日日夜夜操网爽| 琪琪午夜伦伦电影理论片6080| 91精品国产国语对白视频| 国产免费现黄频在线看| 亚洲av片天天在线观看| 黑丝袜美女国产一区| 好看av亚洲va欧美ⅴa在| 极品教师在线免费播放| 无限看片的www在线观看| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| 亚洲黑人精品在线| 亚洲专区国产一区二区| 十八禁人妻一区二区| 动漫黄色视频在线观看| 男人操女人黄网站| 老熟妇仑乱视频hdxx| 三级毛片av免费| 人人妻,人人澡人人爽秒播| 国产区一区二久久| 国产又爽黄色视频| 亚洲国产中文字幕在线视频| 黄色女人牲交| 久久影院123| 国产精品二区激情视频| 日日夜夜操网爽| 午夜福利在线免费观看网站| 欧美乱码精品一区二区三区| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 国产精品 国内视频| 午夜两性在线视频| 波多野结衣一区麻豆| 伊人久久大香线蕉亚洲五| 亚洲成a人片在线一区二区| 亚洲国产精品999在线| 成人亚洲精品av一区二区 | 亚洲精品国产色婷婷电影| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 久久久国产精品麻豆| 国产伦一二天堂av在线观看| а√天堂www在线а√下载| 手机成人av网站| 久久久久国内视频| 999精品在线视频| 美女 人体艺术 gogo| 日韩成人在线观看一区二区三区| 一级片'在线观看视频| 在线永久观看黄色视频| 精品久久久久久久久久免费视频 | 国产精品亚洲av一区麻豆| 日韩精品免费视频一区二区三区| 91大片在线观看| 久久久水蜜桃国产精品网| 久久久久久久久中文| 精品免费久久久久久久清纯| 国产精品一区二区精品视频观看| 黄片大片在线免费观看| 12—13女人毛片做爰片一| 极品人妻少妇av视频| 搡老岳熟女国产| 正在播放国产对白刺激| 天堂动漫精品| 精品国产国语对白av| 满18在线观看网站| 欧美成人午夜精品| 99精品久久久久人妻精品| 男女午夜视频在线观看| 熟女少妇亚洲综合色aaa.| 黄片小视频在线播放| 久久国产亚洲av麻豆专区| 久久人妻福利社区极品人妻图片| 曰老女人黄片| tocl精华| 久久人人精品亚洲av| 多毛熟女@视频| 国产一区二区三区综合在线观看| 咕卡用的链子| 国产精品 国内视频| 12—13女人毛片做爰片一| 桃色一区二区三区在线观看| 午夜a级毛片| 50天的宝宝边吃奶边哭怎么回事| 视频区欧美日本亚洲| 亚洲国产精品合色在线| 在线观看免费日韩欧美大片| www.自偷自拍.com| 老司机福利观看| 88av欧美| 亚洲一区二区三区不卡视频| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久性| 狂野欧美激情性xxxx| 国产一卡二卡三卡精品| 亚洲中文日韩欧美视频|