• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional Reconstruction and Porosity Calculation of Ceramic Coating: Nondestructive X-ray Computed Tomography

    2020-10-15 02:06:32ZHANGZhifengWANGFengjuanWUShengpingJIANGJinyang
    無機(jī)材料學(xué)報(bào) 2020年9期
    關(guān)鍵詞:武勝高清涂層

    ZHANG Zhifeng, WANG Fengjuan, WU Shengping, JIANG Jinyang

    Three-dimensional Reconstruction and Porosity Calculation of Ceramic Coating: Nondestructive X-ray Computed Tomography

    ZHANG Zhifeng, WANG Fengjuan, WU Shengping, JIANG Jinyang

    (Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing 211189, China)

    Ceramic coatings can effectively prevent the corrosion of steel bars in marine environments. In this study, we prepared phosphate ceramic coatings on the surface of carbon steel. X-ray diffraction and X-ray fluorescence were used to analyze the phase structure and composition of the ceramic and the results show that the main crystal composition of ceramic is P2O5and SiO2. Scanning electron microscopy was used to characterize the morphology of the surface and the section and results showed that the surface was cracked, and the thickness of ceramic was 349 μm. Meanwhile, a number of high-resolution images of internal structure of solids were obtained by non-destructive X-ray computed tomography (X-CT). Matlab and Mimics software were used to conduct the three-dimensional reconstruction of the CT images. Matrix and holes are distinguished by threshold segmentation in grayscale images, and the porosity of the ceramic coatings was calculated to be 14.0%. In addition, mercury intrusion porosimetry was used to verify the calculation results. Therefore, X-CT can be a useful and reliable tool for the visualization of the internal structure of ceramic coatings.

    ceramics; porosity; X-CT technology; 3D reconstruction

    Reinforced concrete structures are widely used due to their high performance and low cost of their constituent raw materials[1]. Owing to construction of a large amounts of infrastructure, consumption of cement is increasing yearly as the amount of concrete and steel rebar.

    Owing to the presence of holes in concrete, aggressive ions penetrate the concrete and reach the surface of steel rebar, which destroy the passive film on the steel surface[2]. In particular, under an offshore aggressive environment, dry and wet cycling conditions accelerate the transmission of harmful ions. The corroded steel bars undergo stress expansion and the fluffy corrosion products reduce adhesion to the concrete, which cause premature deterioration of civil infrastructures, leading to serious consequences[3]. Therefore, various methods have been used to isolate ions and protect carbon steel, such as ceramic coatings[4], green inhibitors[5], corrosion-resistant steel bars[6], and photogenerated electron cathodic protection[7]. Among these methods, protective ceramic coatings are the most applied and studied methods. Tang,[8]prepared different enamel coatings, and they found that three types of intact ceramic coatings significantly outperformed fusion-bonded expoxy coatings. However, due to the presence of microscopic isolated pores, the properties of the three ceramics are not completely identical. Traditional test methods such as scanning electronic microscopy (SEM) can only characterize the shape of the hole in the ceramic surface and cannot calculate the specific porosity of the entire ceramic. Moreover, mercury intrusion porosimetry (MIP) has been widely used to determine the pore-size distribution (PSD) for most materials, from which a wide range of pore sizes can be found[9]. However MIP can only detect the local zone of the sample and the tests depend on the assumption that the pores are cylindrical, which cannot reflect the actual pore pattern[10]. Therefore, it is necessary and vital to develop a new approach to calculate the porosity of ceramic coatings and to devise a new and improved model of the relationship between the transmission rate of ions and the porosity of ceramic coatings.

    X-ray computed tomography (X-CT) is mostly used in medicine, in which computer-processed X-ray data are used to construct images of bone, the brain, organs,[11]. Two-(2D) or three-dimensional (3D) reconstruction of a test structure can be achieved by computer technology, which makes the internal structure able to be more intuitively explored. Therefore, it is convenient to analyze the pore structure of ceramic solid materials non-destruc-tively[12]. In previous research, Yang,[13]revealed thetracking of water transport in cement paste using X-CT, in which CsCl was added to the water to enhance the contrast. 3D representations of ceramics are achievable at different pore sizes and provide a way to observe the evolution of pores, which is useful in understanding the failure mechanism of ceramic coatings[14].

    In this study, X-CT was applied to porosity calculations of ceramic coatings, which is an important parameter for the transport of aggressive ions inside ceramic structures. 2D and 3D images were generated and the threshold segmentation technique was used to distinguish the pores and substrate. Furthermore, MIP was used to study the porosity and pore size distribution, which provide mutual authentication of the X-CT test results of the porosity of ceramic coatings.

    1 Experiments

    1.1 Materials

    A phosphate ceramic coating was supplied by Eoncoat Coating (Eoncoat Coating Technology Co. Ltd., Beijing, China) and was used without any further alteration. Q235 carbon steel was used and its content is shown in Table 1[5]. First, the carbon steel with the size of20 mm×10 mm, was sand-blasted to remove the surface oxide and achieve a rough surface. Then, the ceramic coating was sprayed onto the surface 10 times to prepare the coating. The resolution of X-CT images is related with the sample size, and smaller size provides higher definition. Therefore a piece of ceramic coating was peeled off from the carbon steel coating as test sample to obtain the high- resolution picture.

    Before the test, the ceramic bulk was dried at 50 ℃ in air oven for 3 h. After cooling to room temperature, epoxy resin was used to wrap and fix the ceramic. The ceramic was then ground in agate mortar to obtain the powder used in X-ray diffraction (XRD), X-ray fluorescence (XRF) and high-resolution transmission electron microscopy (HRTEM) experiments.

    1.2 Characterization

    The phase structure was detected by XRD (Bruker D8 Discover) from 10° to 80° at 0.02 (°)/s. The chemical composition was determined using XRF (Bruker S4 Pioneer) at 40 kV and 100 mA[15]. SEM (Navo Nano SEM450, 30 kV) with Energy Dispersive X-ray Spectroscopy (EDS) was used to determine the morphology of the ceramic surface and section[16-17]. TEM and HRTEM were used to get the morphology of nanosize oxide particles. MIP was performed on a Micrometrics Autopore IV 9500. A contact angle of 130° was assumed. The pressure ranged from 1.5×104Pa to 6.1×104Pa. CT scan test was performed on a Y. CT Precision S X-CT system (YXLON, Germany) with resolution of 1024×1024 pixels[18]. The images were pre-processed in MatLab R2016a software (MathWorks, USA), and the 2D or 3D image reconstructions and porosity calculated using Mimics research software.

    Table 1 Composition of carbon steel Q235

    2 Results and discussion

    2.1 Phase composition analysis

    2.1.1 XRD analysis

    The phase composition and crystal structure of the as-prepared ceramic were examined by XRD. As shown in Fig. 1, the main constituents of the ceramic are P2O5(JCPDS 23-1301), SiO2(JCPDS 27-0605), which correspond to the lattice plane of (111), (111). There are two crystal structures of TiO2in ceramic, which are ascribed to the lattice planes of (110) and (101) for rutile TiO2(JCPDS 21-1276) and anatase TiO2(JCPDS 21-1272), respectively[19]. Also, there are a small amount of CaO, Fe2O3and MgO4, with JCPDS 50-1575, 40-1139 and 27-0759, respectively. Furthermore, the novel type of zeolite in the system of K2O-Na2O-Al2O3-SiO2-H2O with JCPDS 43-0050 was detected.

    2.1.2 XRF analysis

    The XRF results of the as-prepared ceramic coatings, expressed in oxide form, are presented in Table 2. The XRF analysis showed that the main phase composition of ceramic is P2O5, SiO2, K2O, and MgO with a total amount of 81.55wt%. And a small amount of Al2O3, CaO, and TiO2, and the balance being Na2O/SO3/Fe2O3/ZnO. The main reason for the detection of oxides of Al2O3and ZnO in XRF test but not in XRD test is that the content of oxide is too small to be detected. The XRF results are completely consistent with the results of the XRD analysis.

    Fig. 1 XRD pattern of as-prepared ceramic coating

    Table 2 Chemical analysis determined by XRF of the as-prepared ceramic coating

    2.2 SEM analysis

    SEM is a useful technology to study the morphology of the surfaces and sections of the ceramic coatings. Fig. 2(a) shows the surface SEM image of the ceramic coating. It can be seen that the ceramic coating was a stable whole and the surface is rough. However, the oxide particles are not packed densely, resulting in the pore between the oxide particles. Inset is EDS analysis of area #1 shown in Fig. 2(a), which reveals that the main constituents of the ceramic are P, Si, Mg, Fe and K, in good agreement with the XRD and XRF analysis results. Furthermore, the section morphology of the ceramic and steel is shown in Fig. 2(b), demonstrating that the thickness of the ceramic coating is 349 μm and, moreover, that the ceramic coating is tightly bonded to the steel bars. In addition, microcracks are seen in the section, which may be caused by the difference in thermal expansion coefficients between the ceramic coating and the steel.

    Fig. 2 Surface (a) and section (b) SEM images of the as-prepared ceramic coating

    Inset in (a) is the EDS analysis of area #1

    2.3 TEM and HRTEM analysis

    TEM and HRTEM images of the ceramic coating are shown in Fig. 3 which provide more detailed lattice- parameter information regarding the oxide in the ceramic coating. As shown in Fig. 3(a), the coating powder has a plate-like structure, which has been superimposed to form a cluster. Fig. 3(b) clearly shows two sets of lattice fringes with lattice spacings of 0.327 and 0.285 nm, corresponding to the (110) and (420) planes of TiO2and P2O5, respectively, which is consistent with XRD results.

    2.4 3D reconstruction and porosity analysis

    The evolution of ceramic-coating porosity was monitored by the X-CT system. First, eight hundred high- resolution CT high resolution images were obtained after the X-CT test. Pre-processing was performed using Matlab to remove the edge portion of images, such as epoxy resin. The raw X-CT picture is shown in Fig. 4(a) and cropped by Matlab according the red dotted line. The cutting pictures were imported in Mimics Research software. In Mimics software, we can distinguish the hole structure and substrate by threshold segmentation of grayscale value, and results of the division for the end face and side face are shown in Figs. 4(b, c), in which the green part represents the hole and the yellow part represents the substrate. Then 2D pictures with segmentation of grayscale value were 3D reconstructed by Mimics Research software immediately. 3D reconstructions of the hole structure and substrate can be formed by overlay analysis of the high resolution images and are shown in Figs. 4(d, e), respectively. In addition, the volumes of the hole and substrate can be calculated in Mimics software by counting the total amount of the green and yellow areas and marked asholeandsub, respectively. Then the porosity can be calculated by the following equation:

    Fig. 3 (a) TEM and (b) HRTEM images of ceramic coating

    whereis the porosity of ceramic coating. In this work the calculated value ofis 14.0%. A lower porosity of ceramic leads to a lower transmission rate for the aggressive ions. Therefore, a lower porosity ceramic coating can effectively prevent the migration of chloride ions to the surface of the carbon steel and avoid corroding the steel rebar.

    MIP test was used to further verify the porosity of ceramic, and the pore structure and pore size distribution (PSD) were shown in Fig. 5. There are two critical pore diameters, one is less than 10 nm, and another is between 1 μm to 10 μm. Pore diameter less than 10 nm is the gel pores of oxide substrate[20]. And the highest peak in the pore entry size distribution from 1 μm to 10 μm is the gap between the oxides, which is shown in Fig. 5. The porosity obtained by the MIP is 12.275%, which is close to the calculated result by the X-CT. The MIP test confirms that the X-CT can be a fast and non-destructive method to measure the porosity.

    Fig. 4 CT images of ceramic coating

    (a) Raw X-CT image; (b, c) Threshold segmentation of (b) hole structure and (c) substrate structure; (d, e) 3D reconstruction of (d) hole and (e) substrate

    Fig. 5 Pore size distribution test by MIP: cumulative intrusion (mL/g) and lg(differential intrusion/(mL?g–1))

    3 Conclusions

    Ceramic coatings are very effective materials that provide corrosion-protection for steel. However, due to the different thermal expansion coefficient of the steel matrix, microcracks and holes are present in ceramic coatings. X-CT can reveal the internal hole structure nondestruc-tively,, the hole and substrate are distinguished by threshold segmentation. 3D reconstruction the hole and substrate structure can be achieved by analyzing the CT images with Matlab and Mimics. By calculating of hole volume and the volume of the substrate, the porosity of the ceramic coating was calculated as 14%. By the MIP test, the porosity of ceramic coating is 12.275%, which is close to the calculation result of X-CT. The main pore structure is the gel pores of oxide and gap between the oxides. Therefore, it can be seen that X-CT technology is a useful and reliable technique to calculate the porosity of solid material.

    [1] YANG J J, HAI R, WU K R. Effect of ettringite structural transformation on expansive behavior of expansion cement., 2003, 18(1): 136–142.

    [2] Lü J L, JIN H J, LIANG T X. The effect of electrochemical nitridationon the corrosion resistance of the passive films formed on the 2205 duplex stainless steel., 2019, 256: 1–4.

    [3] ZHAO Y P, LIU Y, LIU Q,. Icephobicity studies of superhydrophobic coatings on concretespray method., 2018, 233: 263–266.

    [4] WANG P S. Study on Preparation and Critical Properties of a New Type of Steel Bars Coated with Micro/Nano Ceramics. Nanjing: Master Thesis of Southeast University, 2016.

    [5] ZHANG Z F, WANG F J, LIU Y,. Molecule adsorption and corrosion mechanism of steel under protection of inhibitor in a simulated concrete solution with 3.5% NaCl., 2018, 8: 20648.

    [6] JIANG J Y, CHU H Y, LIU YAO,. Galvanic corrosion of duplex corrosion-resistant steel rebars under carbonated concrete conditions., 2018, 8: 16626.

    [7] WEI Q Y, WANG X T, NING X B,. Characteristics and anticorrosion performance of WSe2/TiO2nanocomposite materials for 304 stainless steel., 2018, 352: 26–32.

    [8] TANG F J, CHEN G D, BROWN R K,. Corrosion resistance and mechanism of steel rebar coated with three types of enamel., 2012, 59: 157–168.

    [9] CUI D, BANTHIA N, WANG Q N,. Investigation on porosity of partly carbonated paste specimens blended with fly ash through dual CT scans., 2019, 196: 692–702.

    [10] LUBELLI B, WINTER D A M, POST J A,. Cryo-FIB-SEM and MIP study of porosity and pore size distribution of bentonite and kaolin at different moisture contents., 2013, 80–81: 358–365.

    [11] COLLINGWOOD J F,ADAMS F. Chemical imaging analysis of the brain with X-ray methods., 2017, 130: 101–118.

    [12] HERMANEK P, CARMIGNATO S. Porosity measurements by X-ray computed tomography: accuracy evaluation using a calibrated object., 2017, 49: 377–387.

    [13] YANG L, ZHANG Y S, LIU Z Y,tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing., 2015, 160: 381–383.

    [14] ZHU W, CAI X N, YANG L,. The evolution of pores in thermal barrier coatings under volcanic ash corrosion using X-ray computed tomography., 2019, 357: 372–378.

    [15] ZHENG Y F, ZHANG L L, WANG K,. Microstructure characterization and luminescent property of mixed spinel Zn6Ga8TiO20:Cr3+phosphors., 2018, 33(1): 9–13.

    [16] LI Y T, CHEN L, GUO Y L,. Preparation and characterization of WO3/TiO2hollow microsphere composites with catalytic activity in dark., 2012, 181–182: 734–739.

    [17] ZHANG X F, ZHANG G H, MENG Y,. Photocatalytic degradation of methylene blue by schiff-base cobalt modified CoCr layered double hydroxides., 2019, 34(9): 974–982.

    [18] WAN K S, LI G, WANG S H,. 3D full field study of drying shrinkage of foam concrete., 2017, 82: 217–226.

    [19] ZHANG Z Y, SANG L X, LU L P,Preparation of TiO2nanotube arrays and their photoelectrochemical properties., 2010, 25(11): 1145–1149.

    [20] KANG S H, HONG S G, MOON J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete., 2018, 172: 29–40.

    X-CT無損測(cè)試技術(shù)用于陶瓷涂層三維重構(gòu)和孔隙率計(jì)算

    張志鋒, 王鳳娟, 武勝萍, 蔣金洋

    (東南大學(xué) 江蘇省建筑材料重點(diǎn)實(shí)驗(yàn)室, 南京 211189)

    陶瓷涂層對(duì)海工環(huán)境中的鋼筋有著較好的保護(hù)作用。在碳鋼表面噴涂磷酸鹽陶瓷涂層, 采用XRD和XRF對(duì)陶瓷涂層的物相組成進(jìn)行分析。結(jié)果表明: 實(shí)驗(yàn)用陶瓷的主要晶相成分為P2O5與SiO2。采用SEM對(duì)陶瓷的表面和截面形貌進(jìn)行觀察, 發(fā)現(xiàn)陶瓷涂層內(nèi)存在微裂紋, 涂層的厚度約為349 μm。采用X-CT測(cè)試可以得到陶瓷內(nèi)部結(jié)構(gòu)的高清圖像, 并利用Matlab和Mimics軟件對(duì)高清圖像進(jìn)行三維重構(gòu)。此外通過閾值分割技術(shù), 將CT圖像內(nèi)的孔與基體灰度值區(qū)分開來, 并計(jì)算得到陶瓷涂層的孔隙率為14%, 并采用壓汞測(cè)試技術(shù)對(duì)測(cè)試結(jié)果進(jìn)行驗(yàn)證。研究認(rèn)為X-CT無損測(cè)試是一種建立陶瓷涂層內(nèi)可視化孔結(jié)構(gòu)分析的有效工具。

    陶瓷; 孔隙率; X-CT技術(shù); 三維重構(gòu)

    TQ174

    A

    date:2019-10-21;

    date: 2019-12-18

    National Basic Research Program of China (973 Program, 2015CB65510)

    ZHANG Zhifeng(1989–), male, PhD candidate. E-mail: zzf_0201@126.com

    張志鋒(1989–), 男, 博士研究生. E-mail: zzf_0201@126.com

    Corresponding author:JIANG Jinyang, professor. E-mail: jiangjinyang16@163.com

    蔣金洋, 教授. E-mail: jiangjinyang16@163.com

    1000-324X(2020)09-1059-05

    10.15541/jim20190534

    猜你喜歡
    武勝高清涂層
    塑料涂層的制備
    上海建材(2018年4期)2018-11-13 01:08:52
    高三數(shù)學(xué)復(fù)習(xí)回歸教材最重要
    周武勝理事長(zhǎng)走訪中國(guó)發(fā)明協(xié)會(huì)
    4K高清監(jiān)控需要兩條腿走路
    數(shù)碼單反拍攝高清視頻時(shí)同期聲的收錄探索
    新媒體研究(2015年7期)2015-12-19 09:09:57
    嘉陵江武勝段冬季水鳥多樣性調(diào)查
    Federal—Mogul公司開發(fā)的DuroGlide活塞環(huán)涂層
    用于重型柴油機(jī)濺鍍軸承的新型聚合物涂層
    Properties of tungsten coating deposited onto copper under atmospheric plasma spraying?
    不到200元,也買高清MP4播放器
    久久人人爽人人爽人人片va| 精品久久久精品久久久| 妹子高潮喷水视频| 在线播放无遮挡| 高清黄色对白视频在线免费看 | 色婷婷久久久亚洲欧美| 久久久国产欧美日韩av| 五月开心婷婷网| 国产极品天堂在线| 久久ye,这里只有精品| 亚洲国产色片| 午夜免费观看性视频| 国产av精品麻豆| 又大又黄又爽视频免费| 大片免费播放器 马上看| 国产视频内射| 国产精品人妻久久久久久| 免费观看在线日韩| www.色视频.com| 美女福利国产在线| 亚洲精品乱码久久久v下载方式| 看免费成人av毛片| 视频区图区小说| 国产高清有码在线观看视频| 纯流量卡能插随身wifi吗| 亚洲欧美成人精品一区二区| 天天操日日干夜夜撸| 成人国产av品久久久| 在线免费观看不下载黄p国产| 91成人精品电影| 亚洲av二区三区四区| 国产一区二区在线观看日韩| 久久久久久久精品精品| 国产69精品久久久久777片| 少妇的逼水好多| 91久久精品电影网| 黑人猛操日本美女一级片| 在线 av 中文字幕| 成人午夜精彩视频在线观看| 22中文网久久字幕| 丰满迷人的少妇在线观看| 国产黄色视频一区二区在线观看| 国产精品不卡视频一区二区| 久久国产乱子免费精品| 在线观看免费高清a一片| 欧美成人精品欧美一级黄| 国产毛片在线视频| 少妇丰满av| 亚洲色图综合在线观看| 伊人久久国产一区二区| 在线天堂最新版资源| 色吧在线观看| 男人爽女人下面视频在线观看| 99热这里只有是精品50| 国内少妇人妻偷人精品xxx网站| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久精品电影小说| 观看免费一级毛片| 亚洲av欧美aⅴ国产| 精品久久国产蜜桃| 国产精品一二三区在线看| 免费看不卡的av| 亚洲精品自拍成人| 国产高清有码在线观看视频| 乱码一卡2卡4卡精品| 美女脱内裤让男人舔精品视频| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线 | 深夜a级毛片| 观看美女的网站| 亚洲av综合色区一区| 高清视频免费观看一区二区| 国产欧美日韩综合在线一区二区 | 蜜桃在线观看..| 亚洲av欧美aⅴ国产| 久久人人爽人人爽人人片va| 成人特级av手机在线观看| 久久久久国产精品人妻一区二区| 蜜桃在线观看..| av播播在线观看一区| 国产精品一区二区在线不卡| 国产亚洲一区二区精品| 亚洲中文av在线| 少妇人妻久久综合中文| 亚洲综合精品二区| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 国产黄片视频在线免费观看| 十八禁高潮呻吟视频 | 成年人午夜在线观看视频| 久久久久久久亚洲中文字幕| 亚洲精品亚洲一区二区| av在线播放精品| 亚洲av不卡在线观看| 国产又色又爽无遮挡免| 最黄视频免费看| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 国产精品.久久久| 国产一区二区在线观看av| 日韩欧美精品免费久久| 午夜免费观看性视频| 蜜臀久久99精品久久宅男| 9色porny在线观看| 欧美日韩亚洲高清精品| 国产免费福利视频在线观看| 男女国产视频网站| 欧美3d第一页| 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 国语对白做爰xxxⅹ性视频网站| 国产一区有黄有色的免费视频| 我的老师免费观看完整版| 啦啦啦在线观看免费高清www| 亚洲四区av| 精品一区二区三卡| 精品人妻偷拍中文字幕| 久久99热这里只频精品6学生| 欧美成人精品欧美一级黄| 少妇高潮的动态图| 日韩中文字幕视频在线看片| 黄色视频在线播放观看不卡| 国产av一区二区精品久久| freevideosex欧美| 久久 成人 亚洲| 亚洲图色成人| 男女免费视频国产| a 毛片基地| 美女中出高潮动态图| 一级,二级,三级黄色视频| 国产视频首页在线观看| 自线自在国产av| 插逼视频在线观看| 亚洲精品国产色婷婷电影| 日本黄色片子视频| 黑丝袜美女国产一区| 极品人妻少妇av视频| 我要看黄色一级片免费的| 欧美97在线视频| 伊人亚洲综合成人网| 亚洲av电影在线观看一区二区三区| 欧美3d第一页| 免费观看av网站的网址| 午夜激情久久久久久久| 超碰97精品在线观看| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 最近的中文字幕免费完整| 亚洲国产精品999| 亚洲熟女精品中文字幕| 六月丁香七月| 久热这里只有精品99| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 亚洲人成网站在线播| 老司机影院毛片| 亚洲自偷自拍三级| 国产精品久久久久久精品古装| 伦理电影大哥的女人| 日韩制服骚丝袜av| 狂野欧美激情性bbbbbb| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| 男人爽女人下面视频在线观看| 日韩一区二区视频免费看| 久久免费观看电影| 久久久久久久精品精品| 亚洲三级黄色毛片| 亚洲欧美精品专区久久| 亚洲四区av| 国产又色又爽无遮挡免| www.色视频.com| 简卡轻食公司| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 日韩免费高清中文字幕av| 午夜影院在线不卡| 国内少妇人妻偷人精品xxx网站| 天堂8中文在线网| 蜜桃久久精品国产亚洲av| 制服丝袜香蕉在线| 精品少妇久久久久久888优播| 丝袜喷水一区| 自拍偷自拍亚洲精品老妇| 黄色毛片三级朝国网站 | 国产亚洲最大av| 国产91av在线免费观看| 亚洲精品aⅴ在线观看| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 日韩一本色道免费dvd| 免费观看性生交大片5| 中文字幕制服av| 亚洲无线观看免费| 最近最新中文字幕免费大全7| 51国产日韩欧美| 少妇高潮的动态图| 97在线视频观看| 三上悠亚av全集在线观看 | 亚洲av综合色区一区| 国产有黄有色有爽视频| 天美传媒精品一区二区| 欧美变态另类bdsm刘玥| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| 国产精品一区二区性色av| 久久久久久久精品精品| 国产伦精品一区二区三区四那| 国产精品无大码| 春色校园在线视频观看| 久久久国产精品麻豆| 国产精品人妻久久久影院| 亚洲成人一二三区av| 国产熟女欧美一区二区| 啦啦啦视频在线资源免费观看| 日韩电影二区| 美女国产视频在线观看| 天堂俺去俺来也www色官网| 99精国产麻豆久久婷婷| 久久6这里有精品| 久久婷婷青草| 99久久中文字幕三级久久日本| 十分钟在线观看高清视频www | 制服丝袜香蕉在线| 精品卡一卡二卡四卡免费| 国产av一区二区精品久久| 精品一区二区免费观看| 极品教师在线视频| 日韩av不卡免费在线播放| 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| 亚洲美女黄色视频免费看| 我要看黄色一级片免费的| 一个人看视频在线观看www免费| 七月丁香在线播放| 中文字幕亚洲精品专区| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| 亚洲国产日韩一区二区| 在线观看三级黄色| 乱码一卡2卡4卡精品| 深夜a级毛片| av女优亚洲男人天堂| h日本视频在线播放| 一级片'在线观看视频| 中文字幕制服av| 亚洲一区二区三区欧美精品| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| 国产成人精品婷婷| tube8黄色片| 亚洲天堂av无毛| 亚洲精品日本国产第一区| 少妇高潮的动态图| 一级毛片久久久久久久久女| 欧美一级a爱片免费观看看| 国产真实伦视频高清在线观看| 亚洲四区av| 女人久久www免费人成看片| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 菩萨蛮人人尽说江南好唐韦庄| a级毛色黄片| 久久99一区二区三区| 卡戴珊不雅视频在线播放| 午夜免费观看性视频| 七月丁香在线播放| 亚洲精品一区蜜桃| 亚洲美女视频黄频| 亚洲国产成人一精品久久久| 亚洲美女黄色视频免费看| 黄色视频在线播放观看不卡| 两个人的视频大全免费| 春色校园在线视频观看| 欧美日韩综合久久久久久| 免费大片18禁| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 国产日韩欧美在线精品| 七月丁香在线播放| 精品亚洲乱码少妇综合久久| 搡女人真爽免费视频火全软件| 国产精品国产三级国产专区5o| 亚洲av日韩在线播放| 久久午夜福利片| 亚洲久久久国产精品| a级毛片免费高清观看在线播放| 精品亚洲乱码少妇综合久久| 国产伦精品一区二区三区视频9| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| 中文字幕精品免费在线观看视频 | 欧美老熟妇乱子伦牲交| 亚洲精品国产成人久久av| 久久久久久久亚洲中文字幕| 丰满人妻一区二区三区视频av| 女的被弄到高潮叫床怎么办| 一区二区三区精品91| 亚洲国产色片| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 五月开心婷婷网| 综合色丁香网| 久久久欧美国产精品| 大码成人一级视频| 午夜影院在线不卡| 国产精品人妻久久久影院| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看| 天天躁夜夜躁狠狠久久av| 日韩免费高清中文字幕av| 国产白丝娇喘喷水9色精品| 伦理电影免费视频| 免费看不卡的av| 精品久久国产蜜桃| 久久久精品免费免费高清| 日韩大片免费观看网站| 涩涩av久久男人的天堂| 亚洲av.av天堂| 中文字幕免费在线视频6| 免费人妻精品一区二区三区视频| 韩国av在线不卡| 伊人亚洲综合成人网| 中文字幕精品免费在线观看视频 | 99久久精品一区二区三区| 久久久久久伊人网av| 精品一区二区三区视频在线| 女人久久www免费人成看片| 久久久久久久精品精品| 日本91视频免费播放| 国产精品一区二区性色av| 日韩成人av中文字幕在线观看| 亚洲人成网站在线观看播放| 有码 亚洲区| 国产成人精品一,二区| 国产成人91sexporn| 欧美丝袜亚洲另类| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 又大又黄又爽视频免费| 乱人伦中国视频| 看非洲黑人一级黄片| 国产69精品久久久久777片| 欧美亚洲 丝袜 人妻 在线| 国产美女午夜福利| 这个男人来自地球电影免费观看 | 少妇的逼水好多| 精品久久国产蜜桃| 人人妻人人看人人澡| 欧美另类一区| 国产精品国产av在线观看| 精品久久国产蜜桃| 欧美高清成人免费视频www| av一本久久久久| 少妇的逼水好多| 欧美另类一区| 日日摸夜夜添夜夜添av毛片| 亚洲情色 制服丝袜| 国产伦精品一区二区三区四那| 有码 亚洲区| 精品一区二区三卡| 丰满乱子伦码专区| 97超碰精品成人国产| 国产欧美另类精品又又久久亚洲欧美| 一级爰片在线观看| 国产亚洲91精品色在线| 免费人成在线观看视频色| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品三级大全| 国产在线男女| 我要看日韩黄色一级片| 亚洲无线观看免费| 亚洲欧美日韩卡通动漫| 久久久久久久久久人人人人人人| videossex国产| 精品国产一区二区三区久久久樱花| 日韩欧美精品免费久久| 男女免费视频国产| 51国产日韩欧美| 这个男人来自地球电影免费观看 | 少妇精品久久久久久久| 日韩av免费高清视频| 一级爰片在线观看| 2018国产大陆天天弄谢| 久久婷婷青草| 亚洲国产精品一区三区| 黄色配什么色好看| 六月丁香七月| 欧美xxⅹ黑人| 在现免费观看毛片| 亚洲精品亚洲一区二区| 国产视频内射| 久久精品国产自在天天线| 秋霞在线观看毛片| 久久99精品国语久久久| 久久久午夜欧美精品| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜撸| 免费看av在线观看网站| 成人国产麻豆网| 国产在线一区二区三区精| 十分钟在线观看高清视频www | 免费播放大片免费观看视频在线观看| 日日啪夜夜爽| 国产亚洲欧美精品永久| 在线观看免费视频网站a站| 伦理电影免费视频| 久久鲁丝午夜福利片| 青春草亚洲视频在线观看| 中文资源天堂在线| 国产综合精华液| 国产成人freesex在线| 久久6这里有精品| av福利片在线观看| 国产老妇伦熟女老妇高清| 交换朋友夫妻互换小说| 人妻系列 视频| a级毛片在线看网站| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 亚洲人成网站在线播| 亚洲国产精品专区欧美| 日韩视频在线欧美| 伦理电影免费视频| 看免费成人av毛片| 亚洲欧美清纯卡通| 在线观看av片永久免费下载| 妹子高潮喷水视频| 极品人妻少妇av视频| 99热这里只有是精品50| 91久久精品国产一区二区三区| 亚洲,欧美,日韩| 91久久精品国产一区二区成人| 精品国产一区二区三区久久久樱花| 国内精品宾馆在线| 久久久午夜欧美精品| 丝袜在线中文字幕| 色吧在线观看| 国产午夜精品一二区理论片| 最近中文字幕高清免费大全6| 人人妻人人澡人人爽人人夜夜| 亚洲欧美清纯卡通| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 亚洲av.av天堂| 男女无遮挡免费网站观看| 激情五月婷婷亚洲| 国产在线视频一区二区| 国产在视频线精品| 日韩一本色道免费dvd| 啦啦啦啦在线视频资源| 极品人妻少妇av视频| 中文字幕久久专区| 91久久精品国产一区二区三区| 亚洲,欧美,日韩| 六月丁香七月| 国产精品一区二区性色av| 免费在线观看成人毛片| 国产熟女欧美一区二区| 免费观看无遮挡的男女| 欧美xxⅹ黑人| 久久精品久久久久久久性| 成人国产麻豆网| 日本欧美视频一区| 久久影院123| 成年人免费黄色播放视频 | 亚洲精品一二三| 亚洲精品久久午夜乱码| 伦理电影大哥的女人| 人妻人人澡人人爽人人| 在线观看av片永久免费下载| 欧美日韩亚洲高清精品| 七月丁香在线播放| 国产精品人妻久久久久久| 精品少妇久久久久久888优播| 最近中文字幕2019免费版| 99久久精品国产国产毛片| 交换朋友夫妻互换小说| 极品教师在线视频| 国产精品人妻久久久影院| 欧美高清成人免费视频www| 啦啦啦视频在线资源免费观看| 天堂中文最新版在线下载| 麻豆乱淫一区二区| 极品人妻少妇av视频| 99久久精品一区二区三区| 久久99热这里只频精品6学生| 国产av码专区亚洲av| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 高清在线视频一区二区三区| 精品久久国产蜜桃| 大香蕉久久网| 老司机亚洲免费影院| av在线观看视频网站免费| 精品99又大又爽又粗少妇毛片| 各种免费的搞黄视频| 亚洲欧美成人精品一区二区| 精品国产国语对白av| 欧美区成人在线视频| 国内精品宾馆在线| 免费人妻精品一区二区三区视频| 十八禁高潮呻吟视频 | 国产欧美亚洲国产| 中文乱码字字幕精品一区二区三区| 亚洲美女黄色视频免费看| 日日啪夜夜爽| 欧美少妇被猛烈插入视频| 女人久久www免费人成看片| 日本欧美国产在线视频| 午夜日本视频在线| 国产乱人偷精品视频| 免费av中文字幕在线| 成年人免费黄色播放视频 | 最近中文字幕2019免费版| 最近的中文字幕免费完整| 国产一区二区三区av在线| 如何舔出高潮| 精品国产一区二区久久| 免费人成在线观看视频色| 午夜免费鲁丝| 三级经典国产精品| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 十八禁高潮呻吟视频 | 亚洲成色77777| 国产成人aa在线观看| 视频区图区小说| 久热这里只有精品99| 91精品伊人久久大香线蕉| 久久久亚洲精品成人影院| 狠狠精品人妻久久久久久综合| 一级片'在线观看视频| 免费大片黄手机在线观看| 国产亚洲精品久久久com| 深夜a级毛片| 久久国产精品男人的天堂亚洲 | 在线观看国产h片| 国产白丝娇喘喷水9色精品| 亚洲欧美一区二区三区国产| 亚洲怡红院男人天堂| 久久久欧美国产精品| 能在线免费看毛片的网站| av在线观看视频网站免费| 日本91视频免费播放| 欧美日韩视频高清一区二区三区二| 国产有黄有色有爽视频| 男人狂女人下面高潮的视频| 大片电影免费在线观看免费| 伦理电影大哥的女人| 久久精品夜色国产| 色婷婷av一区二区三区视频| 色5月婷婷丁香| 亚洲欧美清纯卡通| 精华霜和精华液先用哪个| 日韩电影二区| 六月丁香七月| 国产亚洲5aaaaa淫片| 国产色爽女视频免费观看| 久久综合国产亚洲精品| 国产精品一区二区性色av| 久久久久久久国产电影| 精品一区在线观看国产| 精品国产一区二区三区久久久樱花| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡动漫免费视频| 国产探花极品一区二区| 在线 av 中文字幕| 搡女人真爽免费视频火全软件| 亚洲精华国产精华液的使用体验| 春色校园在线视频观看| 婷婷色综合大香蕉| 日韩一区二区视频免费看| 亚洲婷婷狠狠爱综合网| 国产精品福利在线免费观看| 国产色婷婷99| 中文字幕av电影在线播放| 男人舔奶头视频| 国产色爽女视频免费观看| 啦啦啦中文免费视频观看日本| 伊人亚洲综合成人网| 新久久久久国产一级毛片| 色视频在线一区二区三区| 久久99一区二区三区| 丝瓜视频免费看黄片| 国产精品一区二区在线不卡| 亚洲欧美一区二区三区黑人 | 国产精品免费大片| 国产精品一区二区在线观看99| 麻豆精品久久久久久蜜桃| 爱豆传媒免费全集在线观看| 国产精品一区二区三区四区免费观看| 在线免费观看不下载黄p国产| 各种免费的搞黄视频| av有码第一页| 建设人人有责人人尽责人人享有的| 爱豆传媒免费全集在线观看| 伦理电影大哥的女人| 建设人人有责人人尽责人人享有的| 国产亚洲91精品色在线| .国产精品久久| 一级av片app| √禁漫天堂资源中文www| 国产精品久久久久久久电影| 三上悠亚av全集在线观看 | 久久久久久久久久人人人人人人| 热re99久久精品国产66热6| 国产精品三级大全| 欧美日韩一区二区视频在线观看视频在线| 美女视频免费永久观看网站| 精品一区在线观看国产| 制服丝袜香蕉在线| 久久久久久久久久久丰满|