• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method

    2020-10-15 02:07:30WANGDonghaiHOUWentaoLINaLIDongzhenXUXiaodongXUJunWANGQingguoTANGHuili
    無機材料學報 2020年9期
    關鍵詞:藍寶石單晶熔體

    WANG Donghai, HOU Wentao, LI Na, LI Dongzhen, XU Xiaodong, XU Jun, WANG Qingguo, TANG Huili

    Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method

    WANG Donghai1, HOU Wentao1, LI Na1, LI Dongzhen2, XU Xiaodong2, XU Jun1, WANG Qingguo1, TANG Huili1

    (1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2. School of Physics Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China)

    Single-crystal sapphire fibers with diameter of 400-1000 μm and length of 500 mm were successfully grown by the edge-defined film-fed growth (EFG) method. The cross section is roughly circular without noticeable faceting on the lateral surface of the fiber. The diameter variation was within 40 μm in the whole fiber. Crystal defects such as micro-bubbles, inclusions and growth stripes were observed and analyzed. Most micro bubbles in the crystal are spherical and exist on the periphery of the fiber. A small amount of Mo inclusions were observed on the periphery of the fiber. The new dies produce greater number of Mo inclusions at the first several uses, and Mo inclusions decrease after several uses. Size and distribution of micro-bubbles in sapphire fiber have been studied by experimental and numerical simulation of the fluid flow in the meniscus. Results of experimental and numerical simulation presented excellent agreement. The micro-bubbles distribution depends on the fluid flow in the meniscus. Vortex of the fluid flow drove these micro-bubbles to move to the atmosphere under thermo-capillary convection. Absorption loss at 633 nm was 9 dB/m. Inclusions and surface irregularities increase the scattering losses.

    sapphire fibers; edge-defined film-fed growthmethod; micro bubble; Mo inclusion

    The single crystal fibers as a reinforcement for metal and ceramic matrix composites promise to serve in struc-tural elements at temperatures in excess of 1500 ℃ in oxidizing conditions[1]. Among oxide materials, sapphire became the principal candidate for fiber material due to its excellent mechanical, chemical and optical properties. Moreover, sapphire also has excellent characteristics of biologically inert, non-toxic and high laser damage threshold. Sapphire fibers can be employed in spectro-metric and pyrometric measurements in harsh environ--ments due to the chemical resistance and the high melt-ing point[2], for example inside chemical reactors, furnaces, combustion engines and other extreme conditions. Sapphire fibers can also be used in medical equipment[3], namely the delivery of Er:YAG laser beam at 2.94 μm for minor skin and dental surgeries.

    The following principal melt growth techniques have been successfully used to produce single-crystal oxide fibers: (1) edge-defined film-fed growth (EFG) method[4], (2) laser heated pedestal growth (LHPG) method[5], and (3) micro pulling-down (μ-PD) method[6], in which the melting solidified in capillary tubes[7-8]. Compared with other growth techniques, only the EFG method yields high volume, cost effective sapphire fiber[9]. However, their variations on outer diameter and the impurities of the grown fibers significantly degrade its performance. The optical properties of single-crystal sapphire fibers grown by the EFG method were reported in this paper.

    1 Materials and methods

    1.1 Experimental

    The sapphire fibers were grown by EFG method with a commercial Cz RF-heated system. Argon atmosphere was used as growth ambient with the pressure of 111– 122 kPa. A molybdenum crucible and die with central melt supply were used to grow single crystal fibers with diameter of 400–1000 μm and length of 25 cm. The raw material was placed in the molybdenum crucible. The fiber was pulled by an oriented crystal seed from the tip of the molybdenum die, as shown in Fig. 1.

    The sapphire crystal was shaped with the sharp edge on the top of the die. Diameters of the grown fibers were slightly smaller than the diameter of the die.

    The heat loss from the crucible and the hot zone must be compensated during the growth process, which is the main reason of nonuniform of the diameter. So, fibers (diameter 400–1000 μm, length 500 mm) with good qual-ity and regular shape were grown successfully in the fol-lowing growth operations by more heat supplied, as shown in Fig. 2(b).

    Three single-crystal fiber samples with length of 2 mmwere cut at different locations of 20, 90 and 150 mm away from the seed, respectively.

    1.2 Numerical simulation

    It is well known that fluid flow plays an important role in the processes of heat transport and mass transport in crystal growth from the melt. In order to determine the trajectory of a possible gas bubble located in the melt meniscus, the incompressible Navier–Stokes equations were considered:

    1-Melt; 2-Crucible; 3-Die; 4-Meniscus; 5-Sapphire fiber; 6-Seed

    Fig. 2 View of as-grown sapphire in which fibers with irregular shape (a) and regular shape (b)

    The dimensionless governing equations with the mentioned boundary conditions (specified in the Fig. 3) have been solved using the CGSim software. The computations were made in the stationary cases: growing fiber with radius of 0.5 mm with pulling rate of 30 mm/h and meniscus height of 0.2 mm.

    2 Results and discussions

    2.1 Crystal growth and defects in crystals

    The cross section of the fibers was roughly circular without noticeable faceting on the lateral surface of the fiber. The diameter variation was within 40 μm in the whole fiber. Facets appeared only on one side of the-plane. The facet probability of the sapphire fiber grown along the-axis was defined by anisotropy of the surface energy and melt temperature fluctuations. Temperature instability also could induce the non-uniform lateral or normal facet growth, which could lead to defects and surface roughness shown in Fig. 4 and Fig. 5.

    Fig. 3 Schematic diagram of the boundary conditions used in the numerical simulation

    Fig. 4 Growth stripes in the crystal structure caused by slight vibrations above the die, v=30 mm/h

    Fig. 5 Cross section morphology and bubbles' distribution in the cross section of the sapphire fibers

    Fig. 6 shows the principles of the capillary shaping for EFG fiber growth method. It can be seen that stable shaped single crystals with constant diameter will be grown if the growth angle(the angle between the meniscus and the growth axis) is constant (o). As a material constant, the parameterowas determined by the thermodynamic equilibrium condition at the three-phase interface line, which does not depend on the growth parameters like pulling velocity, diameter and meniscus height. The parametersoof different crystals are given in Table 1.

    Fig. 6 Principles of capillary shaping for EFG fiber growth method

    m-Vertical curvature of the meniscus;d-Die radius;c-Radius of the crystal;m-Meniscus height

    Table 1 Parameter φo for different crystals

    Deviations of the actual growth anglefromoresult from perturbations of the meniscus height and radius, which lead to non-stationary variations of the fiber radii in agreement with:

    The relationship between meniscus shape and crystal radius is given by the equation[12]:

    The relationship of theoretical meniscus shapes() and different fiber radiicis shown in Fig. 7. For the actual fiber geometry, meniscus shapes with different fiber radiicvalues were calculated. The dashed line shows the possible positions of the meniscus. There is a certain range of meniscus height for successful growth of crystals. The increase of height will induce the separation between the growing crystal and the meniscus. The de-crease of height will cause the local interaction between the growing crystal and the die surface, which will re-d-uce the crystal quality. The meniscus height depends on the material properties of the melt, pulling rate and am-bient temperature distribution. The stable meniscus height and regular crystal shape can be achieved when temperature gradient at growth interface area was invariable. However, it is not easy to establish such conditions during the entire crystallization process. In order to maintain a stable meniscus height, we have to use an automated control system with computer-controlled feedback program that simultaneously monitored and controlled the fiber diameter and the die temperature. At the same time the pulling rate was invariable.

    Fig. 7 Relationship between theoretical meniscus shapes Z(R) and different fiber radii R

    The characteristic defects in sapphire crystal were the so-called voids or bubbles, which could reduce the opti-cal and mechanical quality of crystals. In this work, sap-phire fibers were studied with an optical microscope with 50× magnification. It was shown that there were bubbles running along the fibers. Fig. 8 shows a 50× micrograph of the EFG sapphire fiber.

    The size of micro bubbles was about 5–10 μm. The most bubbles were spherical and exist on the pe-riphery of the fiber. The distribution behavior of mi-cro-bubbles was fairly related to growth rate and impu-rity effects (consti-tutional super cooling). Their occur-rence has been dem-onstrated to be related to the stability of the solid liquid interface[13-14].

    Another defect of the fiber was the Mo inclusions. As shown in Fig. 4, a small amount of Mo inclusions were observed, which are re-crystallized from solution in the sapphire. The Mo is generally oxidized by dissociation of the melt. The oxide dissolves in the melt, and is reduced to yield metallic molybdenum. This mechanism would seem to be confirmed by the appearance of the Mo in the inclusions. However, other aspects play a role on the generation of Mo inclusions. Notably, the new dies would produce more Mo inclusions at the first several runs as shown in Fig. 9(a).

    In Fig. 9(a), the total content of Mo decreased with the frequency use of the crucible and die. It is concluded that new setups with the rougher machining surface, which leads to easier dissolution of Mo and increases the “output” of Mo into the melt. The high initial content of Mo inclusions can be seen when the crucible and die were first used. Another possibility is due to the poor vacuum of the equipment which results in more content of mo-lybdenum oxide. Other experiments have sought to es-tablish the “time relationship” of Mo in sapphire fibers. The Mo concentration in the samples measured by ICP analysis and the results were in Fig. 9(b).

    Fig. 8 Bubbles’ distribution observed on the lateral periphery of the fiber

    Fig. 9 Decrease in total Mo inclusion length with die life (a) and Mo concentration as a function of time from a sapphire melt (b)

    Mo seems to be produced in substantial amounts early in the usage of the setup, and then diminishes after sev-eral runs. The die and its surroundings are likely the coldest part of the setup. It is apparent from examining used die that significant amounts of Mo are precipitated out on the outer surfaces.

    2.2 Bubbles distribution and numerical simu-lation result of the fluid flow in the meniscus

    The flow field in the meniscus (fiber radius 0.5 mm) and the corresponding bubbles in the crystals were shown in Fig. 10.

    Fig. 10 Flow field in the meniscus (fiber radius 0.5 mm) and corresponding bubbles in the crystals

    The available experimental data suggest that the mi-cro- bubbles distribution depends on the fluid flow in the me-niscus. The distribution of the bubbles in the periph-ery of the meniscus suggested that the vortex of the fluid flow drove the bubbles move to the atmosphere under the thermo-capillary convection. The positions of these re-gions depend on the geometry shape of the die[15].

    2.3 Optical properties

    The absorption spectrum of the EFG sapphire fiber was shown in Fig. 11. The measured attenuation coeffi-cient of the EFG fiber with length of 76 cm was 9 dB/m at 633 nm. The crystal quality of grown crystals by EFG method was worse than the crystals grown by LHPG method[16]. Low propagation loss is necessary for optical applications of sapphire fibers. Two effects such as scat-tering and absorption induce the total loss. Absorption loss comes from the micro-bubbles defects and the im-purities. In the grown sapphire fiber, the density of mo-lybdenum ions will reach up to 5×10–6g/cm3due to the mo-lybdenum crucible used in the growth process. The im-purities in the melt were also the reason of extrinsic ab-sorption. Inclusions, inhomogeneous, and surface irregu-larities increase the scattering losses. There is no any inhomogeneous defect observed under the optical mi-croscopy, and no scattering centers under laser illumina-tion. It is suggested that diameter variation should be the most important reason for the scattering loss. The varia-tions in diameter could be induced by several following factors: heating power fluctuations in the molten zone and the mechanical perturbations. The latter could induce bending or twisting of fiber.

    3 Conclusion

    Single-crystal sapphire fibers (diameter (400–1000) μm, length 500 mm) were grown with the EFG method suc-cessfully. The cross section of the-axis fibers was roughly circular. The defects such as micro-bubbles, inclusions and growth stripes were observed and analyzed. The dis-tribution of the micro-bubbles was studied with optical microscopy. The influence of the growth conditions on the size and distribution of micro-bubbles in sapphire fibers has been studied by experimental and numerical simulation of the fluid flow in the meniscus. The defect analysis and optical characterization exhibited the imperfect single crystalline structure of fibers.

    Fig. 11 Absorption spectrum of the EFG sapphire fiber

    [1] LABELLE JR H E. EFG, the invention and application to sapphire growth., 1980, 50(1): 8–17.

    [2] WILSON B A, PETRIE C M, BLUE T E. High temperature effects on the light transmission through sapphire optical fiber., 2018, 101(8): 3452–3459.

    [3] COULTER A H. Sapphire fibers for erbium: YAG continue to evolve., 1995, 13(3): 227–228.

    [4] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique., 2016, 673(1): 012017.

    [5] BERA S, NIE C D, SOSKIND M G,. Growth and lasing of single crystal YAG fibers with different Ho3+concentrations., 2018, 75: 44–48.

    [6] LEBBOU K. Single crystals fiber technology design., 2017, 63: 13–18.

    [7] KURLOV V N, MILEIKO S T, KOLCHIN A A,. Growth of oxide fibers by the internal crystallization method., 2002, 47(1): S53–S62.

    [8] KURLOV V N, KIIKO V M, KOLCHIN A A,. Sapphire fi-bres grown by a modified internal crystallisation method., 1999, 204(4): 499–504.

    [9] FITZGIBBON J J, COLLINS J M. High-volume production of low-loss sapphire optical fibers by Saphikon EFG (edge-defined, film-fed growth) method., 1998, 3262: 135–141.

    [10] SUREK T. Theory of shape stability in crystal growth from the melt., 1976, 47(10): 4384–4393.

    [11] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt. crystal research and technology., 1999, 34(1): 3–40.

    [12] KAMADA K, MURAKAMI R, KOCHURIKHIN V V,. Sin-gle crystal growth of submillimeter diameter sapphire tube by the micro- pulling down method., 2018, 492: 45–49.

    [13] ZHDANOV A V, SATUNKIN G A, TATARCHENKO V A,. Cylindrical pores in a growing crystal., 1980, 49(4): 659–664.

    [14] TATARCHENKO V A, YALOVETS T N, SATUNKIN G A,. Defects in shaped sapphire crystals., 1980, 50(1): 335–340.

    [15] BUNOIU O, NICOARA I, SANTAILLER J L,. Fluid flow and solute segregation in EFG crystal growth process., 2005, 275(1/2): e799–e805.

    [16] NUBLING R K, HARRINGTON J A. Optical properties of sin-gle- crystal sapphire fibers., 1997, 36(24): 5934–5940.

    導模法生長藍寶石單晶光纖的缺陷和光學特性研究

    王東海1, 侯文濤1, 李納1, 李東振2, 徐曉東2, 徐軍1, 王慶國1, 唐慧麗1

    (1. 同濟大學 物理科學與工程學院, 上海 200092; 2. 江蘇師范大學 物理與電子工程學院, 徐州 221116)

    通過導模法(EFG)成功生長了藍寶石單晶光纖(直徑400~1000 μm, 長度500 mm)。光纖的橫截面大致為圓形, 側面無明顯的小面, 直徑變化小于40 μm。本研究對晶體缺陷, 例如微氣泡, 包裹物和生長條紋等進行觀察與分析, 得出: 大多數(shù)微氣泡是球狀的, 且存在于光纖的外側緣; 在藍寶石光纖外側面也觀察到少量的鉬包裹物元素; 新模具在前幾次使用中往往會產(chǎn)生更多的鉬夾雜物, 在多次使用后降低。通過對熔體膜流體流動的實驗和數(shù)值模擬, 研究藍寶石光纖中微氣泡尺寸和分布, 實驗和數(shù)值模擬的結果顯示出良好的一致性。微氣泡的分布取決于熔體膜處的流體流動模式, 流體流動的渦流使微氣泡在熱毛細對流作用下移動到藍寶石光纖外側緣。633 nm處的吸收損耗為9 dB/m, 包裹物和表面不規(guī)則性會增加散射損耗。

    藍寶石光纖; 導模法(EFG); 微氣泡; 鉬包裹物

    TQ174

    A

    date:2019-11-11;

    date: 2019-12-25

    WANG Donghai(1982–), male, PhD candidate. E-mail: yingxiong3258@sina.com

    王東海(1982–), 男, 博士研究生. E-mail: yingxiong3258@sina.com

    Corresponding author:XU Jun, professor. E-mail: xujun@mail.shcnc.ac.cn; WANG Qingguo, PhD. E-mail:wqingguo2013@163.com

    徐軍, 教授. E-mail: xujun@mail.shcnc.ac.cn; 王慶國, 博士. E-mail:wqingguo2013@163.com

    1000-324X(2020)09-1053-06

    10.15541/jim20190573

    猜你喜歡
    藍寶石單晶熔體
    藍寶石單晶爐隔熱屏內(nèi)膽損壞機理
    失蹤的“藍寶石”
    大尺寸低阻ZnO單晶襯弟
    大尺寸低阻ZnO單晶襯底
    聚合物熔體脈振傳遞過程的協(xié)同學研究
    中國塑料(2016年4期)2016-06-27 06:33:48
    注射保壓過程中O2/N2分子在PMMA熔體內(nèi)部的擴散行為
    中國塑料(2016年3期)2016-06-15 20:30:01
    含硅芳炔樹脂及其共混物熔體的流變性能
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    注氣口前后段螺桿中聚合物熔體的數(shù)值研究
    中國塑料(2014年1期)2014-10-17 02:46:37
    日本一区二区免费在线视频| 99国产精品99久久久久| 午夜福利视频精品| av国产久精品久网站免费入址| 色婷婷av一区二区三区视频| 国产免费现黄频在线看| 久久久久久人人人人人| 不卡av一区二区三区| 少妇的丰满在线观看| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区黑人| 久久国产精品人妻蜜桃| 亚洲熟女精品中文字幕| 91国产中文字幕| 免费黄频网站在线观看国产| 三上悠亚av全集在线观看| 亚洲欧美日韩另类电影网站| 一边摸一边做爽爽视频免费| 妹子高潮喷水视频| 亚洲精品国产av成人精品| 91精品伊人久久大香线蕉| 国产成人精品久久二区二区免费| 在线观看免费高清a一片| 精品少妇内射三级| av国产久精品久网站免费入址| 午夜福利视频精品| 欧美日韩视频高清一区二区三区二| 久久ye,这里只有精品| 一级毛片女人18水好多 | 老司机亚洲免费影院| 国产精品熟女久久久久浪| 天堂俺去俺来也www色官网| 中文字幕制服av| 午夜影院在线不卡| h视频一区二区三区| 考比视频在线观看| 人妻一区二区av| 国产男女超爽视频在线观看| 90打野战视频偷拍视频| 亚洲欧美一区二区三区久久| 十分钟在线观看高清视频www| 男人操女人黄网站| 人体艺术视频欧美日本| 成年美女黄网站色视频大全免费| 亚洲色图 男人天堂 中文字幕| 久久这里只有精品19| 亚洲免费av在线视频| 日韩一本色道免费dvd| 色婷婷久久久亚洲欧美| 青青草视频在线视频观看| 日韩大片免费观看网站| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区黑人| 亚洲国产日韩一区二区| av有码第一页| 女性生殖器流出的白浆| 一级,二级,三级黄色视频| 99国产精品一区二区三区| 免费在线观看日本一区| 国产片特级美女逼逼视频| 超碰97精品在线观看| 久久国产精品男人的天堂亚洲| 午夜福利,免费看| 欧美变态另类bdsm刘玥| 叶爱在线成人免费视频播放| 黄频高清免费视频| 深夜精品福利| 青草久久国产| 亚洲精品自拍成人| 91麻豆av在线| 一区在线观看完整版| 亚洲一卡2卡3卡4卡5卡精品中文| 又大又黄又爽视频免费| 国产精品亚洲av一区麻豆| 久久久精品94久久精品| 日本av手机在线免费观看| 中文字幕av电影在线播放| 欧美日韩av久久| 精品亚洲乱码少妇综合久久| 午夜激情av网站| 韩国高清视频一区二区三区| 亚洲伊人色综图| 韩国精品一区二区三区| 欧美av亚洲av综合av国产av| 国产主播在线观看一区二区 | 精品人妻熟女毛片av久久网站| 久久亚洲国产成人精品v| 一个人免费看片子| 亚洲专区国产一区二区| 欧美乱码精品一区二区三区| 久久影院123| 欧美久久黑人一区二区| 高清不卡的av网站| 久久久久久久大尺度免费视频| 亚洲精品一二三| 51午夜福利影视在线观看| 精品国产乱码久久久久久小说| 男女国产视频网站| a 毛片基地| 国产日韩欧美亚洲二区| av有码第一页| 欧美精品一区二区免费开放| 婷婷丁香在线五月| 亚洲国产欧美在线一区| 国产熟女午夜一区二区三区| 五月天丁香电影| 久久国产精品人妻蜜桃| 我的亚洲天堂| 欧美少妇被猛烈插入视频| 99久久精品国产亚洲精品| 在线观看免费午夜福利视频| 久久性视频一级片| 久久久久久亚洲精品国产蜜桃av| 咕卡用的链子| 男女午夜视频在线观看| 大香蕉久久网| 少妇裸体淫交视频免费看高清 | 久久狼人影院| 大型av网站在线播放| 欧美黄色淫秽网站| 一区二区三区四区激情视频| 建设人人有责人人尽责人人享有的| 999精品在线视频| 欧美+亚洲+日韩+国产| www.999成人在线观看| 伊人亚洲综合成人网| 免费不卡黄色视频| 免费一级毛片在线播放高清视频 | 两性夫妻黄色片| xxx大片免费视频| 久久精品国产综合久久久| 天天躁夜夜躁狠狠躁躁| 大陆偷拍与自拍| 久久精品久久久久久噜噜老黄| 黄色a级毛片大全视频| 亚洲熟女毛片儿| 热99久久久久精品小说推荐| 电影成人av| 亚洲成国产人片在线观看| 午夜久久久在线观看| 日本av手机在线免费观看| 亚洲国产精品成人久久小说| 人妻 亚洲 视频| 成年美女黄网站色视频大全免费| 精品久久久久久电影网| 一本综合久久免费| 成年动漫av网址| 丝袜人妻中文字幕| 国产成人a∨麻豆精品| 涩涩av久久男人的天堂| 汤姆久久久久久久影院中文字幕| xxxhd国产人妻xxx| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃| 亚洲黑人精品在线| 久久99热这里只频精品6学生| 成年av动漫网址| 最近中文字幕2019免费版| 国产精品免费大片| 欧美成人精品欧美一级黄| 成人免费观看视频高清| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 成人亚洲精品一区在线观看| 一级毛片电影观看| 嫩草影视91久久| 天堂中文最新版在线下载| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久| 欧美日韩黄片免| 女人久久www免费人成看片| 最新在线观看一区二区三区 | 19禁男女啪啪无遮挡网站| 亚洲国产av新网站| 亚洲欧美一区二区三区久久| 国产爽快片一区二区三区| 男女床上黄色一级片免费看| 一级片免费观看大全| 免费不卡黄色视频| 成人影院久久| 天天躁日日躁夜夜躁夜夜| 亚洲欧美日韩另类电影网站| 十八禁高潮呻吟视频| 久热这里只有精品99| 美女脱内裤让男人舔精品视频| 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| 尾随美女入室| 欧美日韩亚洲国产一区二区在线观看 | 成年av动漫网址| 久久99一区二区三区| 两个人看的免费小视频| 人人妻,人人澡人人爽秒播 | 色婷婷久久久亚洲欧美| 国产欧美日韩精品亚洲av| 操美女的视频在线观看| 热re99久久精品国产66热6| 欧美日韩综合久久久久久| svipshipincom国产片| 丝袜在线中文字幕| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清在线视频 | 久久久久久久国产电影| 亚洲欧美一区二区三区黑人| 一级片'在线观看视频| 日韩大片免费观看网站| 嫁个100分男人电影在线观看 | 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 久久99精品国语久久久| av一本久久久久| 777久久人妻少妇嫩草av网站| 免费少妇av软件| 成人免费观看视频高清| 国产色视频综合| 一边亲一边摸免费视频| 国产精品久久久久久精品电影小说| 免费少妇av软件| 精品久久久久久久毛片微露脸 | 国产精品九九99| 日本av免费视频播放| 制服人妻中文乱码| 亚洲欧美精品综合一区二区三区| 欧美精品高潮呻吟av久久| 老司机影院毛片| 女警被强在线播放| 啦啦啦中文免费视频观看日本| e午夜精品久久久久久久| 日韩av免费高清视频| 最近手机中文字幕大全| 老熟女久久久| 久久久国产精品麻豆| 99香蕉大伊视频| 青青草视频在线视频观看| 天堂俺去俺来也www色官网| 精品人妻在线不人妻| 最近最新中文字幕大全免费视频 | 国产精品麻豆人妻色哟哟久久| 午夜福利免费观看在线| 精品国产乱码久久久久久小说| 久久精品久久精品一区二区三区| 欧美日韩黄片免| 久久亚洲国产成人精品v| 国产黄色免费在线视频| 国产激情久久老熟女| 美女国产高潮福利片在线看| tube8黄色片| 欧美xxⅹ黑人| 婷婷丁香在线五月| 下体分泌物呈黄色| av欧美777| 国产精品 国内视频| 国产精品三级大全| 97精品久久久久久久久久精品| av视频免费观看在线观看| 欧美精品一区二区大全| 亚洲精品国产一区二区精华液| 亚洲国产精品成人久久小说| 久久精品aⅴ一区二区三区四区| 人成视频在线观看免费观看| 国产男人的电影天堂91| 国产黄色视频一区二区在线观看| 国产av一区二区精品久久| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 97人妻天天添夜夜摸| 少妇精品久久久久久久| 五月开心婷婷网| 亚洲天堂av无毛| 国产av国产精品国产| 黄色 视频免费看| 国产又色又爽无遮挡免| 婷婷色麻豆天堂久久| 美女扒开内裤让男人捅视频| 欧美精品啪啪一区二区三区 | 欧美乱码精品一区二区三区| 少妇精品久久久久久久| 天天操日日干夜夜撸| 在线观看国产h片| 国产高清视频在线播放一区 | 久久精品国产亚洲av高清一级| 日韩中文字幕视频在线看片| 曰老女人黄片| 宅男免费午夜| 制服诱惑二区| 国产99久久九九免费精品| 999久久久国产精品视频| 女性生殖器流出的白浆| 免费不卡黄色视频| 欧美性长视频在线观看| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三区在线| 国产亚洲欧美在线一区二区| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 国产淫语在线视频| 只有这里有精品99| 久久久久久久精品精品| 在线亚洲精品国产二区图片欧美| 视频区欧美日本亚洲| 亚洲av男天堂| 亚洲精品日本国产第一区| 另类亚洲欧美激情| 大香蕉久久成人网| 91精品国产国语对白视频| 亚洲国产精品国产精品| 亚洲九九香蕉| 免费久久久久久久精品成人欧美视频| 日韩 亚洲 欧美在线| a级片在线免费高清观看视频| 国产精品一国产av| 在线观看免费高清a一片| 新久久久久国产一级毛片| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| 亚洲av成人不卡在线观看播放网 | 欧美xxⅹ黑人| 精品一区二区三区av网在线观看 | 男人操女人黄网站| 一区二区三区乱码不卡18| 美女午夜性视频免费| 丝袜人妻中文字幕| 91精品国产国语对白视频| 天天影视国产精品| 超色免费av| 国产1区2区3区精品| 日本欧美视频一区| 最新的欧美精品一区二区| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的| 午夜福利,免费看| 69精品国产乱码久久久| av电影中文网址| 国产精品久久久人人做人人爽| 成年人黄色毛片网站| 亚洲国产欧美网| 国产xxxxx性猛交| 中文欧美无线码| 99久久综合免费| 成人午夜精彩视频在线观看| 视频区图区小说| 妹子高潮喷水视频| 亚洲五月婷婷丁香| 一级黄色大片毛片| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 国产日韩欧美视频二区| 中文字幕人妻丝袜制服| 亚洲中文日韩欧美视频| 啦啦啦 在线观看视频| 亚洲情色 制服丝袜| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 男人舔女人的私密视频| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 后天国语完整版免费观看| 亚洲欧美精品综合一区二区三区| 亚洲一区二区三区欧美精品| 亚洲专区国产一区二区| 亚洲天堂av无毛| 黄色 视频免费看| 十八禁人妻一区二区| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 日本av手机在线免费观看| 国产黄色视频一区二区在线观看| 免费在线观看完整版高清| 99香蕉大伊视频| netflix在线观看网站| 两个人免费观看高清视频| 美女大奶头黄色视频| 精品一区二区三区av网在线观看 | cao死你这个sao货| 9色porny在线观看| 国产亚洲av片在线观看秒播厂| 伊人亚洲综合成人网| 国产99久久九九免费精品| av欧美777| 99香蕉大伊视频| 不卡av一区二区三区| 欧美黑人欧美精品刺激| 大码成人一级视频| 亚洲精品中文字幕在线视频| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 99久久人妻综合| 色精品久久人妻99蜜桃| 日日夜夜操网爽| 欧美精品高潮呻吟av久久| 久久精品亚洲av国产电影网| 一区二区三区乱码不卡18| 一区福利在线观看| 欧美日韩视频精品一区| 超碰成人久久| av有码第一页| 国产精品三级大全| 成人国产一区最新在线观看 | 美女国产高潮福利片在线看| 免费在线观看完整版高清| 欧美黄色淫秽网站| 国产精品国产三级国产专区5o| 99精国产麻豆久久婷婷| 男女边吃奶边做爰视频| 自线自在国产av| 婷婷色麻豆天堂久久| 99久久99久久久精品蜜桃| 午夜免费男女啪啪视频观看| 亚洲av成人精品一二三区| 九色亚洲精品在线播放| 亚洲成色77777| 久久久久精品国产欧美久久久 | 久久热在线av| 悠悠久久av| 亚洲七黄色美女视频| 久久久久久久精品精品| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影免费在线| 久久精品亚洲熟妇少妇任你| 亚洲中文av在线| 青春草亚洲视频在线观看| 国产在线观看jvid| 国产成人一区二区三区免费视频网站 | 久久国产精品影院| 亚洲av电影在线进入| 久久影院123| 欧美在线黄色| 亚洲av成人精品一二三区| 亚洲三区欧美一区| 性色av乱码一区二区三区2| 免费一级毛片在线播放高清视频 | 丰满迷人的少妇在线观看| 国产免费又黄又爽又色| 极品人妻少妇av视频| 老熟女久久久| 精品久久久久久电影网| 少妇粗大呻吟视频| 日韩大码丰满熟妇| 婷婷丁香在线五月| 色视频在线一区二区三区| 久久久久久人人人人人| 9热在线视频观看99| 天天躁夜夜躁狠狠躁躁| 亚洲精品日韩在线中文字幕| 亚洲自偷自拍图片 自拍| 国产欧美日韩精品亚洲av| 国产男人的电影天堂91| 91字幕亚洲| 亚洲精品久久久久久婷婷小说| 亚洲自偷自拍图片 自拍| 日本欧美国产在线视频| 国产在线免费精品| 久久热在线av| 蜜桃在线观看..| 午夜久久久在线观看| 国产精品麻豆人妻色哟哟久久| 性少妇av在线| 黄色 视频免费看| 国产精品一国产av| 在线观看www视频免费| 国产成人影院久久av| 久热爱精品视频在线9| 亚洲国产欧美一区二区综合| 亚洲国产精品成人久久小说| 在线看a的网站| av不卡在线播放| 免费观看av网站的网址| 亚洲欧美清纯卡通| 免费高清在线观看日韩| 男男h啪啪无遮挡| 视频区欧美日本亚洲| 日日爽夜夜爽网站| 一二三四社区在线视频社区8| 91老司机精品| 在线精品无人区一区二区三| 亚洲情色 制服丝袜| 久久av网站| 中国国产av一级| 黄片小视频在线播放| 久久ye,这里只有精品| 久久毛片免费看一区二区三区| 一级毛片电影观看| 另类亚洲欧美激情| 国产人伦9x9x在线观看| 蜜桃在线观看..| 成人18禁高潮啪啪吃奶动态图| 国产一卡二卡三卡精品| 激情五月婷婷亚洲| 亚洲视频免费观看视频| 久久影院123| 亚洲av美国av| 黄片播放在线免费| 尾随美女入室| 欧美日韩视频高清一区二区三区二| 深夜精品福利| 久久久久久久久免费视频了| 中文欧美无线码| 免费看av在线观看网站| 国产精品一国产av| 精品国产超薄肉色丝袜足j| 亚洲色图 男人天堂 中文字幕| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 老司机靠b影院| 波多野结衣一区麻豆| 悠悠久久av| 又大又黄又爽视频免费| av线在线观看网站| 老司机午夜十八禁免费视频| 91成人精品电影| 中文字幕色久视频| 搡老岳熟女国产| 自拍欧美九色日韩亚洲蝌蚪91| 男人添女人高潮全过程视频| 国产一区亚洲一区在线观看| 青春草视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久精品精品| 欧美黄色片欧美黄色片| 日韩av免费高清视频| 考比视频在线观看| 制服人妻中文乱码| 国产欧美日韩精品亚洲av| 一级毛片女人18水好多 | 黄色怎么调成土黄色| 国产在线视频一区二区| 精品高清国产在线一区| 久久精品人人爽人人爽视色| 亚洲成人手机| 大陆偷拍与自拍| 日本欧美国产在线视频| 久久中文字幕一级| 欧美人与性动交α欧美软件| 久久av网站| 啦啦啦在线观看免费高清www| 新久久久久国产一级毛片| 大香蕉久久成人网| 欧美性长视频在线观看| 久久免费观看电影| 麻豆乱淫一区二区| 岛国毛片在线播放| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 后天国语完整版免费观看| 少妇 在线观看| 欧美亚洲 丝袜 人妻 在线| 99国产精品一区二区三区| 亚洲av日韩在线播放| 日日爽夜夜爽网站| 91麻豆精品激情在线观看国产 | 亚洲精品成人av观看孕妇| 色94色欧美一区二区| av天堂久久9| 久久精品国产亚洲av涩爱| 精品一区在线观看国产| 人妻一区二区av| 黑人猛操日本美女一级片| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站 | 日韩大片免费观看网站| 丝袜在线中文字幕| 国产成人av教育| 欧美日韩亚洲高清精品| 日本wwww免费看| 美女视频免费永久观看网站| 免费女性裸体啪啪无遮挡网站| 青青草视频在线视频观看| 亚洲人成网站在线观看播放| 制服人妻中文乱码| 久热这里只有精品99| 久久ye,这里只有精品| 国产又爽黄色视频| 欧美黄色淫秽网站| 午夜福利乱码中文字幕| 人人妻人人澡人人看| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片| 亚洲国产精品成人久久小说| 18在线观看网站| 色婷婷久久久亚洲欧美| 香蕉丝袜av| 男人爽女人下面视频在线观看| 欧美日韩综合久久久久久| 色婷婷久久久亚洲欧美| 午夜福利免费观看在线| 精品一区二区三区av网在线观看 | 男女免费视频国产| 啦啦啦视频在线资源免费观看| 91精品三级在线观看| 免费一级毛片在线播放高清视频 | xxx大片免费视频| 欧美黑人精品巨大| 在线av久久热| 男女无遮挡免费网站观看| 桃花免费在线播放| 18禁观看日本| e午夜精品久久久久久久| 国产精品一二三区在线看| 国产成人精品久久二区二区91| 水蜜桃什么品种好| 狠狠婷婷综合久久久久久88av| 亚洲精品国产av成人精品| 亚洲国产精品一区二区三区在线| 五月天丁香电影| 日韩一卡2卡3卡4卡2021年| 精品一区二区三卡| 丝袜美足系列|