• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method

    2020-10-15 02:07:30WANGDonghaiHOUWentaoLINaLIDongzhenXUXiaodongXUJunWANGQingguoTANGHuili
    無機材料學報 2020年9期
    關鍵詞:藍寶石單晶熔體

    WANG Donghai, HOU Wentao, LI Na, LI Dongzhen, XU Xiaodong, XU Jun, WANG Qingguo, TANG Huili

    Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method

    WANG Donghai1, HOU Wentao1, LI Na1, LI Dongzhen2, XU Xiaodong2, XU Jun1, WANG Qingguo1, TANG Huili1

    (1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2. School of Physics Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China)

    Single-crystal sapphire fibers with diameter of 400-1000 μm and length of 500 mm were successfully grown by the edge-defined film-fed growth (EFG) method. The cross section is roughly circular without noticeable faceting on the lateral surface of the fiber. The diameter variation was within 40 μm in the whole fiber. Crystal defects such as micro-bubbles, inclusions and growth stripes were observed and analyzed. Most micro bubbles in the crystal are spherical and exist on the periphery of the fiber. A small amount of Mo inclusions were observed on the periphery of the fiber. The new dies produce greater number of Mo inclusions at the first several uses, and Mo inclusions decrease after several uses. Size and distribution of micro-bubbles in sapphire fiber have been studied by experimental and numerical simulation of the fluid flow in the meniscus. Results of experimental and numerical simulation presented excellent agreement. The micro-bubbles distribution depends on the fluid flow in the meniscus. Vortex of the fluid flow drove these micro-bubbles to move to the atmosphere under thermo-capillary convection. Absorption loss at 633 nm was 9 dB/m. Inclusions and surface irregularities increase the scattering losses.

    sapphire fibers; edge-defined film-fed growthmethod; micro bubble; Mo inclusion

    The single crystal fibers as a reinforcement for metal and ceramic matrix composites promise to serve in struc-tural elements at temperatures in excess of 1500 ℃ in oxidizing conditions[1]. Among oxide materials, sapphire became the principal candidate for fiber material due to its excellent mechanical, chemical and optical properties. Moreover, sapphire also has excellent characteristics of biologically inert, non-toxic and high laser damage threshold. Sapphire fibers can be employed in spectro-metric and pyrometric measurements in harsh environ--ments due to the chemical resistance and the high melt-ing point[2], for example inside chemical reactors, furnaces, combustion engines and other extreme conditions. Sapphire fibers can also be used in medical equipment[3], namely the delivery of Er:YAG laser beam at 2.94 μm for minor skin and dental surgeries.

    The following principal melt growth techniques have been successfully used to produce single-crystal oxide fibers: (1) edge-defined film-fed growth (EFG) method[4], (2) laser heated pedestal growth (LHPG) method[5], and (3) micro pulling-down (μ-PD) method[6], in which the melting solidified in capillary tubes[7-8]. Compared with other growth techniques, only the EFG method yields high volume, cost effective sapphire fiber[9]. However, their variations on outer diameter and the impurities of the grown fibers significantly degrade its performance. The optical properties of single-crystal sapphire fibers grown by the EFG method were reported in this paper.

    1 Materials and methods

    1.1 Experimental

    The sapphire fibers were grown by EFG method with a commercial Cz RF-heated system. Argon atmosphere was used as growth ambient with the pressure of 111– 122 kPa. A molybdenum crucible and die with central melt supply were used to grow single crystal fibers with diameter of 400–1000 μm and length of 25 cm. The raw material was placed in the molybdenum crucible. The fiber was pulled by an oriented crystal seed from the tip of the molybdenum die, as shown in Fig. 1.

    The sapphire crystal was shaped with the sharp edge on the top of the die. Diameters of the grown fibers were slightly smaller than the diameter of the die.

    The heat loss from the crucible and the hot zone must be compensated during the growth process, which is the main reason of nonuniform of the diameter. So, fibers (diameter 400–1000 μm, length 500 mm) with good qual-ity and regular shape were grown successfully in the fol-lowing growth operations by more heat supplied, as shown in Fig. 2(b).

    Three single-crystal fiber samples with length of 2 mmwere cut at different locations of 20, 90 and 150 mm away from the seed, respectively.

    1.2 Numerical simulation

    It is well known that fluid flow plays an important role in the processes of heat transport and mass transport in crystal growth from the melt. In order to determine the trajectory of a possible gas bubble located in the melt meniscus, the incompressible Navier–Stokes equations were considered:

    1-Melt; 2-Crucible; 3-Die; 4-Meniscus; 5-Sapphire fiber; 6-Seed

    Fig. 2 View of as-grown sapphire in which fibers with irregular shape (a) and regular shape (b)

    The dimensionless governing equations with the mentioned boundary conditions (specified in the Fig. 3) have been solved using the CGSim software. The computations were made in the stationary cases: growing fiber with radius of 0.5 mm with pulling rate of 30 mm/h and meniscus height of 0.2 mm.

    2 Results and discussions

    2.1 Crystal growth and defects in crystals

    The cross section of the fibers was roughly circular without noticeable faceting on the lateral surface of the fiber. The diameter variation was within 40 μm in the whole fiber. Facets appeared only on one side of the-plane. The facet probability of the sapphire fiber grown along the-axis was defined by anisotropy of the surface energy and melt temperature fluctuations. Temperature instability also could induce the non-uniform lateral or normal facet growth, which could lead to defects and surface roughness shown in Fig. 4 and Fig. 5.

    Fig. 3 Schematic diagram of the boundary conditions used in the numerical simulation

    Fig. 4 Growth stripes in the crystal structure caused by slight vibrations above the die, v=30 mm/h

    Fig. 5 Cross section morphology and bubbles' distribution in the cross section of the sapphire fibers

    Fig. 6 shows the principles of the capillary shaping for EFG fiber growth method. It can be seen that stable shaped single crystals with constant diameter will be grown if the growth angle(the angle between the meniscus and the growth axis) is constant (o). As a material constant, the parameterowas determined by the thermodynamic equilibrium condition at the three-phase interface line, which does not depend on the growth parameters like pulling velocity, diameter and meniscus height. The parametersoof different crystals are given in Table 1.

    Fig. 6 Principles of capillary shaping for EFG fiber growth method

    m-Vertical curvature of the meniscus;d-Die radius;c-Radius of the crystal;m-Meniscus height

    Table 1 Parameter φo for different crystals

    Deviations of the actual growth anglefromoresult from perturbations of the meniscus height and radius, which lead to non-stationary variations of the fiber radii in agreement with:

    The relationship between meniscus shape and crystal radius is given by the equation[12]:

    The relationship of theoretical meniscus shapes() and different fiber radiicis shown in Fig. 7. For the actual fiber geometry, meniscus shapes with different fiber radiicvalues were calculated. The dashed line shows the possible positions of the meniscus. There is a certain range of meniscus height for successful growth of crystals. The increase of height will induce the separation between the growing crystal and the meniscus. The de-crease of height will cause the local interaction between the growing crystal and the die surface, which will re-d-uce the crystal quality. The meniscus height depends on the material properties of the melt, pulling rate and am-bient temperature distribution. The stable meniscus height and regular crystal shape can be achieved when temperature gradient at growth interface area was invariable. However, it is not easy to establish such conditions during the entire crystallization process. In order to maintain a stable meniscus height, we have to use an automated control system with computer-controlled feedback program that simultaneously monitored and controlled the fiber diameter and the die temperature. At the same time the pulling rate was invariable.

    Fig. 7 Relationship between theoretical meniscus shapes Z(R) and different fiber radii R

    The characteristic defects in sapphire crystal were the so-called voids or bubbles, which could reduce the opti-cal and mechanical quality of crystals. In this work, sap-phire fibers were studied with an optical microscope with 50× magnification. It was shown that there were bubbles running along the fibers. Fig. 8 shows a 50× micrograph of the EFG sapphire fiber.

    The size of micro bubbles was about 5–10 μm. The most bubbles were spherical and exist on the pe-riphery of the fiber. The distribution behavior of mi-cro-bubbles was fairly related to growth rate and impu-rity effects (consti-tutional super cooling). Their occur-rence has been dem-onstrated to be related to the stability of the solid liquid interface[13-14].

    Another defect of the fiber was the Mo inclusions. As shown in Fig. 4, a small amount of Mo inclusions were observed, which are re-crystallized from solution in the sapphire. The Mo is generally oxidized by dissociation of the melt. The oxide dissolves in the melt, and is reduced to yield metallic molybdenum. This mechanism would seem to be confirmed by the appearance of the Mo in the inclusions. However, other aspects play a role on the generation of Mo inclusions. Notably, the new dies would produce more Mo inclusions at the first several runs as shown in Fig. 9(a).

    In Fig. 9(a), the total content of Mo decreased with the frequency use of the crucible and die. It is concluded that new setups with the rougher machining surface, which leads to easier dissolution of Mo and increases the “output” of Mo into the melt. The high initial content of Mo inclusions can be seen when the crucible and die were first used. Another possibility is due to the poor vacuum of the equipment which results in more content of mo-lybdenum oxide. Other experiments have sought to es-tablish the “time relationship” of Mo in sapphire fibers. The Mo concentration in the samples measured by ICP analysis and the results were in Fig. 9(b).

    Fig. 8 Bubbles’ distribution observed on the lateral periphery of the fiber

    Fig. 9 Decrease in total Mo inclusion length with die life (a) and Mo concentration as a function of time from a sapphire melt (b)

    Mo seems to be produced in substantial amounts early in the usage of the setup, and then diminishes after sev-eral runs. The die and its surroundings are likely the coldest part of the setup. It is apparent from examining used die that significant amounts of Mo are precipitated out on the outer surfaces.

    2.2 Bubbles distribution and numerical simu-lation result of the fluid flow in the meniscus

    The flow field in the meniscus (fiber radius 0.5 mm) and the corresponding bubbles in the crystals were shown in Fig. 10.

    Fig. 10 Flow field in the meniscus (fiber radius 0.5 mm) and corresponding bubbles in the crystals

    The available experimental data suggest that the mi-cro- bubbles distribution depends on the fluid flow in the me-niscus. The distribution of the bubbles in the periph-ery of the meniscus suggested that the vortex of the fluid flow drove the bubbles move to the atmosphere under the thermo-capillary convection. The positions of these re-gions depend on the geometry shape of the die[15].

    2.3 Optical properties

    The absorption spectrum of the EFG sapphire fiber was shown in Fig. 11. The measured attenuation coeffi-cient of the EFG fiber with length of 76 cm was 9 dB/m at 633 nm. The crystal quality of grown crystals by EFG method was worse than the crystals grown by LHPG method[16]. Low propagation loss is necessary for optical applications of sapphire fibers. Two effects such as scat-tering and absorption induce the total loss. Absorption loss comes from the micro-bubbles defects and the im-purities. In the grown sapphire fiber, the density of mo-lybdenum ions will reach up to 5×10–6g/cm3due to the mo-lybdenum crucible used in the growth process. The im-purities in the melt were also the reason of extrinsic ab-sorption. Inclusions, inhomogeneous, and surface irregu-larities increase the scattering losses. There is no any inhomogeneous defect observed under the optical mi-croscopy, and no scattering centers under laser illumina-tion. It is suggested that diameter variation should be the most important reason for the scattering loss. The varia-tions in diameter could be induced by several following factors: heating power fluctuations in the molten zone and the mechanical perturbations. The latter could induce bending or twisting of fiber.

    3 Conclusion

    Single-crystal sapphire fibers (diameter (400–1000) μm, length 500 mm) were grown with the EFG method suc-cessfully. The cross section of the-axis fibers was roughly circular. The defects such as micro-bubbles, inclusions and growth stripes were observed and analyzed. The dis-tribution of the micro-bubbles was studied with optical microscopy. The influence of the growth conditions on the size and distribution of micro-bubbles in sapphire fibers has been studied by experimental and numerical simulation of the fluid flow in the meniscus. The defect analysis and optical characterization exhibited the imperfect single crystalline structure of fibers.

    Fig. 11 Absorption spectrum of the EFG sapphire fiber

    [1] LABELLE JR H E. EFG, the invention and application to sapphire growth., 1980, 50(1): 8–17.

    [2] WILSON B A, PETRIE C M, BLUE T E. High temperature effects on the light transmission through sapphire optical fiber., 2018, 101(8): 3452–3459.

    [3] COULTER A H. Sapphire fibers for erbium: YAG continue to evolve., 1995, 13(3): 227–228.

    [4] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique., 2016, 673(1): 012017.

    [5] BERA S, NIE C D, SOSKIND M G,. Growth and lasing of single crystal YAG fibers with different Ho3+concentrations., 2018, 75: 44–48.

    [6] LEBBOU K. Single crystals fiber technology design., 2017, 63: 13–18.

    [7] KURLOV V N, MILEIKO S T, KOLCHIN A A,. Growth of oxide fibers by the internal crystallization method., 2002, 47(1): S53–S62.

    [8] KURLOV V N, KIIKO V M, KOLCHIN A A,. Sapphire fi-bres grown by a modified internal crystallisation method., 1999, 204(4): 499–504.

    [9] FITZGIBBON J J, COLLINS J M. High-volume production of low-loss sapphire optical fibers by Saphikon EFG (edge-defined, film-fed growth) method., 1998, 3262: 135–141.

    [10] SUREK T. Theory of shape stability in crystal growth from the melt., 1976, 47(10): 4384–4393.

    [11] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt. crystal research and technology., 1999, 34(1): 3–40.

    [12] KAMADA K, MURAKAMI R, KOCHURIKHIN V V,. Sin-gle crystal growth of submillimeter diameter sapphire tube by the micro- pulling down method., 2018, 492: 45–49.

    [13] ZHDANOV A V, SATUNKIN G A, TATARCHENKO V A,. Cylindrical pores in a growing crystal., 1980, 49(4): 659–664.

    [14] TATARCHENKO V A, YALOVETS T N, SATUNKIN G A,. Defects in shaped sapphire crystals., 1980, 50(1): 335–340.

    [15] BUNOIU O, NICOARA I, SANTAILLER J L,. Fluid flow and solute segregation in EFG crystal growth process., 2005, 275(1/2): e799–e805.

    [16] NUBLING R K, HARRINGTON J A. Optical properties of sin-gle- crystal sapphire fibers., 1997, 36(24): 5934–5940.

    導模法生長藍寶石單晶光纖的缺陷和光學特性研究

    王東海1, 侯文濤1, 李納1, 李東振2, 徐曉東2, 徐軍1, 王慶國1, 唐慧麗1

    (1. 同濟大學 物理科學與工程學院, 上海 200092; 2. 江蘇師范大學 物理與電子工程學院, 徐州 221116)

    通過導模法(EFG)成功生長了藍寶石單晶光纖(直徑400~1000 μm, 長度500 mm)。光纖的橫截面大致為圓形, 側面無明顯的小面, 直徑變化小于40 μm。本研究對晶體缺陷, 例如微氣泡, 包裹物和生長條紋等進行觀察與分析, 得出: 大多數(shù)微氣泡是球狀的, 且存在于光纖的外側緣; 在藍寶石光纖外側面也觀察到少量的鉬包裹物元素; 新模具在前幾次使用中往往會產(chǎn)生更多的鉬夾雜物, 在多次使用后降低。通過對熔體膜流體流動的實驗和數(shù)值模擬, 研究藍寶石光纖中微氣泡尺寸和分布, 實驗和數(shù)值模擬的結果顯示出良好的一致性。微氣泡的分布取決于熔體膜處的流體流動模式, 流體流動的渦流使微氣泡在熱毛細對流作用下移動到藍寶石光纖外側緣。633 nm處的吸收損耗為9 dB/m, 包裹物和表面不規(guī)則性會增加散射損耗。

    藍寶石光纖; 導模法(EFG); 微氣泡; 鉬包裹物

    TQ174

    A

    date:2019-11-11;

    date: 2019-12-25

    WANG Donghai(1982–), male, PhD candidate. E-mail: yingxiong3258@sina.com

    王東海(1982–), 男, 博士研究生. E-mail: yingxiong3258@sina.com

    Corresponding author:XU Jun, professor. E-mail: xujun@mail.shcnc.ac.cn; WANG Qingguo, PhD. E-mail:wqingguo2013@163.com

    徐軍, 教授. E-mail: xujun@mail.shcnc.ac.cn; 王慶國, 博士. E-mail:wqingguo2013@163.com

    1000-324X(2020)09-1053-06

    10.15541/jim20190573

    猜你喜歡
    藍寶石單晶熔體
    藍寶石單晶爐隔熱屏內(nèi)膽損壞機理
    失蹤的“藍寶石”
    大尺寸低阻ZnO單晶襯弟
    大尺寸低阻ZnO單晶襯底
    聚合物熔體脈振傳遞過程的協(xié)同學研究
    中國塑料(2016年4期)2016-06-27 06:33:48
    注射保壓過程中O2/N2分子在PMMA熔體內(nèi)部的擴散行為
    中國塑料(2016年3期)2016-06-15 20:30:01
    含硅芳炔樹脂及其共混物熔體的流變性能
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    注氣口前后段螺桿中聚合物熔體的數(shù)值研究
    中國塑料(2014年1期)2014-10-17 02:46:37
    在线观看免费视频日本深夜| 2022亚洲国产成人精品| 蜜桃久久精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 又粗又硬又长又爽又黄的视频 | 亚洲国产高清在线一区二区三| 中文资源天堂在线| 免费观看的影片在线观看| 岛国在线免费视频观看| 99国产极品粉嫩在线观看| 国产午夜精品论理片| 成熟少妇高潮喷水视频| 午夜福利在线观看吧| 男女做爰动态图高潮gif福利片| 波野结衣二区三区在线| 欧美日本视频| 欧美色欧美亚洲另类二区| 黄色视频,在线免费观看| 男人舔奶头视频| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区免费观看| 国产91av在线免费观看| 69人妻影院| 国产精品,欧美在线| 久久国产乱子免费精品| 黄片无遮挡物在线观看| 免费无遮挡裸体视频| 亚洲人成网站在线观看播放| 亚洲丝袜综合中文字幕| 黄色欧美视频在线观看| 女人被狂操c到高潮| 亚洲自拍偷在线| 午夜久久久久精精品| 蜜桃亚洲精品一区二区三区| 国产日本99.免费观看| 国产精品久久久久久精品电影小说 | 成年版毛片免费区| 欧美日本视频| 精品少妇黑人巨大在线播放 | 又黄又爽又刺激的免费视频.| 午夜精品国产一区二区电影 | 一边亲一边摸免费视频| av免费在线看不卡| 亚洲一级一片aⅴ在线观看| 波多野结衣高清无吗| 韩国av在线不卡| 国产黄色小视频在线观看| 久久久精品欧美日韩精品| 在线观看一区二区三区| 日本黄大片高清| 欧美日韩国产亚洲二区| 国产大屁股一区二区在线视频| 嘟嘟电影网在线观看| 少妇人妻精品综合一区二区 | 少妇熟女欧美另类| 卡戴珊不雅视频在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级毛片我不卡| 国产成人福利小说| 精品久久久久久久久亚洲| 两个人的视频大全免费| 看免费成人av毛片| 欧美潮喷喷水| 亚洲不卡免费看| 精品无人区乱码1区二区| 久久精品国产自在天天线| 精品国内亚洲2022精品成人| 亚洲av电影不卡..在线观看| 特大巨黑吊av在线直播| 一进一出抽搐动态| 久久久精品94久久精品| 久久久久久伊人网av| 22中文网久久字幕| 亚洲激情五月婷婷啪啪| 国产极品天堂在线| 国产精品99久久久久久久久| 小蜜桃在线观看免费完整版高清| 国产在线男女| 国产伦理片在线播放av一区 | 国产中年淑女户外野战色| 舔av片在线| 久久99蜜桃精品久久| 国产熟女欧美一区二区| 亚洲一区二区三区色噜噜| a级一级毛片免费在线观看| 晚上一个人看的免费电影| 97热精品久久久久久| 成人漫画全彩无遮挡| 深爱激情五月婷婷| 最近中文字幕高清免费大全6| 毛片一级片免费看久久久久| 精品免费久久久久久久清纯| 欧美性猛交╳xxx乱大交人| 亚洲av一区综合| 嫩草影院精品99| 有码 亚洲区| 欧美zozozo另类| 简卡轻食公司| 久久精品国产99精品国产亚洲性色| 欧美成人免费av一区二区三区| 精品日产1卡2卡| 国产在视频线在精品| 中文字幕久久专区| 最近最新中文字幕大全电影3| 成人亚洲精品av一区二区| 能在线免费观看的黄片| 亚洲欧美日韩高清专用| 在线免费十八禁| 午夜免费激情av| 成人特级av手机在线观看| 色吧在线观看| avwww免费| 97人妻精品一区二区三区麻豆| 午夜福利高清视频| 我的老师免费观看完整版| 永久网站在线| 日本成人三级电影网站| 国产精品野战在线观看| 国产av麻豆久久久久久久| 十八禁国产超污无遮挡网站| 午夜精品国产一区二区电影 | 日本黄大片高清| 婷婷精品国产亚洲av| 日韩欧美在线乱码| 国产精品久久电影中文字幕| 久久精品国产99精品国产亚洲性色| 日韩 亚洲 欧美在线| 国产片特级美女逼逼视频| 能在线免费看毛片的网站| 免费搜索国产男女视频| 国产高清有码在线观看视频| 色哟哟·www| 欧美精品国产亚洲| 国产精品国产三级国产av玫瑰| 看非洲黑人一级黄片| 午夜a级毛片| av天堂在线播放| 日韩人妻高清精品专区| 国产女主播在线喷水免费视频网站 | a级一级毛片免费在线观看| 亚洲天堂国产精品一区在线| 天堂影院成人在线观看| 亚洲丝袜综合中文字幕| 午夜免费男女啪啪视频观看| 人人妻人人看人人澡| 久久久久国产网址| 不卡一级毛片| 国产精品福利在线免费观看| 18禁黄网站禁片免费观看直播| 精品熟女少妇av免费看| 亚洲色图av天堂| 黄色配什么色好看| 亚洲一区二区三区色噜噜| 精品人妻视频免费看| 久久久成人免费电影| 国产成人freesex在线| 看黄色毛片网站| 午夜免费男女啪啪视频观看| 久久久久国产网址| 日本黄大片高清| 免费观看a级毛片全部| 日韩欧美三级三区| 乱人视频在线观看| a级毛片a级免费在线| 我要看日韩黄色一级片| 欧美成人一区二区免费高清观看| 最近中文字幕高清免费大全6| 最后的刺客免费高清国语| 国产视频内射| 欧洲精品卡2卡3卡4卡5卡区| 国产高清三级在线| 高清在线视频一区二区三区 | 有码 亚洲区| 丝袜美腿在线中文| 久久精品夜色国产| 精品久久久久久成人av| 色尼玛亚洲综合影院| 又黄又爽又刺激的免费视频.| 成人综合一区亚洲| 赤兔流量卡办理| 日本熟妇午夜| 国产亚洲精品久久久久久毛片| 一进一出抽搐gif免费好疼| 此物有八面人人有两片| 亚洲欧美日韩无卡精品| avwww免费| 综合色av麻豆| 一个人免费在线观看电影| 美女xxoo啪啪120秒动态图| 精品免费久久久久久久清纯| 久久久久网色| 精品人妻一区二区三区麻豆| 久久精品国产亚洲av涩爱 | 国产精品免费一区二区三区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲性久久影院| 亚洲最大成人中文| 三级男女做爰猛烈吃奶摸视频| 久久精品91蜜桃| ponron亚洲| 日本五十路高清| 少妇丰满av| 免费不卡的大黄色大毛片视频在线观看 | 色播亚洲综合网| 99riav亚洲国产免费| 精品无人区乱码1区二区| 久久久久性生活片| 欧美高清性xxxxhd video| 国产日韩欧美在线精品| www.av在线官网国产| 99国产极品粉嫩在线观看| 少妇人妻一区二区三区视频| 国产不卡一卡二| 欧美精品国产亚洲| 少妇猛男粗大的猛烈进出视频 | 成人性生交大片免费视频hd| 女的被弄到高潮叫床怎么办| 99久久精品一区二区三区| 在线观看66精品国产| 国产一区二区三区av在线 | 99热这里只有精品一区| 国产精品蜜桃在线观看 | 日韩国内少妇激情av| 亚洲经典国产精华液单| 两个人的视频大全免费| 丰满的人妻完整版| 成人午夜高清在线视频| 日韩 亚洲 欧美在线| 午夜福利成人在线免费观看| 中文在线观看免费www的网站| 国产精品人妻久久久久久| 欧美区成人在线视频| 日韩av不卡免费在线播放| 免费电影在线观看免费观看| 99国产精品一区二区蜜桃av| 国产精品美女特级片免费视频播放器| 国产大屁股一区二区在线视频| 99热精品在线国产| 亚洲国产精品合色在线| ponron亚洲| 91av网一区二区| 国产国拍精品亚洲av在线观看| 亚洲va在线va天堂va国产| 性欧美人与动物交配| 国产探花在线观看一区二区| 亚洲人成网站在线观看播放| 亚洲国产精品合色在线| 三级经典国产精品| 天天躁夜夜躁狠狠久久av| 我的女老师完整版在线观看| 69av精品久久久久久| 男人和女人高潮做爰伦理| 国产中年淑女户外野战色| 日韩欧美国产在线观看| 看黄色毛片网站| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区免费观看| 国产女主播在线喷水免费视频网站 | 国产精品免费一区二区三区在线| 国产精品爽爽va在线观看网站| 高清毛片免费观看视频网站| 久久精品国产99精品国产亚洲性色| 精品欧美国产一区二区三| 三级毛片av免费| 国产亚洲精品久久久com| 99热6这里只有精品| 精品久久久久久成人av| 日韩大尺度精品在线看网址| a级一级毛片免费在线观看| h日本视频在线播放| 亚洲av中文av极速乱| www.色视频.com| 成人漫画全彩无遮挡| 99久久精品国产国产毛片| 91精品国产九色| 国产探花在线观看一区二区| 亚洲国产精品合色在线| 欧美精品一区二区大全| 成人国产麻豆网| 男女边吃奶边做爰视频| 亚洲高清免费不卡视频| 国产中年淑女户外野战色| 精品人妻一区二区三区麻豆| 日日摸夜夜添夜夜添av毛片| 日本-黄色视频高清免费观看| 亚洲自拍偷在线| 天堂√8在线中文| 日韩av在线大香蕉| 午夜福利在线观看免费完整高清在 | 国产乱人视频| 男女边吃奶边做爰视频| 午夜爱爱视频在线播放| 黄色欧美视频在线观看| 永久网站在线| 长腿黑丝高跟| 六月丁香七月| 亚洲成a人片在线一区二区| 高清在线视频一区二区三区 | 性欧美人与动物交配| 尾随美女入室| 亚洲成人中文字幕在线播放| 黄色视频,在线免费观看| 国产精品一区www在线观看| av在线老鸭窝| 国产极品精品免费视频能看的| 精品午夜福利在线看| 成人午夜高清在线视频| 欧美色欧美亚洲另类二区| 成人午夜精彩视频在线观看| 波野结衣二区三区在线| 亚洲精品日韩av片在线观看| 亚洲无线在线观看| 久久久色成人| 成人欧美大片| 22中文网久久字幕| 国产精品精品国产色婷婷| 午夜爱爱视频在线播放| 精品人妻一区二区三区麻豆| 看十八女毛片水多多多| 只有这里有精品99| 免费观看人在逋| 免费在线观看成人毛片| 人人妻人人看人人澡| 此物有八面人人有两片| 97在线视频观看| 国内精品宾馆在线| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲国产成人精品v| 成人三级黄色视频| 青青草视频在线视频观看| 久久人人爽人人片av| 亚洲成av人片在线播放无| 亚洲精品久久久久久婷婷小说 | 国产高清不卡午夜福利| 日韩精品青青久久久久久| 国产成人福利小说| 可以在线观看的亚洲视频| 国产亚洲精品av在线| 亚洲自拍偷在线| 99九九线精品视频在线观看视频| 亚洲欧美中文字幕日韩二区| 国产色爽女视频免费观看| av天堂中文字幕网| 久久精品夜夜夜夜夜久久蜜豆| 免费看美女性在线毛片视频| 久久99热6这里只有精品| 人人妻人人看人人澡| 此物有八面人人有两片| 色综合站精品国产| 可以在线观看的亚洲视频| 国产午夜精品一二区理论片| 91久久精品电影网| 99九九线精品视频在线观看视频| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 亚洲欧美日韩无卡精品| 中国国产av一级| 久久人人爽人人片av| 欧美变态另类bdsm刘玥| 成人毛片60女人毛片免费| 国产精品免费一区二区三区在线| 18禁在线无遮挡免费观看视频| 99热这里只有精品一区| 国产伦在线观看视频一区| 只有这里有精品99| 乱人视频在线观看| 人妻系列 视频| 亚洲av中文字字幕乱码综合| 国产高潮美女av| 国产成人精品婷婷| videossex国产| 国产成人精品一,二区 | 有码 亚洲区| 99热6这里只有精品| 成人午夜精彩视频在线观看| 此物有八面人人有两片| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 悠悠久久av| 免费看美女性在线毛片视频| 精品人妻一区二区三区麻豆| 国产精品一区二区在线观看99 | 久久综合国产亚洲精品| 校园春色视频在线观看| 久久精品91蜜桃| 国产视频首页在线观看| 一级av片app| 亚洲国产精品合色在线| 久久精品国产自在天天线| 国产成人影院久久av| 国产精品野战在线观看| 3wmmmm亚洲av在线观看| 一本一本综合久久| 国产精品人妻久久久久久| 免费看a级黄色片| av视频在线观看入口| 欧美丝袜亚洲另类| 亚洲在久久综合| 草草在线视频免费看| 久久久久网色| 日韩国内少妇激情av| 97超视频在线观看视频| 日韩一区二区三区影片| 搞女人的毛片| 国产蜜桃级精品一区二区三区| 给我免费播放毛片高清在线观看| 欧美潮喷喷水| 黄片无遮挡物在线观看| 夜夜爽天天搞| 国产大屁股一区二区在线视频| 22中文网久久字幕| 亚洲av熟女| 黄色欧美视频在线观看| 国产真实伦视频高清在线观看| 亚洲五月天丁香| 国产高清三级在线| 日本与韩国留学比较| 国产亚洲精品久久久com| 亚洲在久久综合| 中文精品一卡2卡3卡4更新| 国产视频内射| 九九在线视频观看精品| 麻豆国产97在线/欧美| 成熟少妇高潮喷水视频| 免费观看在线日韩| 国产精品女同一区二区软件| 观看免费一级毛片| 久久99蜜桃精品久久| 国产亚洲av嫩草精品影院| 麻豆成人av视频| 亚洲综合色惰| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 久久精品国产清高在天天线| 午夜激情福利司机影院| 一级黄色大片毛片| 最近视频中文字幕2019在线8| 又爽又黄a免费视频| 人人妻人人澡欧美一区二区| 黄色视频,在线免费观看| 亚洲国产精品久久男人天堂| av在线蜜桃| 免费观看人在逋| 级片在线观看| 波多野结衣高清无吗| 亚洲高清免费不卡视频| 国产精品野战在线观看| 黄片wwwwww| 日韩亚洲欧美综合| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 非洲黑人性xxxx精品又粗又长| 在线观看免费视频日本深夜| 免费观看人在逋| 午夜久久久久精精品| 国产极品天堂在线| 六月丁香七月| 99久久精品一区二区三区| 91av网一区二区| 亚洲四区av| 欧美激情国产日韩精品一区| 国产私拍福利视频在线观看| 少妇人妻精品综合一区二区 | 你懂的网址亚洲精品在线观看 | 精品无人区乱码1区二区| av专区在线播放| 亚洲精品成人久久久久久| 午夜精品在线福利| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 91久久精品电影网| 一区二区三区免费毛片| 国产精品99久久久久久久久| 国产高清视频在线观看网站| 亚洲人成网站在线播| 国产极品天堂在线| 性插视频无遮挡在线免费观看| 啦啦啦观看免费观看视频高清| 日本与韩国留学比较| 国产亚洲精品久久久com| 黄色配什么色好看| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| 午夜a级毛片| 成年免费大片在线观看| 国产女主播在线喷水免费视频网站 | 久久国内精品自在自线图片| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 黄色欧美视频在线观看| 中文欧美无线码| 成人av在线播放网站| 亚洲经典国产精华液单| 哪里可以看免费的av片| 极品教师在线视频| 在线观看av片永久免费下载| 成人无遮挡网站| 日本熟妇午夜| 久久久久久国产a免费观看| 乱码一卡2卡4卡精品| 日本五十路高清| 99久国产av精品国产电影| 久久亚洲国产成人精品v| 亚洲av.av天堂| 成熟少妇高潮喷水视频| 日日啪夜夜撸| 1024手机看黄色片| 国产老妇女一区| 久久韩国三级中文字幕| 欧美日韩国产亚洲二区| 一级毛片电影观看 | 99国产精品一区二区蜜桃av| 欧美日韩国产亚洲二区| 国产男人的电影天堂91| 亚洲国产精品久久男人天堂| av在线观看视频网站免费| 国产真实乱freesex| 夜夜看夜夜爽夜夜摸| 校园人妻丝袜中文字幕| 一级毛片aaaaaa免费看小| 久久精品国产清高在天天线| 中出人妻视频一区二区| 亚洲av中文av极速乱| 国产精品一区www在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 久久精品影院6| 国产乱人偷精品视频| 亚洲国产精品sss在线观看| 青春草国产在线视频 | 免费电影在线观看免费观看| 亚洲不卡免费看| 久久精品国产自在天天线| 国产精品一二三区在线看| 亚洲中文字幕一区二区三区有码在线看| 国产成人a∨麻豆精品| 一个人看视频在线观看www免费| 亚洲精品国产成人久久av| 中文字幕久久专区| 美女黄网站色视频| 国内久久婷婷六月综合欲色啪| 3wmmmm亚洲av在线观看| 女人被狂操c到高潮| 人人妻人人澡欧美一区二区| 51国产日韩欧美| 日韩欧美 国产精品| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看 | 久久综合国产亚洲精品| 少妇的逼水好多| 91久久精品国产一区二区三区| 午夜视频国产福利| 少妇的逼好多水| 日本一本二区三区精品| 日韩制服骚丝袜av| 国产精品不卡视频一区二区| 床上黄色一级片| 尤物成人国产欧美一区二区三区| 看非洲黑人一级黄片| 干丝袜人妻中文字幕| 一区二区三区高清视频在线| 国产精华一区二区三区| 日本成人三级电影网站| 国产成人a∨麻豆精品| 成人高潮视频无遮挡免费网站| 久久久久久大精品| 亚洲av中文字字幕乱码综合| 久久人人爽人人爽人人片va| 亚洲人成网站高清观看| 高清日韩中文字幕在线| 中文字幕制服av| 五月伊人婷婷丁香| 久久99热6这里只有精品| 久久欧美精品欧美久久欧美| 国产黄色视频一区二区在线观看 | 夫妻性生交免费视频一级片| 国产精品久久久久久av不卡| 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月| 91精品一卡2卡3卡4卡| 九九热线精品视视频播放| 久久久久久久久中文| 久久久久久大精品| 18+在线观看网站| a级毛片a级免费在线| 中文资源天堂在线| 一级二级三级毛片免费看| 麻豆成人av视频| 嫩草影院新地址| 国产精品一区二区三区四区免费观看| 免费搜索国产男女视频| 人妻制服诱惑在线中文字幕| 亚洲av第一区精品v没综合| 精品少妇黑人巨大在线播放 | 九九热线精品视视频播放| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 日韩在线高清观看一区二区三区| av在线天堂中文字幕| 不卡视频在线观看欧美| 日日摸夜夜添夜夜爱| 国产精品一区二区在线观看99 | 国产乱人偷精品视频| 久久精品国产清高在天天线| 男女那种视频在线观看| 成年女人永久免费观看视频| 国产午夜精品一二区理论片| or卡值多少钱| 国产伦在线观看视频一区| 我要搜黄色片| 亚洲国产精品合色在线| 99久久无色码亚洲精品果冻| 波野结衣二区三区在线|