• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method

    2020-10-15 02:07:30WANGDonghaiHOUWentaoLINaLIDongzhenXUXiaodongXUJunWANGQingguoTANGHuili
    無機材料學報 2020年9期
    關鍵詞:藍寶石單晶熔體

    WANG Donghai, HOU Wentao, LI Na, LI Dongzhen, XU Xiaodong, XU Jun, WANG Qingguo, TANG Huili

    Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method

    WANG Donghai1, HOU Wentao1, LI Na1, LI Dongzhen2, XU Xiaodong2, XU Jun1, WANG Qingguo1, TANG Huili1

    (1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2. School of Physics Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China)

    Single-crystal sapphire fibers with diameter of 400-1000 μm and length of 500 mm were successfully grown by the edge-defined film-fed growth (EFG) method. The cross section is roughly circular without noticeable faceting on the lateral surface of the fiber. The diameter variation was within 40 μm in the whole fiber. Crystal defects such as micro-bubbles, inclusions and growth stripes were observed and analyzed. Most micro bubbles in the crystal are spherical and exist on the periphery of the fiber. A small amount of Mo inclusions were observed on the periphery of the fiber. The new dies produce greater number of Mo inclusions at the first several uses, and Mo inclusions decrease after several uses. Size and distribution of micro-bubbles in sapphire fiber have been studied by experimental and numerical simulation of the fluid flow in the meniscus. Results of experimental and numerical simulation presented excellent agreement. The micro-bubbles distribution depends on the fluid flow in the meniscus. Vortex of the fluid flow drove these micro-bubbles to move to the atmosphere under thermo-capillary convection. Absorption loss at 633 nm was 9 dB/m. Inclusions and surface irregularities increase the scattering losses.

    sapphire fibers; edge-defined film-fed growthmethod; micro bubble; Mo inclusion

    The single crystal fibers as a reinforcement for metal and ceramic matrix composites promise to serve in struc-tural elements at temperatures in excess of 1500 ℃ in oxidizing conditions[1]. Among oxide materials, sapphire became the principal candidate for fiber material due to its excellent mechanical, chemical and optical properties. Moreover, sapphire also has excellent characteristics of biologically inert, non-toxic and high laser damage threshold. Sapphire fibers can be employed in spectro-metric and pyrometric measurements in harsh environ--ments due to the chemical resistance and the high melt-ing point[2], for example inside chemical reactors, furnaces, combustion engines and other extreme conditions. Sapphire fibers can also be used in medical equipment[3], namely the delivery of Er:YAG laser beam at 2.94 μm for minor skin and dental surgeries.

    The following principal melt growth techniques have been successfully used to produce single-crystal oxide fibers: (1) edge-defined film-fed growth (EFG) method[4], (2) laser heated pedestal growth (LHPG) method[5], and (3) micro pulling-down (μ-PD) method[6], in which the melting solidified in capillary tubes[7-8]. Compared with other growth techniques, only the EFG method yields high volume, cost effective sapphire fiber[9]. However, their variations on outer diameter and the impurities of the grown fibers significantly degrade its performance. The optical properties of single-crystal sapphire fibers grown by the EFG method were reported in this paper.

    1 Materials and methods

    1.1 Experimental

    The sapphire fibers were grown by EFG method with a commercial Cz RF-heated system. Argon atmosphere was used as growth ambient with the pressure of 111– 122 kPa. A molybdenum crucible and die with central melt supply were used to grow single crystal fibers with diameter of 400–1000 μm and length of 25 cm. The raw material was placed in the molybdenum crucible. The fiber was pulled by an oriented crystal seed from the tip of the molybdenum die, as shown in Fig. 1.

    The sapphire crystal was shaped with the sharp edge on the top of the die. Diameters of the grown fibers were slightly smaller than the diameter of the die.

    The heat loss from the crucible and the hot zone must be compensated during the growth process, which is the main reason of nonuniform of the diameter. So, fibers (diameter 400–1000 μm, length 500 mm) with good qual-ity and regular shape were grown successfully in the fol-lowing growth operations by more heat supplied, as shown in Fig. 2(b).

    Three single-crystal fiber samples with length of 2 mmwere cut at different locations of 20, 90 and 150 mm away from the seed, respectively.

    1.2 Numerical simulation

    It is well known that fluid flow plays an important role in the processes of heat transport and mass transport in crystal growth from the melt. In order to determine the trajectory of a possible gas bubble located in the melt meniscus, the incompressible Navier–Stokes equations were considered:

    1-Melt; 2-Crucible; 3-Die; 4-Meniscus; 5-Sapphire fiber; 6-Seed

    Fig. 2 View of as-grown sapphire in which fibers with irregular shape (a) and regular shape (b)

    The dimensionless governing equations with the mentioned boundary conditions (specified in the Fig. 3) have been solved using the CGSim software. The computations were made in the stationary cases: growing fiber with radius of 0.5 mm with pulling rate of 30 mm/h and meniscus height of 0.2 mm.

    2 Results and discussions

    2.1 Crystal growth and defects in crystals

    The cross section of the fibers was roughly circular without noticeable faceting on the lateral surface of the fiber. The diameter variation was within 40 μm in the whole fiber. Facets appeared only on one side of the-plane. The facet probability of the sapphire fiber grown along the-axis was defined by anisotropy of the surface energy and melt temperature fluctuations. Temperature instability also could induce the non-uniform lateral or normal facet growth, which could lead to defects and surface roughness shown in Fig. 4 and Fig. 5.

    Fig. 3 Schematic diagram of the boundary conditions used in the numerical simulation

    Fig. 4 Growth stripes in the crystal structure caused by slight vibrations above the die, v=30 mm/h

    Fig. 5 Cross section morphology and bubbles' distribution in the cross section of the sapphire fibers

    Fig. 6 shows the principles of the capillary shaping for EFG fiber growth method. It can be seen that stable shaped single crystals with constant diameter will be grown if the growth angle(the angle between the meniscus and the growth axis) is constant (o). As a material constant, the parameterowas determined by the thermodynamic equilibrium condition at the three-phase interface line, which does not depend on the growth parameters like pulling velocity, diameter and meniscus height. The parametersoof different crystals are given in Table 1.

    Fig. 6 Principles of capillary shaping for EFG fiber growth method

    m-Vertical curvature of the meniscus;d-Die radius;c-Radius of the crystal;m-Meniscus height

    Table 1 Parameter φo for different crystals

    Deviations of the actual growth anglefromoresult from perturbations of the meniscus height and radius, which lead to non-stationary variations of the fiber radii in agreement with:

    The relationship between meniscus shape and crystal radius is given by the equation[12]:

    The relationship of theoretical meniscus shapes() and different fiber radiicis shown in Fig. 7. For the actual fiber geometry, meniscus shapes with different fiber radiicvalues were calculated. The dashed line shows the possible positions of the meniscus. There is a certain range of meniscus height for successful growth of crystals. The increase of height will induce the separation between the growing crystal and the meniscus. The de-crease of height will cause the local interaction between the growing crystal and the die surface, which will re-d-uce the crystal quality. The meniscus height depends on the material properties of the melt, pulling rate and am-bient temperature distribution. The stable meniscus height and regular crystal shape can be achieved when temperature gradient at growth interface area was invariable. However, it is not easy to establish such conditions during the entire crystallization process. In order to maintain a stable meniscus height, we have to use an automated control system with computer-controlled feedback program that simultaneously monitored and controlled the fiber diameter and the die temperature. At the same time the pulling rate was invariable.

    Fig. 7 Relationship between theoretical meniscus shapes Z(R) and different fiber radii R

    The characteristic defects in sapphire crystal were the so-called voids or bubbles, which could reduce the opti-cal and mechanical quality of crystals. In this work, sap-phire fibers were studied with an optical microscope with 50× magnification. It was shown that there were bubbles running along the fibers. Fig. 8 shows a 50× micrograph of the EFG sapphire fiber.

    The size of micro bubbles was about 5–10 μm. The most bubbles were spherical and exist on the pe-riphery of the fiber. The distribution behavior of mi-cro-bubbles was fairly related to growth rate and impu-rity effects (consti-tutional super cooling). Their occur-rence has been dem-onstrated to be related to the stability of the solid liquid interface[13-14].

    Another defect of the fiber was the Mo inclusions. As shown in Fig. 4, a small amount of Mo inclusions were observed, which are re-crystallized from solution in the sapphire. The Mo is generally oxidized by dissociation of the melt. The oxide dissolves in the melt, and is reduced to yield metallic molybdenum. This mechanism would seem to be confirmed by the appearance of the Mo in the inclusions. However, other aspects play a role on the generation of Mo inclusions. Notably, the new dies would produce more Mo inclusions at the first several runs as shown in Fig. 9(a).

    In Fig. 9(a), the total content of Mo decreased with the frequency use of the crucible and die. It is concluded that new setups with the rougher machining surface, which leads to easier dissolution of Mo and increases the “output” of Mo into the melt. The high initial content of Mo inclusions can be seen when the crucible and die were first used. Another possibility is due to the poor vacuum of the equipment which results in more content of mo-lybdenum oxide. Other experiments have sought to es-tablish the “time relationship” of Mo in sapphire fibers. The Mo concentration in the samples measured by ICP analysis and the results were in Fig. 9(b).

    Fig. 8 Bubbles’ distribution observed on the lateral periphery of the fiber

    Fig. 9 Decrease in total Mo inclusion length with die life (a) and Mo concentration as a function of time from a sapphire melt (b)

    Mo seems to be produced in substantial amounts early in the usage of the setup, and then diminishes after sev-eral runs. The die and its surroundings are likely the coldest part of the setup. It is apparent from examining used die that significant amounts of Mo are precipitated out on the outer surfaces.

    2.2 Bubbles distribution and numerical simu-lation result of the fluid flow in the meniscus

    The flow field in the meniscus (fiber radius 0.5 mm) and the corresponding bubbles in the crystals were shown in Fig. 10.

    Fig. 10 Flow field in the meniscus (fiber radius 0.5 mm) and corresponding bubbles in the crystals

    The available experimental data suggest that the mi-cro- bubbles distribution depends on the fluid flow in the me-niscus. The distribution of the bubbles in the periph-ery of the meniscus suggested that the vortex of the fluid flow drove the bubbles move to the atmosphere under the thermo-capillary convection. The positions of these re-gions depend on the geometry shape of the die[15].

    2.3 Optical properties

    The absorption spectrum of the EFG sapphire fiber was shown in Fig. 11. The measured attenuation coeffi-cient of the EFG fiber with length of 76 cm was 9 dB/m at 633 nm. The crystal quality of grown crystals by EFG method was worse than the crystals grown by LHPG method[16]. Low propagation loss is necessary for optical applications of sapphire fibers. Two effects such as scat-tering and absorption induce the total loss. Absorption loss comes from the micro-bubbles defects and the im-purities. In the grown sapphire fiber, the density of mo-lybdenum ions will reach up to 5×10–6g/cm3due to the mo-lybdenum crucible used in the growth process. The im-purities in the melt were also the reason of extrinsic ab-sorption. Inclusions, inhomogeneous, and surface irregu-larities increase the scattering losses. There is no any inhomogeneous defect observed under the optical mi-croscopy, and no scattering centers under laser illumina-tion. It is suggested that diameter variation should be the most important reason for the scattering loss. The varia-tions in diameter could be induced by several following factors: heating power fluctuations in the molten zone and the mechanical perturbations. The latter could induce bending or twisting of fiber.

    3 Conclusion

    Single-crystal sapphire fibers (diameter (400–1000) μm, length 500 mm) were grown with the EFG method suc-cessfully. The cross section of the-axis fibers was roughly circular. The defects such as micro-bubbles, inclusions and growth stripes were observed and analyzed. The dis-tribution of the micro-bubbles was studied with optical microscopy. The influence of the growth conditions on the size and distribution of micro-bubbles in sapphire fibers has been studied by experimental and numerical simulation of the fluid flow in the meniscus. The defect analysis and optical characterization exhibited the imperfect single crystalline structure of fibers.

    Fig. 11 Absorption spectrum of the EFG sapphire fiber

    [1] LABELLE JR H E. EFG, the invention and application to sapphire growth., 1980, 50(1): 8–17.

    [2] WILSON B A, PETRIE C M, BLUE T E. High temperature effects on the light transmission through sapphire optical fiber., 2018, 101(8): 3452–3459.

    [3] COULTER A H. Sapphire fibers for erbium: YAG continue to evolve., 1995, 13(3): 227–228.

    [4] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique., 2016, 673(1): 012017.

    [5] BERA S, NIE C D, SOSKIND M G,. Growth and lasing of single crystal YAG fibers with different Ho3+concentrations., 2018, 75: 44–48.

    [6] LEBBOU K. Single crystals fiber technology design., 2017, 63: 13–18.

    [7] KURLOV V N, MILEIKO S T, KOLCHIN A A,. Growth of oxide fibers by the internal crystallization method., 2002, 47(1): S53–S62.

    [8] KURLOV V N, KIIKO V M, KOLCHIN A A,. Sapphire fi-bres grown by a modified internal crystallisation method., 1999, 204(4): 499–504.

    [9] FITZGIBBON J J, COLLINS J M. High-volume production of low-loss sapphire optical fibers by Saphikon EFG (edge-defined, film-fed growth) method., 1998, 3262: 135–141.

    [10] SUREK T. Theory of shape stability in crystal growth from the melt., 1976, 47(10): 4384–4393.

    [11] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt. crystal research and technology., 1999, 34(1): 3–40.

    [12] KAMADA K, MURAKAMI R, KOCHURIKHIN V V,. Sin-gle crystal growth of submillimeter diameter sapphire tube by the micro- pulling down method., 2018, 492: 45–49.

    [13] ZHDANOV A V, SATUNKIN G A, TATARCHENKO V A,. Cylindrical pores in a growing crystal., 1980, 49(4): 659–664.

    [14] TATARCHENKO V A, YALOVETS T N, SATUNKIN G A,. Defects in shaped sapphire crystals., 1980, 50(1): 335–340.

    [15] BUNOIU O, NICOARA I, SANTAILLER J L,. Fluid flow and solute segregation in EFG crystal growth process., 2005, 275(1/2): e799–e805.

    [16] NUBLING R K, HARRINGTON J A. Optical properties of sin-gle- crystal sapphire fibers., 1997, 36(24): 5934–5940.

    導模法生長藍寶石單晶光纖的缺陷和光學特性研究

    王東海1, 侯文濤1, 李納1, 李東振2, 徐曉東2, 徐軍1, 王慶國1, 唐慧麗1

    (1. 同濟大學 物理科學與工程學院, 上海 200092; 2. 江蘇師范大學 物理與電子工程學院, 徐州 221116)

    通過導模法(EFG)成功生長了藍寶石單晶光纖(直徑400~1000 μm, 長度500 mm)。光纖的橫截面大致為圓形, 側面無明顯的小面, 直徑變化小于40 μm。本研究對晶體缺陷, 例如微氣泡, 包裹物和生長條紋等進行觀察與分析, 得出: 大多數(shù)微氣泡是球狀的, 且存在于光纖的外側緣; 在藍寶石光纖外側面也觀察到少量的鉬包裹物元素; 新模具在前幾次使用中往往會產(chǎn)生更多的鉬夾雜物, 在多次使用后降低。通過對熔體膜流體流動的實驗和數(shù)值模擬, 研究藍寶石光纖中微氣泡尺寸和分布, 實驗和數(shù)值模擬的結果顯示出良好的一致性。微氣泡的分布取決于熔體膜處的流體流動模式, 流體流動的渦流使微氣泡在熱毛細對流作用下移動到藍寶石光纖外側緣。633 nm處的吸收損耗為9 dB/m, 包裹物和表面不規(guī)則性會增加散射損耗。

    藍寶石光纖; 導模法(EFG); 微氣泡; 鉬包裹物

    TQ174

    A

    date:2019-11-11;

    date: 2019-12-25

    WANG Donghai(1982–), male, PhD candidate. E-mail: yingxiong3258@sina.com

    王東海(1982–), 男, 博士研究生. E-mail: yingxiong3258@sina.com

    Corresponding author:XU Jun, professor. E-mail: xujun@mail.shcnc.ac.cn; WANG Qingguo, PhD. E-mail:wqingguo2013@163.com

    徐軍, 教授. E-mail: xujun@mail.shcnc.ac.cn; 王慶國, 博士. E-mail:wqingguo2013@163.com

    1000-324X(2020)09-1053-06

    10.15541/jim20190573

    猜你喜歡
    藍寶石單晶熔體
    藍寶石單晶爐隔熱屏內(nèi)膽損壞機理
    失蹤的“藍寶石”
    大尺寸低阻ZnO單晶襯弟
    大尺寸低阻ZnO單晶襯底
    聚合物熔體脈振傳遞過程的協(xié)同學研究
    中國塑料(2016年4期)2016-06-27 06:33:48
    注射保壓過程中O2/N2分子在PMMA熔體內(nèi)部的擴散行為
    中國塑料(2016年3期)2016-06-15 20:30:01
    含硅芳炔樹脂及其共混物熔體的流變性能
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    注氣口前后段螺桿中聚合物熔體的數(shù)值研究
    中國塑料(2014年1期)2014-10-17 02:46:37
    高清在线视频一区二区三区| 18禁观看日本| 久久久久精品久久久久真实原创| 我的老师免费观看完整版| 91精品三级在线观看| 亚洲精品乱码久久久v下载方式| 午夜激情福利司机影院| 校园人妻丝袜中文字幕| 精品久久久久久久久av| 一区二区av电影网| 亚洲欧美成人综合另类久久久| 欧美精品人与动牲交sv欧美| 免费高清在线观看日韩| 性高湖久久久久久久久免费观看| 午夜福利视频在线观看免费| 久久久久久久大尺度免费视频| 秋霞在线观看毛片| 国产精品嫩草影院av在线观看| 久久青草综合色| 国产亚洲最大av| 夫妻午夜视频| 夫妻午夜视频| 爱豆传媒免费全集在线观看| 国产欧美日韩综合在线一区二区| 91aial.com中文字幕在线观看| 母亲3免费完整高清在线观看 | 人成视频在线观看免费观看| 伊人久久精品亚洲午夜| 亚洲欧美成人精品一区二区| 精品人妻在线不人妻| 亚洲欧美色中文字幕在线| 亚洲成人一二三区av| 性色av一级| 亚洲欧美一区二区三区国产| 99久国产av精品国产电影| 一级毛片我不卡| av在线播放精品| 亚洲av成人精品一区久久| 国产精品一区www在线观看| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 国产日韩欧美亚洲二区| 飞空精品影院首页| 国产视频内射| 亚洲精品第二区| 51国产日韩欧美| 欧美日韩av久久| 日韩亚洲欧美综合| 欧美 亚洲 国产 日韩一| 最后的刺客免费高清国语| 91久久精品国产一区二区成人| 高清不卡的av网站| 91精品伊人久久大香线蕉| 久久人人爽av亚洲精品天堂| 日日摸夜夜添夜夜爱| 精品少妇久久久久久888优播| 欧美国产精品一级二级三级| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级国产av玫瑰| 午夜激情久久久久久久| 少妇的逼好多水| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日韩亚洲高清精品| 亚洲av免费高清在线观看| 国产老妇伦熟女老妇高清| 成年人午夜在线观看视频| 一本一本综合久久| 在现免费观看毛片| 亚洲精品日本国产第一区| 秋霞在线观看毛片| 99热全是精品| 免费看av在线观看网站| 丝袜在线中文字幕| 熟妇人妻不卡中文字幕| 免费黄网站久久成人精品| 国产亚洲精品第一综合不卡 | 国产成人精品一,二区| 中文字幕久久专区| 久久婷婷青草| 91精品一卡2卡3卡4卡| 岛国毛片在线播放| 久久久久久久久久久免费av| 欧美最新免费一区二区三区| 99视频精品全部免费 在线| 高清午夜精品一区二区三区| 国产熟女欧美一区二区| 欧美日韩一区二区视频在线观看视频在线| 十八禁网站网址无遮挡| 国产亚洲av片在线观看秒播厂| 在线观看人妻少妇| h视频一区二区三区| 午夜免费男女啪啪视频观看| 18+在线观看网站| 国产精品不卡视频一区二区| 亚洲,欧美,日韩| 亚洲中文av在线| 九九在线视频观看精品| 永久免费av网站大全| 亚洲精品自拍成人| 蜜臀久久99精品久久宅男| 欧美日韩成人在线一区二区| 欧美人与性动交α欧美精品济南到 | 国产免费又黄又爽又色| av视频免费观看在线观看| 亚洲国产日韩一区二区| 久久精品人人爽人人爽视色| 久久久久久久久久人人人人人人| 熟女电影av网| 夜夜看夜夜爽夜夜摸| 狠狠婷婷综合久久久久久88av| 亚洲av欧美aⅴ国产| 久久久午夜欧美精品| 少妇人妻久久综合中文| 在线观看三级黄色| 久久午夜综合久久蜜桃| 国产成人免费无遮挡视频| 一级毛片我不卡| 水蜜桃什么品种好| 亚洲精品中文字幕在线视频| 高清毛片免费看| 亚洲三级黄色毛片| 97超碰精品成人国产| 免费看光身美女| 高清黄色对白视频在线免费看| 日韩av在线免费看完整版不卡| 最黄视频免费看| 亚洲av男天堂| 有码 亚洲区| 国产av国产精品国产| 国产片特级美女逼逼视频| 纯流量卡能插随身wifi吗| 18禁动态无遮挡网站| 亚洲av.av天堂| 爱豆传媒免费全集在线观看| 精品久久久噜噜| 天天影视国产精品| 成年av动漫网址| 国产色爽女视频免费观看| 久久这里有精品视频免费| 欧美+日韩+精品| 大陆偷拍与自拍| 国产女主播在线喷水免费视频网站| 国产黄频视频在线观看| 中国三级夫妇交换| 亚洲欧洲日产国产| 一区二区三区四区激情视频| 美女cb高潮喷水在线观看| 97精品久久久久久久久久精品| 亚洲av在线观看美女高潮| 精品人妻在线不人妻| 伦理电影大哥的女人| 18在线观看网站| 看非洲黑人一级黄片| 欧美日韩视频精品一区| 少妇人妻久久综合中文| 男女边吃奶边做爰视频| 视频中文字幕在线观看| 亚洲欧美日韩卡通动漫| 国产片特级美女逼逼视频| 又黄又爽又刺激的免费视频.| 午夜福利,免费看| 22中文网久久字幕| 超色免费av| 99热网站在线观看| 免费av中文字幕在线| 在线观看免费高清a一片| 日韩亚洲欧美综合| 国产无遮挡羞羞视频在线观看| 国产精品麻豆人妻色哟哟久久| 97超碰精品成人国产| 国产av码专区亚洲av| 国产黄频视频在线观看| kizo精华| 久久久国产精品麻豆| 人成视频在线观看免费观看| 欧美日韩精品成人综合77777| 一级a做视频免费观看| 成人无遮挡网站| 亚洲精品成人av观看孕妇| 精品视频人人做人人爽| 免费av不卡在线播放| 免费av不卡在线播放| 成人综合一区亚洲| 久久女婷五月综合色啪小说| 国产女主播在线喷水免费视频网站| av免费在线看不卡| 日韩成人av中文字幕在线观看| 特大巨黑吊av在线直播| 国产成人精品福利久久| 国产一区二区三区av在线| 制服人妻中文乱码| 国产精品久久久久久精品电影小说| 一本一本综合久久| 纯流量卡能插随身wifi吗| 国产精品人妻久久久影院| 91久久精品国产一区二区成人| 丝袜美足系列| 久久人人爽人人片av| videos熟女内射| 国产免费又黄又爽又色| 肉色欧美久久久久久久蜜桃| 99热网站在线观看| 丝袜美足系列| 高清毛片免费看| 免费大片黄手机在线观看| 91国产中文字幕| 久久人人爽av亚洲精品天堂| 国产精品一二三区在线看| 少妇的逼水好多| 精品人妻熟女毛片av久久网站| 久久久精品区二区三区| 精品久久久噜噜| 亚洲在久久综合| 亚洲精品aⅴ在线观看| 两个人免费观看高清视频| 亚洲经典国产精华液单| 只有这里有精品99| 99久久中文字幕三级久久日本| 日本爱情动作片www.在线观看| 99热全是精品| 美女中出高潮动态图| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 十分钟在线观看高清视频www| 国精品久久久久久国模美| 亚洲精品第二区| 天天影视国产精品| 插逼视频在线观看| 亚洲天堂av无毛| 制服人妻中文乱码| 丝袜脚勾引网站| 免费少妇av软件| av.在线天堂| 亚洲美女视频黄频| 国产av国产精品国产| 亚洲av不卡在线观看| 高清在线视频一区二区三区| 狂野欧美激情性bbbbbb| 乱人伦中国视频| 女性生殖器流出的白浆| 少妇人妻 视频| 一级二级三级毛片免费看| 热99国产精品久久久久久7| 日本vs欧美在线观看视频| 夫妻午夜视频| 一区二区三区免费毛片| 精品一区二区三区视频在线| 嫩草影院入口| 精品人妻熟女av久视频| 久久久久久久亚洲中文字幕| 亚洲精品第二区| 免费黄色在线免费观看| 日韩一区二区视频免费看| 一级毛片黄色毛片免费观看视频| 人人妻人人澡人人看| 天堂8中文在线网| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 在线看a的网站| 18禁裸乳无遮挡动漫免费视频| 免费观看无遮挡的男女| 亚洲精品中文字幕在线视频| 人妻一区二区av| 国产黄频视频在线观看| 成人影院久久| 亚洲五月色婷婷综合| 午夜免费男女啪啪视频观看| 人妻夜夜爽99麻豆av| 国产精品国产三级国产av玫瑰| 久久久久久久精品精品| 啦啦啦啦在线视频资源| 赤兔流量卡办理| 男女啪啪激烈高潮av片| 国产亚洲午夜精品一区二区久久| 成年人午夜在线观看视频| 午夜福利视频精品| 中国国产av一级| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 国产成人精品无人区| 各种免费的搞黄视频| 亚洲国产最新在线播放| 99久久人妻综合| 国产免费现黄频在线看| 日韩精品有码人妻一区| 黄色毛片三级朝国网站| 另类精品久久| 国产伦理片在线播放av一区| 日本与韩国留学比较| 久久久久人妻精品一区果冻| 水蜜桃什么品种好| 80岁老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 色视频在线一区二区三区| 特大巨黑吊av在线直播| 岛国毛片在线播放| 日韩不卡一区二区三区视频在线| 午夜福利视频精品| 丝瓜视频免费看黄片| 国产成人精品久久久久久| 日本猛色少妇xxxxx猛交久久| 少妇人妻精品综合一区二区| 久久久欧美国产精品| 国产黄色免费在线视频| 国产精品三级大全| 国产视频内射| 成人二区视频| 国产亚洲精品久久久com| 18禁观看日本| 亚洲av二区三区四区| 国产一区二区在线观看av| 精品午夜福利在线看| 成人手机av| 免费不卡的大黄色大毛片视频在线观看| av一本久久久久| 性色av一级| 伦理电影大哥的女人| 日本vs欧美在线观看视频| 免费观看的影片在线观看| 国产淫语在线视频| 男女啪啪激烈高潮av片| 国产成人av激情在线播放 | 黑人猛操日本美女一级片| 精品人妻熟女av久视频| 日韩在线高清观看一区二区三区| 蜜臀久久99精品久久宅男| 一级二级三级毛片免费看| 99热这里只有是精品在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | √禁漫天堂资源中文www| 久久久久国产精品人妻一区二区| 91精品一卡2卡3卡4卡| 如日韩欧美国产精品一区二区三区 | 免费观看a级毛片全部| av国产精品久久久久影院| 免费黄网站久久成人精品| 亚洲av二区三区四区| 各种免费的搞黄视频| 熟女人妻精品中文字幕| 国产毛片在线视频| 看非洲黑人一级黄片| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 婷婷色麻豆天堂久久| 黑人欧美特级aaaaaa片| a级毛色黄片| 欧美+日韩+精品| 国产午夜精品久久久久久一区二区三区| 精品久久久精品久久久| 人妻 亚洲 视频| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 中文字幕免费在线视频6| 国产成人精品在线电影| 五月玫瑰六月丁香| 狂野欧美激情性bbbbbb| a级片在线免费高清观看视频| av免费观看日本| 好男人视频免费观看在线| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 啦啦啦中文免费视频观看日本| 十八禁高潮呻吟视频| 高清午夜精品一区二区三区| 国国产精品蜜臀av免费| 晚上一个人看的免费电影| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 最近最新中文字幕免费大全7| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 欧美日本中文国产一区发布| 极品少妇高潮喷水抽搐| av.在线天堂| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 午夜激情久久久久久久| 韩国高清视频一区二区三区| 亚洲中文av在线| 黑人猛操日本美女一级片| 欧美成人午夜免费资源| 精品熟女少妇av免费看| 国产精品国产三级国产av玫瑰| a 毛片基地| 在线精品无人区一区二区三| 女人精品久久久久毛片| 99热6这里只有精品| 黄色配什么色好看| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 国产精品一区二区三区四区免费观看| 色吧在线观看| 欧美日韩av久久| 91精品三级在线观看| 日日撸夜夜添| 亚洲精品第二区| 成年人免费黄色播放视频| 亚洲美女视频黄频| 日韩亚洲欧美综合| 精品人妻熟女毛片av久久网站| 成人国语在线视频| 欧美xxxx性猛交bbbb| 精品人妻熟女毛片av久久网站| 日韩大片免费观看网站| 我要看黄色一级片免费的| 日本欧美国产在线视频| 夜夜爽夜夜爽视频| 如日韩欧美国产精品一区二区三区 | 国产精品成人在线| 国模一区二区三区四区视频| 91精品一卡2卡3卡4卡| 日日撸夜夜添| av女优亚洲男人天堂| 精品人妻熟女毛片av久久网站| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| 久久久久久久久久久免费av| 夫妻午夜视频| 国产爽快片一区二区三区| 99视频精品全部免费 在线| 一区二区三区精品91| 少妇人妻 视频| 中文精品一卡2卡3卡4更新| 精品国产露脸久久av麻豆| 国产探花极品一区二区| 青春草视频在线免费观看| 丁香六月天网| 极品少妇高潮喷水抽搐| 母亲3免费完整高清在线观看 | 亚洲精品456在线播放app| 国产精品99久久久久久久久| 91精品一卡2卡3卡4卡| 少妇被粗大猛烈的视频| 久久午夜福利片| 精品亚洲乱码少妇综合久久| 黄色视频在线播放观看不卡| av在线播放精品| 99热这里只有精品一区| 精品熟女少妇av免费看| 飞空精品影院首页| 国产爽快片一区二区三区| 22中文网久久字幕| 亚洲,一卡二卡三卡| 中文字幕人妻熟人妻熟丝袜美| 午夜av观看不卡| 国产片特级美女逼逼视频| 大香蕉久久网| 国产视频首页在线观看| tube8黄色片| 最黄视频免费看| 国产精品一区www在线观看| 99国产精品免费福利视频| 丰满乱子伦码专区| 国产亚洲精品第一综合不卡 | 精品国产露脸久久av麻豆| 99九九线精品视频在线观看视频| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 少妇人妻精品综合一区二区| 中文字幕人妻丝袜制服| 黄色毛片三级朝国网站| 国产成人一区二区在线| 极品人妻少妇av视频| 国产男人的电影天堂91| 99热这里只有是精品在线观看| 国产伦理片在线播放av一区| 我的老师免费观看完整版| 亚洲国产色片| 母亲3免费完整高清在线观看 | 丝袜喷水一区| 69精品国产乱码久久久| 欧美日韩亚洲高清精品| 欧美亚洲 丝袜 人妻 在线| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| av天堂久久9| 秋霞伦理黄片| 黑人高潮一二区| 亚洲欧美日韩另类电影网站| 飞空精品影院首页| 母亲3免费完整高清在线观看 | av播播在线观看一区| 老司机亚洲免费影院| 一级毛片黄色毛片免费观看视频| 一本大道久久a久久精品| 九九在线视频观看精品| 免费观看的影片在线观看| 日本-黄色视频高清免费观看| 91精品国产国语对白视频| 一区二区日韩欧美中文字幕 | 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 亚洲精品,欧美精品| 狂野欧美白嫩少妇大欣赏| 视频在线观看一区二区三区| 春色校园在线视频观看| 肉色欧美久久久久久久蜜桃| 午夜福利影视在线免费观看| 全区人妻精品视频| 国产亚洲精品久久久com| 在线天堂最新版资源| 人妻人人澡人人爽人人| 国产成人精品久久久久久| 丝袜脚勾引网站| 日韩av不卡免费在线播放| 水蜜桃什么品种好| 午夜日本视频在线| 国产精品国产三级国产专区5o| 婷婷色麻豆天堂久久| 亚洲五月色婷婷综合| 日本黄大片高清| 人妻少妇偷人精品九色| 亚洲精品亚洲一区二区| 日本黄色片子视频| 一区在线观看完整版| 狠狠精品人妻久久久久久综合| 少妇被粗大猛烈的视频| 三上悠亚av全集在线观看| 精品国产一区二区久久| 国产爽快片一区二区三区| 少妇人妻 视频| 亚洲精品一区蜜桃| 久久久午夜欧美精品| 自线自在国产av| 日韩av在线免费看完整版不卡| 国产 精品1| 日韩av不卡免费在线播放| 久久精品国产亚洲网站| 国产午夜精品久久久久久一区二区三区| 性色av一级| 在线观看免费日韩欧美大片 | 久久99一区二区三区| 亚洲av中文av极速乱| 精品卡一卡二卡四卡免费| 免费大片黄手机在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 成人午夜精彩视频在线观看| 久久久国产一区二区| av在线老鸭窝| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 久久99蜜桃精品久久| 国产视频内射| av在线观看视频网站免费| 一边摸一边做爽爽视频免费| 国产永久视频网站| 欧美日韩av久久| a级毛片在线看网站| 久久精品夜色国产| 午夜日本视频在线| 韩国av在线不卡| 2022亚洲国产成人精品| 欧美日韩av久久| 天天操日日干夜夜撸| 最后的刺客免费高清国语| 日本免费在线观看一区| 亚洲欧美清纯卡通| 狠狠婷婷综合久久久久久88av| 国模一区二区三区四区视频| 亚洲人成77777在线视频| 午夜91福利影院| 欧美日韩综合久久久久久| 一本久久精品| 欧美xxⅹ黑人| 亚洲欧美中文字幕日韩二区| 亚洲av欧美aⅴ国产| 久久精品夜色国产| 欧美日韩成人在线一区二区| 欧美3d第一页| 男人操女人黄网站| 中文字幕免费在线视频6| 免费播放大片免费观看视频在线观看| 丝瓜视频免费看黄片| 色吧在线观看| 青春草视频在线免费观看| √禁漫天堂资源中文www| 在线播放无遮挡| 久久综合国产亚洲精品| 免费看光身美女| 啦啦啦中文免费视频观看日本| 看十八女毛片水多多多| av卡一久久| 最近中文字幕2019免费版| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 日韩亚洲欧美综合| 久久热精品热| 亚洲精品第二区| 男人操女人黄网站| 亚洲人成网站在线播| 亚洲国产av影院在线观看| 能在线免费看毛片的网站| 美女脱内裤让男人舔精品视频| 2021少妇久久久久久久久久久| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 超色免费av| 国产精品蜜桃在线观看| 国产黄频视频在线观看| 香蕉精品网在线| 亚洲av成人精品一二三区| 91成人精品电影| 国产精品免费大片| 亚洲精品一二三| 天美传媒精品一区二区| 人妻制服诱惑在线中文字幕| 国产日韩一区二区三区精品不卡 | 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 波野结衣二区三区在线| 春色校园在线视频观看| 91午夜精品亚洲一区二区三区|