高英波,張慧,單晶,薛艷芳,錢欣,代紅翠,劉開昌,李宗新
吐絲前高溫脅迫對(duì)不同耐熱型夏玉米產(chǎn)量及穗發(fā)育特征的影響
高英波1,張慧1,單晶1,薛艷芳1,錢欣1,代紅翠2,劉開昌2,李宗新1
(1山東省農(nóng)業(yè)科學(xué)院玉米研究所/小麥玉米國(guó)家工程實(shí)驗(yàn)室/農(nóng)業(yè)部黃淮海北玉米生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,濟(jì)南 250100;2山東省農(nóng)業(yè)科學(xué)院作物研究所,濟(jì)南 250100)
【目的】吐絲前高溫是影響玉米雌雄穗發(fā)育的重要因素之一,對(duì)玉米產(chǎn)量形成至關(guān)重要。探明吐絲前高溫脅迫對(duì)玉米產(chǎn)量及雌雄穗發(fā)育進(jìn)程的影響,為玉米穩(wěn)產(chǎn)高產(chǎn)提供保障?!痉椒ā恳曰F谀蜔嵝陀衩灼贩N鄭單958和熱敏感型玉米品種聯(lián)創(chuàng)808為供試材料,采用盆栽試驗(yàn),在第9片葉展開期至吐絲期,移入人工智能溫室進(jìn)行高溫脅迫(最高溫度/最低溫度為40/30℃),對(duì)照的最高溫度/最低溫度為35/25℃,研究高溫脅迫對(duì)不同耐熱型玉米產(chǎn)量、雌雄穗生長(zhǎng)發(fā)育及外觀形態(tài)結(jié)構(gòu)、花粉花絲微觀結(jié)構(gòu)和光合特性的影響。【結(jié)果】第9片葉展開期至吐絲期高溫脅迫顯著降低了夏玉米穗長(zhǎng)、行粒數(shù)、穗粒數(shù)和粒重,進(jìn)而導(dǎo)致產(chǎn)量顯著下降。與對(duì)照相比,高溫脅迫下鄭單958和聯(lián)創(chuàng)808行粒數(shù)分別降低22.21%和24.59%,穗粒數(shù)分別降低29.85%和27.80%,千粒重分別降低24.04%和17.47%,導(dǎo)致籽粒產(chǎn)量分別降低44.98%和40.88%,差異均達(dá)顯著水平。高溫脅迫抑制了2個(gè)玉米品種雌雄穗發(fā)育,雌、雄穗干重和雌穗長(zhǎng)度顯著降低,光合性能顯著降低,開花吐絲間隔期(ASI)拉長(zhǎng)。高溫脅迫后,鄭單958和聯(lián)創(chuàng)808吐絲期雄穗干重分別降低39.42%和15.60%,雌穗干重分別降低22.50%和15.56%,穗位葉凈光合速率分別降低48.70%和56.48%,開花吐絲間隔期(ASI)分別達(dá)7 d和6 d,雌穗吐絲時(shí)間推遲是ASI拉長(zhǎng)的主要原因。高溫脅迫對(duì)玉米花粉及花絲表面超微結(jié)構(gòu)均產(chǎn)生了明顯影響,2個(gè)玉米品種花粉粒表面均出現(xiàn)干縮褶皺,外殼出現(xiàn)網(wǎng)狀紋突起,萌發(fā)孔內(nèi)陷;玉米花絲表面褶皺,花絲毛數(shù)明顯降低,且存在的花絲毛幾乎全部倒伏于花絲表面上,造成花絲接受花粉面積減少,且鄭單958花粉花絲受損程度明顯重于聯(lián)創(chuàng)808?!窘Y(jié)論】第9片葉展開期至吐絲期高溫脅迫,對(duì)耐熱型品種鄭單958的產(chǎn)量形成、光合特性和雌雄穗發(fā)育的影響均高于熱敏感型品種聯(lián)創(chuàng)808。第9片葉展開期至吐絲期高溫脅迫導(dǎo)致粉花絲微觀形態(tài)受損,抑制雌雄穗發(fā)育,顯著降低玉米光合能力,使得穗粒數(shù)和粒重減少,籽粒產(chǎn)量顯著降低。因此,生產(chǎn)中適宜玉米品種的選用需參考不同區(qū)域高溫逆境易發(fā)生階段來(lái)確定。
夏玉米;高溫脅迫;穗發(fā)育特征;籽粒產(chǎn)量;花粉花絲微觀結(jié)構(gòu)
【研究意義】玉米作為我國(guó)第一大糧食作物,對(duì)保障國(guó)家糧食安全至關(guān)重要。近年來(lái),極端高溫天氣的頻發(fā)對(duì)玉米產(chǎn)量造成了顯著的負(fù)面影響[1],盡管玉米為喜溫作物,但日最高溫超過(guò)32℃時(shí),玉米產(chǎn)量會(huì)顯著降低[2],全球平均溫度每升高1℃將造成玉米減產(chǎn)7.4%[3]。據(jù)估計(jì),到21世紀(jì)末,全球表面平均溫度變化有可能超過(guò)1.5℃,甚至?xí)^(guò)2℃[4],未來(lái)玉米生產(chǎn)遭受高溫危害的現(xiàn)象將會(huì)日趨加重。玉米雌雄穗的發(fā)育對(duì)產(chǎn)量形成起著關(guān)鍵性作用,研究穗期高溫逆境對(duì)玉米穗發(fā)育及產(chǎn)量形成的影響,對(duì)選用適宜品種實(shí)現(xiàn)夏玉米高產(chǎn)穩(wěn)產(chǎn)具有重要指導(dǎo)意義?!厩叭搜芯窟M(jìn)展】黃淮海夏播玉米區(qū)是我國(guó)優(yōu)勢(shì)玉米種植區(qū)之一,在夏玉米生長(zhǎng)季內(nèi)極易遭遇高溫?zé)岷μ鞖鈁5]。玉米穗期(拔節(jié)—抽雄期)階段最適溫度為24℃—26℃,開花期前后遭遇高溫逆境通常會(huì)使玉米植株發(fā)育進(jìn)程加快,雌雄穗發(fā)育不協(xié)調(diào),中、后期分化能力嚴(yán)重降低,易導(dǎo)致雄穗變短、分枝數(shù)量和小花數(shù)減少,有效花粉數(shù)量降低[6-7],散粉時(shí)間縮短[8-9],雌穗變細(xì)變短,養(yǎng)分不能正常運(yùn)輸形成香蕉穗現(xiàn)象[10-11]。嚴(yán)重時(shí)還會(huì)導(dǎo)致花藥開裂[12-13]、花粉形態(tài)結(jié)構(gòu)及表面超微結(jié)構(gòu)改變、花粉花絲活力降低、開花吐絲期間隔拉長(zhǎng)[14]、授粉結(jié)實(shí)能力降低[15-16],嚴(yán)重影響玉米的高產(chǎn)穩(wěn)產(chǎn)。高溫逆境亦會(huì)引起玉米葉片光合物質(zhì)生產(chǎn)能力下降[17-18]、營(yíng)養(yǎng)器官早衰,同時(shí)伴隨著呼吸消耗增加,導(dǎo)致凈同化物減少[19]、同化物供應(yīng)不足[20],穗粒數(shù)和粒重降低,進(jìn)而導(dǎo)致玉米的產(chǎn)量降低[21]?!颈狙芯壳腥朦c(diǎn)】盡管前人就高溫脅迫對(duì)玉米生長(zhǎng)發(fā)育及籽粒建成進(jìn)行了較多研究,但多數(shù)將關(guān)注點(diǎn)聚焦于開花吐絲期高溫對(duì)受精結(jié)實(shí)及籽粒建成的影響等方面[14-16],關(guān)于開花期以前高溫逆境對(duì)雌雄穗發(fā)育進(jìn)程的影響研究相對(duì)較少且不系統(tǒng)。已有相關(guān)報(bào)道大多是在使用聚乙烯薄膜加熱的田間簡(jiǎn)易設(shè)施[7,17-18]進(jìn)行的,難以精確控制溫度,受外界環(huán)境影響較大,難以準(zhǔn)確評(píng)估高溫逆境對(duì)玉米生長(zhǎng)發(fā)育的影響?!緮M解決的關(guān)鍵問(wèn)題】本研究在人工智能溫室控溫條件下,系統(tǒng)研究吐絲前高溫脅迫對(duì)不同耐熱型玉米雌雄穗發(fā)育特征的影響,從產(chǎn)量形成、雌雄穗生長(zhǎng)發(fā)育進(jìn)程、微觀形態(tài)結(jié)構(gòu)特征角度揭示不同耐熱型玉米對(duì)高溫逆境的響應(yīng)及品種間差異性,為耐高溫玉米品種選育及耐高溫栽培技術(shù)提供理論依據(jù)。
試驗(yàn)在山東省農(nóng)業(yè)科學(xué)院玉米研究所章丘龍山試驗(yàn)基地(117°32′E,36°43′N)人工智能氣候溫室進(jìn)行,試驗(yàn)基地位于華北平原冬小麥、夏玉米一年兩熟種植區(qū),該區(qū)年均降雨量為693.4 mm,年均氣溫為13.6℃,年均日照時(shí)數(shù)2 558.3 h,無(wú)霜期209.0 d,土壤為棕壤土。人工氣候溫室采用超白鋼化玻璃,內(nèi)置補(bǔ)光燈,循環(huán)風(fēng)機(jī),保證光照與外界光照無(wú)顯著差異,CO2濃度基本與室外保持一致。在前期試驗(yàn)[7]及相關(guān)研究基礎(chǔ)上[17-18,22],選用花粒期耐熱型玉米品種鄭單958(ZD958)和熱敏感型玉米品種聯(lián)創(chuàng)808(LC808:2017年和2018年在山東淄博等地花期遭遇高溫?zé)岷?,出現(xiàn)較大面積減產(chǎn)或絕收)為供試材料,采用盆栽試驗(yàn)法,盆內(nèi)徑40 cm,高45 cm,側(cè)壁有通氣管,也可用于補(bǔ)水。取大田0—20 cm表土,風(fēng)干過(guò)篩,每盆裝土+基質(zhì)共計(jì)20 kg。每個(gè)品種每個(gè)處理各80盆,每盆播種3—4粒,播種深度為3—4 cm,于兩葉一心定苗,每盆留苗2株,4葉展期定苗至1株。于第9片葉展開時(shí),選取長(zhǎng)勢(shì)一致的植株,移入人工智能氣候溫室進(jìn)行高溫處理,直至吐絲期,每天9:00—18:00進(jìn)行40/30℃(最高溫度/最低溫度)高溫處理,以相對(duì)應(yīng)時(shí)間段35/25℃(最高溫度/最低溫度)處理為對(duì)照,處理結(jié)束后移出溫室于自然條件下生長(zhǎng)。高溫處理期間平均溫度、相對(duì)濕度,CO2濃度日變化詳見(jiàn)圖1,統(tǒng)計(jì)分析表明溫室內(nèi)相對(duì)濕度和CO2濃度變化趨勢(shì)無(wú)顯著差異。試驗(yàn)于2019年6月17日播種,7月23日進(jìn)行高溫脅迫處理,8月18日處理結(jié)束,共計(jì)25 d。
圖1 高溫脅迫期間平均溫度、相對(duì)濕度和CO2濃度日變化趨勢(shì)
1.2.1 環(huán)境指標(biāo)測(cè)定 高溫處理期間,每間溫室內(nèi)溫濕度記錄儀和CO2采集器自動(dòng)記錄溫室溫度、相對(duì)濕度和CO2濃度日變化。
1.2.2 玉米雌雄穗發(fā)育進(jìn)程及形態(tài)結(jié)構(gòu)觀察 于9葉期開始,每4 d選取2株長(zhǎng)勢(shì)一致的植株,稱取雄穗干重,在吐絲期調(diào)查雄穗分枝數(shù);觀察雌穗(葉腋處最上面雌穗)發(fā)育形態(tài)變化,輕輕剝?nèi)グ鼑诖扑胪獠康陌~,測(cè)量穗長(zhǎng),吐絲期稱取雌穗干重。
1.2.3 雄絲間隔(ASI)的記錄 抽雄前,選取各處理生長(zhǎng)均勻一致的10株玉米植株進(jìn)行標(biāo)記,每天記錄各株的抽雄、吐絲和散粉的時(shí)間,單株吐絲的時(shí)間與散粉的時(shí)間間隔即開花吐絲間隔期,10株的平均值即
該處理的開花吐絲間隔期。
1.2.4 花粉花絲超微結(jié)構(gòu)觀察各處理均取散粉后3 d的新鮮花粉和吐絲后3 d的新鮮花絲,用0.1 mol·L-1磷酸緩沖液洗3次,2.5 %戊二醛固定液預(yù)固定2 h,磷酸緩沖液沖洗多余的戊二醛,1 %鋨酸固定,清洗3次,30%-40%-50%-70%-80%-90%-100%乙醇梯度脫水,樣品移入無(wú)水乙醇后再轉(zhuǎn)入醋酸戊酯中,放置15 min,取出樣品放入臨界點(diǎn)干燥儀(Quorum-K850)中干燥,干燥后將樣本緊貼于導(dǎo)電碳膜雙面膠上放入離子濺射儀(Hitachi-MC1000)樣品臺(tái)上進(jìn)行噴金30 s左右,在電子掃描顯微鏡(Hitachi-SU8100)下觀察花粉及花絲的超微結(jié)構(gòu)[14]。
1.2.5 光合特性測(cè)定 高溫脅迫處理結(jié)束前,采用美國(guó)產(chǎn)LI-6400型便攜式光合作用測(cè)定系統(tǒng)在上午9:00—11:00之間測(cè)定夏玉米穗位葉凈光合速率(n)、氣孔導(dǎo)度(s)、胞間二氧化碳濃度(i)和蒸騰速率(r)。
1.2.6 測(cè)產(chǎn)及考種 籽粒成熟期進(jìn)行測(cè)產(chǎn)取樣,考察果穗長(zhǎng)、禿尖長(zhǎng)、穗粗、穗行數(shù)、行粒數(shù),并稱量千粒重,同時(shí)測(cè)定籽粒含水率,計(jì)算單株籽粒產(chǎn)量(按14%安全含水量進(jìn)行折算)。
采用Microsoft Excel 2016錄入與整理數(shù)據(jù),軟件SAS 9.0進(jìn)行方差分析,軟件Sigma Plot 12.0作圖。
由表1可見(jiàn),吐絲前高溫脅迫顯著降低了夏玉米單株籽粒產(chǎn)量、穗長(zhǎng)、行粒數(shù)和穗粒數(shù),禿尖長(zhǎng)顯著增加,穗粒數(shù)降低主要是行粒數(shù)減少引起,ZD958的產(chǎn)量、穗粒數(shù)和粒重下降幅度高于LC808。與35/25℃相比,40/30℃處理下ZD958和LC808產(chǎn)量分別降低44.98%和40.88%,千粒重分別降低24.04%和17.47%,穗粒數(shù)分別降低29.85%和27.80%,穗長(zhǎng)分別降低15.63%和25.93%,禿尖長(zhǎng)分別增加93.00%和67.76%,行粒數(shù)分別降低22.21%和24.59%。LC808的產(chǎn)量在35/25℃和40/30℃處理下分別比ZD958高12.28%和20.65%,千粒重分別高6.04%和15.21%,穗粒數(shù)分別高7.40%和4.35%。方差分析表明,夏玉米籽粒產(chǎn)量、千粒重、穗長(zhǎng)、禿尖長(zhǎng)和行粒數(shù)在品種和高溫處理之間差異均達(dá)到顯著或極顯著水平,品種及高溫脅迫交互作用不顯著。
表1 吐絲前高溫脅迫對(duì)夏玉米產(chǎn)量、產(chǎn)量構(gòu)成及穗部性狀的影響
同列不同小寫字母表示在同一品種內(nèi)不同處理在5%水平上差異顯著。** 在0.01水平上差異顯著,*** 在0.001水平上差異顯著,ns 無(wú)顯著差異
Values followed by different small letters within a column under the same hybrid treatment are significantly different at 0.05 level. ** represents significant at 0.01 level, *** represents significant at 0.001 level, ns represents no significance at 0.05 level
隨著高溫處理時(shí)間增長(zhǎng),40/30℃處理下2個(gè)品種玉米雄穗干重相比35/25℃處理降低趨勢(shì)顯著,ZD958雄穗干重降低幅度高于LC808(圖2)。與35/25℃相比,40/30℃處理下ZD958的雄穗干重分別降低33.33%(5 d)、32.79%(10 d)、22.42%(15 d)、29.16%(20 d)和39.42%(25 d);LC808的雄穗干重分別降低13.48%(5 d)、16.61%(10 d)、8.32%(15 d)、13.37%(20 d)和15.60%(25 d)。高溫脅迫結(jié)束后(25 d),40/30℃處理下,ZD958雄穗分枝數(shù)比35/25℃處理顯著降低40.43%,LC808雄穗分枝數(shù)比35/25℃處理降低14.29%,但無(wú)顯著差異。
高溫脅迫導(dǎo)致夏玉米雌穗長(zhǎng)度和雌穗干重降低。與35/25℃處理相比,40/30℃處理下ZD958的雌穗長(zhǎng)度分別降低70.21%(10 d)、24.44%(15 d)、23.25%(20 d)和19.77%(25 d);LC808的雌穗長(zhǎng)度分別降低36.54%(10 d)、4.94%(15 d)、9.80%(20 d)和11.67%(25 d)。高溫脅迫結(jié)束后(25 d),40/30℃處理下,ZD958和LC808雌穗干重分別比35/25℃處理顯著降低22.50%和15.56%。
高溫脅迫延長(zhǎng)了玉米雌雄穗的生長(zhǎng)發(fā)育,抽雄吐絲期延遲,開花吐絲間隔期(ASI)延長(zhǎng)(表2)。與35/25℃處理相比,40/30℃處理下ZD958的抽雄和吐絲時(shí)間分別延遲2 d和5 d,LC808的抽雄時(shí)間無(wú)變化,吐絲時(shí)間延遲2 d。35/25℃處理下ZD958和LC808的ASI均為4 d,40/30℃處理下ZD958和LC808的ASI分別為7 d和6 d,40/30℃處理下ZD958和LC808的ASI分別比35/25℃處理增加3 d和2 d,高溫脅迫對(duì)ZD958抽雄吐絲影響高于LC808。
柱上不同小寫字母表示同一品種在不同處理下差異顯著(P<0.05)。下同
表2 吐絲前高溫脅迫對(duì)夏玉米開花吐絲間隔期(ASI)的影響
35/25℃處理下,ZD958(圖3-a,3-b)和LC808(圖3-c,3-d)花粉粒表面光滑,略有褶皺,萌發(fā)孔突出;玉米花絲毛較多,大部分花絲毛均立于花絲表面(圖3-I,3-k),花絲表面輕微褶皺(圖3-j,3-l)。40/30℃處理下,2個(gè)玉米品種花粉粒表面均出現(xiàn)干縮褶皺,形態(tài)受損、萌發(fā)孔內(nèi)陷,ZD958(圖3-e,3-f)花粉粒形態(tài)受損程度明顯重于LC808(圖3-g,3-h);玉米花絲毛數(shù)明顯降低,存在的花絲毛幾乎全部倒伏于花絲表面上(圖3-m,3-o),玉米花絲表面褶皺,橫向收縮劇烈(圖3-n,3-p),易導(dǎo)致花絲接受花粉的表面積減少,造成授粉障礙。
花期35/25℃和40/30℃處理的花粉、花絲的電子顯微鏡掃描圖像。a、c分別表示35/25℃處理下ZD958和LC808單個(gè)花粉粒掃描圖像,e、g分別表示40/30℃處理下ZD958和LC808單個(gè)花粉粒掃描圖像,標(biāo)尺=50 μm;b、d分別表示35/25℃處理下ZD958和LC808花粉萌發(fā)孔掃描圖像,f、h分別表示40/30℃處理下ZD958和LC808花粉萌發(fā)孔掃描圖像,標(biāo)尺=10 μm;i、k分別表示35/25℃處理下ZD958和LC808花絲掃描圖像,m、o分別表示40/30℃處理下ZD958和LC808花絲掃描圖像,標(biāo)尺=500 μm;j、l分別表示35/25℃處理下ZD958和LC808花絲表面掃描圖像,n、p分別表示40/30℃處理下ZD958和LC808花絲表面掃描圖像,標(biāo)尺=100 μm
由圖4可見(jiàn),高溫脅迫處理下玉米葉片凈光合速率、氣孔導(dǎo)度、蒸騰速率顯著降低,胞間CO2濃度顯著增加。與35/25℃相比,40/30℃處理下ZD958和LC808穗位葉凈光合速率分別降低48.70%和56.48%,氣孔導(dǎo)度分別降低35.99%和43.22%,蒸騰速率分別下降27.17%和32.24%,胞間二氧化碳濃度分別增加111.70%和224.11%。在同一溫度處理下,2個(gè)品種玉米葉片凈光合速率、氣孔導(dǎo)度、蒸騰速率和胞間CO2濃度無(wú)顯著差異。
玉米產(chǎn)量的高低與單位面積穗數(shù)、穗粒數(shù)和粒重密切相關(guān),三者之間的相互協(xié)調(diào)是獲得高產(chǎn)的基礎(chǔ)。高溫作為導(dǎo)致玉米減產(chǎn)最主要的非生物脅迫因子之一,幾乎在玉米的整個(gè)生育時(shí)期都有發(fā)生,均會(huì)對(duì)玉米生長(zhǎng)發(fā)育造成不同程度的影響,最終影響產(chǎn)量形成[21, 23]。前人研究表明,高溫脅迫會(huì)導(dǎo)致玉米果穗變短,粒重和穗粒數(shù)降低[21,24],玉米吐絲開花期高溫脅迫下玉米籽粒產(chǎn)量降低主要是由穗粒數(shù)減少所致[14,17],籽粒建成期高溫脅迫則會(huì)使穗粒數(shù)和粒重均顯著降低[25]。本研究結(jié)果表明,9葉展至開花吐絲期高溫脅迫下2個(gè)夏玉米品種的穗長(zhǎng)、行粒數(shù)、穗粒數(shù)、千粒重和籽粒產(chǎn)量顯著降低,禿尖長(zhǎng)顯著增加,穗粒數(shù)降低主要是行粒數(shù)的減少引起,產(chǎn)量降低則是穗粒數(shù)和粒重共同作用的結(jié)果。玉米產(chǎn)量實(shí)質(zhì)上是通過(guò)光合作用直接或間接形成的,并取決于光合產(chǎn)物的積累與分配[26-28],穗期階段是玉米營(yíng)養(yǎng)器官生長(zhǎng)與生殖器官分化發(fā)育同時(shí)并進(jìn)階段,地上器官干物質(zhì)積累始終以葉、莖為主[29],該階段遭遇逆境脅迫會(huì)導(dǎo)致干物質(zhì)向莖和葉片中的分配比例增加,向穗中的轉(zhuǎn)運(yùn)積累減少[30-31]。本研究表明,高溫脅迫會(huì)導(dǎo)致玉米穗位葉凈光合速率、氣孔導(dǎo)度、蒸騰速率顯著降低,胞間CO2濃度顯著增加。穗期高溫逆境使玉米功能葉片光合能力降低,導(dǎo)致同化物供應(yīng)不足,以上是否是雌穗變短、小花退化和花粉粒發(fā)育不健全、穗粒數(shù)降低的主要因素?有待于進(jìn)一步深入研究。
圖4 高溫脅迫對(duì)夏玉米吐絲期穗位葉光合特性的影響
雌雄穗的發(fā)育對(duì)玉米產(chǎn)量的形成起著關(guān)鍵性作用。拔節(jié)至開花期是玉米營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)并進(jìn)階段,是決定穗數(shù)、穗的大小、可孕小花數(shù)的關(guān)鍵階段,該階段遭遇高溫逆境會(huì)導(dǎo)致雄穗發(fā)育持續(xù)時(shí)間縮短,雌雄穗分化能力降低,雄穗分枝減少,雌穗變短變細(xì),結(jié)實(shí)性差[7-9]。本試驗(yàn)條件下,高溫脅迫處理的2個(gè)品種玉米雄穗干重、雌穗干重和雌穗長(zhǎng)度均顯著降低,ZD958雄穗分枝數(shù)顯著降低,LC808雄穗分枝數(shù)有所降低但不顯著。高溫脅迫嚴(yán)重時(shí)不僅會(huì)影響玉米雄穗的外部形態(tài)結(jié)構(gòu)及發(fā)育進(jìn)程,還會(huì)引起花粉花藥發(fā)育異常[32]、花藥開裂[13],花粉形態(tài)結(jié)構(gòu)及表面超微結(jié)構(gòu)改變,花粉功能部分喪失[14];相比花絲,花粉對(duì)高溫脅迫更敏感[9]。本研究表明,高溫脅迫處理下2個(gè)玉米品種花粉粒表面均出現(xiàn)干縮褶皺,形態(tài)受損、萌發(fā)孔內(nèi)陷;玉米花絲表面褶皺,橫向收縮劇烈,玉米花絲毛數(shù)明顯降低,存在的花絲毛幾乎全部倒伏于花絲表面,ZD958花粉花絲形態(tài)受損程度明顯重于LC808。玉米的成功受精結(jié)實(shí)需要雄穗散粉和雌穗吐絲的同步,高溫脅迫不僅可以單獨(dú)影響玉米雌、雄穗的生長(zhǎng),同時(shí)也會(huì)影響二者之間的協(xié)調(diào)生長(zhǎng)[33]。雄絲間隔(ASI)是玉米對(duì)逆境脅迫反應(yīng)較為敏感的一個(gè)指標(biāo),也是逆境脅迫條件下限制玉米產(chǎn)量的主要因素之一[34-35]。本研究表明,第9片葉展開期至吐絲期高溫脅迫對(duì)夏玉米抽雄時(shí)間影響較小,主要延緩夏玉米的雌穗發(fā)育,進(jìn)而拉長(zhǎng)了雄絲間隔(ASI),高溫脅迫對(duì)ZD958抽雄吐絲影響重于LC808。
玉米是異花授粉作物,雄穗分枝較多能夠提供更多的花粉進(jìn)而提高受精率,但雄穗分枝越多對(duì)同化物消耗就越多,與雌穗生長(zhǎng)產(chǎn)生競(jìng)爭(zhēng)[36],尤其在逆境條件下更不利于雌穗生長(zhǎng)發(fā)育。為減少雄穗對(duì)同化物的消耗,近年來(lái)培育的玉米品種雄穗分枝越來(lái)越少[37]。前人研究表明,玉米對(duì)高溫脅迫的響應(yīng)存在顯著基因型差異[17-18,23],且大多數(shù)研究中篩選或采用的耐熱型品種(鄭單958,浚單20,等)都表現(xiàn)出雄穗分枝較多[7,17-18]的特點(diǎn),這可能與這些研究中高溫脅迫時(shí)期集中在開花吐絲期,雄穗分枝多,花粉量大[6,14],能夠彌補(bǔ)高溫逆境產(chǎn)生的不利影響有關(guān),開花吐絲期易發(fā)生高溫逆境區(qū)域可選用同類品種。本試驗(yàn)條件下,第9片葉展開期至吐絲期鄭單958高溫脅迫下表現(xiàn)出更弱的耐高溫能力,表明同一品種在不同生育階段對(duì)高溫脅迫的耐受性不同,吐絲前高溫主要影響了玉米的光合物質(zhì)生產(chǎn)能力、雌雄穗分化能力及二者之間的協(xié)調(diào)生長(zhǎng),使玉米雄穗分枝減少、果穗變短、禿尖變長(zhǎng)、行粒數(shù)減少、雄絲間隔(ASI)拉長(zhǎng),進(jìn)而導(dǎo)致玉米產(chǎn)量降低;而相關(guān)研究表明花粒期高溫主要通過(guò)影響玉米雄穗小花受精率、結(jié)實(shí)率[38]、光合物質(zhì)生產(chǎn)能力和籽粒灌漿持續(xù)期[20,25,34]影響產(chǎn)量。生產(chǎn)中應(yīng)選用在高溫脅迫下穗分化能力和根系活力強(qiáng)、葉片光合速率高、抗氧化能力和授粉結(jié)實(shí)能力強(qiáng)的玉米品種[39],并結(jié)合區(qū)域高溫逆境易發(fā)生階段選擇適宜品種。
第9片葉展開期至吐絲期高溫脅迫對(duì)夏玉米籽粒產(chǎn)量、雌雄穗發(fā)育進(jìn)程和花粉花絲微觀形態(tài)結(jié)構(gòu)有顯著影響,該階段高溫脅迫對(duì)鄭單958雌雄穗發(fā)育及產(chǎn)量的影響均高于聯(lián)創(chuàng)808。高溫脅迫下夏玉米光合性能降低、穗粒數(shù)和粒重顯著下降,進(jìn)而導(dǎo)致籽粒產(chǎn)量降低。高溫脅迫下玉米雌雄穗的分化能力下降、雌穗的發(fā)育推遲,雄絲間隔(ASI)拉長(zhǎng)、花粉花絲結(jié)構(gòu)發(fā)生改變是導(dǎo)致玉米雌穗變短和玉米穗粒數(shù)降低的主要原因。同一品種在不同生育階段對(duì)高溫脅迫的耐受性不同,生產(chǎn)中應(yīng)根據(jù)種植區(qū)域高溫?zé)岷σ装l(fā)生階段來(lái)選擇玉米品種。
[1] Jha U C, Bohra A, Singh N P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance., 2014, 133(6): 679-701.
[2] Hawkins E, Fricker T E, Challinor A J, FERRO C A T, HO C K, OSBORNE T M. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s., 2013, 19(3): 937-947.
[3] ZHAO C, LIU B, PIAO S, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, DURAND J L, ELLIOTT J, EWERT F, JANSSENS I A, LI T, LIN E, LIU Q, MARTRE P, MüLLER C, PENG S S, PE?UELAS J, RUANE A C, WALLACH D, WANG T, WU D H, LIU Z, ZHU Y, ZHU Z C, ASSENG S. Temperature increase reduces global yields of major crops in four independent estimates., 2017, 114(35): 9326-9331.
[4] Jefferson M. IPCC fifth assessment synthesis report: “Climate change 2014: Longer report”: Critical analysis., 2015, 92: 362-363.
[5] 劉哲, 喬紅興, 趙祖亮, 李紹明, 陳彥清, 張曉東. 黃淮海夏播玉米花期高溫?zé)岷臻g分布規(guī)律研究. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(7): 272-279.
LIU Z, QIAO H X, ZHAO Z L, LI S M, CHEN Y Q, ZHANG X D. Spatial distribution of high temperature stress at corn flowering stage in Huang-Huai-Hai Plain of China., 2015, 46(7): 272-279. (in Chinese)
[6] 丁帥濤, 孫琴, 羅紅兵. 玉米雄穗分化發(fā)育研究進(jìn)展. 作物研究, 2014, 28(1): 97-102.
DING S T, SUN Q, LUO H B. Research progress on differentiation and development of tassel in maize., 2014, 28(1): 97-102. (in Chinese)
[7] 于康珂, 孫寧寧, 詹靜, 顧海靖, 劉剛, 潘利文, 劉天學(xué). 高溫脅迫對(duì)不同熱敏型玉米品種雌雄穗生理特性的影響. 玉米科學(xué), 2017, 25(4): 84-91.
YU K K, SUN N N, ZHAN J, GU H J, LIU G, PAN L W, LIU T X. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties., 2017, 25(4): 84-91. (in Chinese)
[8] Hatfield J L, Prueger J H. Temperature extremes: Effect on plant growth and development., 2015, 10: 4-10.
[9] Lizaso J I, Ruiz-Ramos M, Rodriguez L, GABALDON- LEAL C, OLIVEIRA J A, LORITE I J, SáNCHEZ D, GARCíA D, RODRíGUEZ A. Impact of high temperatures in maize: Phenology and yield components., 2018, 216: 129-140.
[10] Mitchell J C, Petolino J F. Heat stress effects on isolated reproductive organs of maize., 1988, 133(5): 625-628.
[11] Prasad P V V, Bheemanahalli R, Jagadish S V K. Field crops and the fear of heat stress-opportunities, challenges and future directions., 2017, 200: 114-121.
[12] Porch T G, Jahn M. Effects of high‐temperature stress on microsporogenesis in heat‐sensitive and heat‐tolerant genotypes of., 2001, 24(7): 723-731.
[13] Rang Z W, Jagadish S V K, Zhou Q M, CRAUFURD P Q, HEUER S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice., 2011, 70(1): 58-65.
[14] Wang Y Y, Tao H B, Tian B J, SHENG D C, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering., 2019, 158: 80-88.
[15] Wilhelm E P, Mullen R E, Keeling P L, SINGLETARY G W. Heat stress during grain filling in maize: Effects on kernel growth and metabolism., 1999, 6(6): 1733-1740.
[16] Edreira J I R, Mayer L I, Otegui M E. Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling., 2014, 166: 162-172.
[17] 趙龍飛, 李潮海, 劉天學(xué), 王秀萍, 僧珊珊. 花期前后高溫對(duì)不同基因型玉米光合特性及產(chǎn)量和品質(zhì)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(23): 4947-4958.
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize., 2012, 45(23): 4947-4958. (in Chinese)
[18] 付景, 孫寧寧, 劉天學(xué), 楊豫龍, 趙霞, 李潮海. 高溫脅迫對(duì)玉米形態(tài)、葉片結(jié)構(gòu)及其產(chǎn)量的影響. 玉米科學(xué), 2019, 27(1): 46-53.
FU J, SUN N N, LIU T X, YANG Y L, ZHAO X, LI C H. Effect of high temperature stress on morphology, leaf structure and grain yield of maize., 2019, 27(1): 46-53. (in Chinese)
[19] Webber H, Martre P, Asseng S, KIMBALL B, WHITE J, OTTMAN M, WALL G W, SANCTIS G D, DOLTRA J, GRANT R, KASSIE B, MAIORANO A, OLESEN J E, RIPOCHE D, REZAEI E E, SEMENOV M A, STRATONOVITCH P, EWERT F. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison., 2017, 202: 21-35.
[20] TAO Z Q, CHEN Y Q, LI C, ZOU J X, YAN P, YUAN S F, WU X. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain-A review., 2016, 15(12): 2677-2687.
[21] Edreira J I R, Otegui M E. Heat stress in temperate and tropical maize hybrids: A novel approach for assessing sources of kernel loss in field conditions., 2013, 142: 58-67.
[22] 高英波, 張慧, 王竹, 薄麗秀, 武智民, 薛艷芳, 錢欣, 代紅翠, 韓小偉, 李宗新. 夏玉米品種花期耐熱性鑒定與評(píng)價(jià). 山東農(nóng)業(yè)科學(xué), 2019, 51(6): 43-48.
Gao Y B, ZHANG H, WANG Z, BO L X, WU Z M, XUE Y F, QIAN X, DAI H C, HAN X W, LI Z X. Identification and evaluation of heat tolerance of summer maize varieties during flowering stage., 2019, 51(6): 43-48. (in Chinese)
[23] Iannucci A, Terribile M R, Martiniello P. Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment., 2008, 106(2): 156-162
[24] 于康珂,劉源, 李亞明, 孫寧寧, 詹靜, 尤東玲, 牛麗, 李潮海, 劉天學(xué). 玉米花期耐高溫品種的篩選與綜合評(píng)價(jià). 玉米科學(xué), 2016, 24(2):62-71.
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L LI C H, LIU T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage., 2016, 24(2): 62-71. (in Chinese)
[25] 楊歡, 沈鑫, 陸大雷, 陸衛(wèi)平. 籽粒建成期高溫脅迫持續(xù)時(shí)間對(duì)糯玉米籽粒產(chǎn)量和淀粉品質(zhì)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(11): 2071-2082.
YANG H, SHEN X, LU D L, LU W P. Effects of heat stress durations at grain formation stage on grain yield and starch quality of waxy maize., 2017, 50(11): 2071-2082. (in Chinese)
[26] Rizwan M, Ali S, Abbas T, ADREES M, ZIA-UR-REHMAN M, IBRAHIM M, ABBAS F, QAYYUM M F, NAWAZ R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (L.) under Cd stress with different water conditions., 2018, 206: 676-683.
[27] 趙花榮, 任三學(xué), 齊月. 高濕和干旱對(duì)夏玉米灌漿期葉片光合特性的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2017, 33(31): 15-21.
ZHAO H R, REN S X, QI Y. High humidity and drought: Effects on photosynthetic characteristics of summer maize at grain filling stage., 2017, 33(31): 15-21. (in Chinese)
[28] WANG B M, LI Z X, RAN Q J, LI P, PENG Z H, ZHANG J R. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants., 2018, 9: 709.
[29] 劉京寶. 中國(guó)北方玉米栽培. 北京: 中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社, 2012, 35.
LIU J B.. Beijing: China Agricultural Science and Technology Press, 2012, 35. (in Chinese)
[30] JIANG P, CAI F, ZHAO Z Q, MENG Y, GAO L Y, ZHAO T H. Physiological and dry matter characteristics of spring maize in northeast China under drought Stress., 2018, 10(11): 1561.
[31] 賈雙杰, 李紅偉, 江艷平, 趙國(guó)強(qiáng), 王和洲, 楊慎驕, 楊青華, 郭家萌, 邵瑞鑫. 干旱脅迫對(duì)玉米葉片光合特性和穗發(fā)育特征的影響. 生態(tài)學(xué)報(bào), 2020, 40(3): 854-863.
JIA S J, LI H W, JIANG Y P, ZHAO G Q, WANG H Z, YANG S J, YANG Q H, GUO J M, SHAO R X. Effects of drought on photosynthesis and ear development characteristics of maize., 2020, 40(3): 854-863. (in Chinese)
[32] Giorno F, Wolters-Arts M, Mariani C, RIEU I. Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development., 2013, 2(3): 489-506.
[33] Pagano E, Cela S, Maddonni G A, QTEGUI M E. Intra-specific competition in maize: Ear development, flowering dynamics and kernel set of early-established plant hierarchies., 2007, 102(3): 198-209.
[34] Edreira J I R, Carpici E B, Sammarro D, QTEGUI M E. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids., 2011, 123(2): 62-73.
[35] 陶志強(qiáng), 陳源泉, 隋鵬, 袁淑芬, 高旺盛. 華北春玉米高溫脅迫影響機(jī)理及其技術(shù)應(yīng)對(duì)探討. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 18(4): 20-27.
TAO Z Q, CHEN Y Q, SUI P, YUAN S F, GAO W S. Effects of high temperature stress on spring maize and its technologic solutions in North China Plain., 2013, 18(4): 20-27. (in Chinese)
[36] 岳玉蘭, 朱敏, 于雷, 劉春光. 玉米雄穗對(duì)產(chǎn)量影響研究進(jìn)展. 玉米科學(xué), 2010, 18(4): 150-152.
YUE Y L, ZHU M, YU L, LIU C G. Research progress on the impact of maize tassel on yield., 2010, 18(4): 150-152. (in Chinese)
[37] WANG B B, LIN Z C, LI X, ZHAO Y P, ZHAO B B, WU G X, MA X J, WANG H, XIE Y R, LI Q Q, SONG G S, KONG D X, ZHENG Z G, WEI H B, SHEN R X, WU H, CHEN C X, MENG Z D, WANG T Y, LI Y, LI X H, CHEN Y H, LAI J S, HUFFORD M B, ROSS-IBARRA J, HE H, WANG H Y. Genome-wide selection and genetic improvement during modern maize breeding., 2020, 52: 565-571.
[38] 侯昕芳, 王媛媛, 黃收兵, 董昕, 陶洪斌, 王璞. 花期前后高溫對(duì)玉米花粉發(fā)育及結(jié)實(shí)率的影響. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2020, 25(3): 10-16.
HOU X F, WANG Y Y, HUANG S B, DONG X, TAO H B, WANG P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (L.)., 2020, 25(3): 10-16. (in Chinese)
[39] 趙龍飛, 李潮海, 劉天學(xué), 王秀萍, 僧珊珊, 潘旭. 玉米花期高溫響應(yīng)的基因型差異及其生理機(jī)制. 作物學(xué)報(bào), 2012, 38(5): 857-864.
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S, PAN X. Genotypic responses and physiological mechanisms of maize (L.) to high temperature stress during flowering., 2012, 38(5): 857-864. (in Chinese)
Effects of Pre-silking High Temperature Stress on Yield and Ear Development Characteristics of Different Heat-resistant Summer Maize Cultivars
GAOYingBo1,ZHANG Hui1, SHAN Jing1, XUEYanFang1, QIAN Xin1,DAI HongCui2, LIU KaiChang2,LIZongXin1
(1Maize ResearchInstitute,ShandongAcademy ofAgriculturalSciences/NationalEngineeringLaboratory ofWheatandMaize/Key Laboratory ofBiology andGenetic ImprovementofMaize inNorthernYellow-huaiRiverPlain, Ministry ofAgriculture, Jinan 250100;2CropResearchInstitute, Shandong AcademyofAgricultural Sciences, Jinan 250100)
【Objective】Pre-silking high temperature is likely to cause large negative impacts on maize yield, which is one of the important factors affecting ear development. This study was aimed to clarify the influence of pre-flowering high temperature on grain yield and ear development process, which was one of great significance for the stable and high yield of maize. 【Method】In this study, heat-resistant maize varieties Zhengdan958 and heat-sensitive maize varieties Lianchuang808 at flowering stage were used as research materials in artificial intelligence greenhouse, and then the influence of different high temperature of 40/30℃ and 35/25℃ on grain yield, ear development, ultrastructure of pollen and filament and photosynthetic characteristicsfrom V9 to silking period were investigated.【Result】High temperature stress from V9 to silking period reduced the ear length, grain number and kernel weight of different genotypes summer maize, which led to a significant decrease in yield. Compared with control (35/25℃), the row grain number of Zhengdan 958 and Lianchuang 808 under high temperature significantly decreased by 22.21% and 24.59%, respectively; The kernel number per ear decreased by 29.85% and 27.80%, respectively; The thousand kernel weight decreased by 24.04% and 17.47%, respectively; The grain yield decreased by 44.98% and 40.88%, respectively. The dry weight of tassel, dry weight of ear, ear length and net photosynthetic rate of Zhengdan958 and Lianchuang808 under high temperature stress from V9 to silking period were significantly decreased 39.42% and 15.60%, 22.50% and15.56%,48.70% and 56.48% compared with control (35/25℃), respectively. The anthesis silking interval (ASI) of Zhengdan958 and Lianchuang808 increased to 7 d and 6 d as a result of delay of silking period rather than tasseling period. High temperature stress had obvious influence on the ultrastructure of maize pollen and filament surface of two maize varieties. Under high temperature stress, the surface of the pollen grain shriveled and collapsed, net vein protuberance and collapsed germinal aperture. at the same time, the filament surface shrank horizontally, the number of filament hair significantly reduced, and almost all residual filament hair lodged on the surface of the filament, which reduced the filament area of accepting the pollen.【Conclusion】High temperature stress from V9 to silking period were more serious on yield formation, photosynthetic characteristics and ear development of Zhengdan958 than Lianchuang808. High temperature stress from V9 to silking period significantly damaged the pollen and filament morphology, inhibited the development of tassel and ear, reduced the photosynthetic capacity, and decreased the kernel number per ear and kernel weight of two maize varieties, which significantly reduced the grain yield of maize. Therefore, the selection of maize varieties in field depended on the period of high temperature stress.
summer maize; high temperature stress; ear development characteristics; grain yield; ultrastructure of pollen and filament
2020-05-12;
2020-08-24
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0301003)、山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)項(xiàng)目(SDAIT-02-07)
高英波,E-mail:yingboandy@163.com。通信作者李宗新,E-mail:sdaucliff@sina.com。通信作者劉開昌,E-mail:liukc1971@163.com
(責(zé)任編輯 楊鑫浩)