• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geographic Variation in the Skull Morphometry of Four Populations of Batrachuperus karlschmidti (Urodela:Hynobiidae)

    2020-09-30 02:30:16QiangqiangLIUJianliXIONGJianpingGOUandXiaochanGAO
    Asian Herpetological Research 2020年3期

    Qiangqiang LIU,Jianli XIONG,Jianping GOU and Xiaochan GAO

    College of Animal Science and Technology,Henan University of Science and Technology,Luoyang,Henan,China

    Abstract Geographic variation of morphology is an important topic of evolutionary biology,and research on geographic variation can provide insights on the formation,evolution,and adaptation of species and subspecies.The vertebrate skull is a developmentally and functionally complex morphological structure with multiple functions,that is susceptible to vary according to selection pressure.In this study,geographic variations in skull morphology of Batrachuperus karlschmidti from four different geographic populations (Shade,Gexi,Shangluokema,and Xinduqiao) were examined via geometric morphometrics.No significant differences were found among these populations with regard to skull size; however,significant variation was found in skull shape.The most notable shape changes are the relative sizes and positions of the frontal,maxilla,pterygoid,and vomer.Skull shape changes were not related to allometry.However,due to limitation of sample populations and size,the results of this study need to be further verified by more sample populations and individuals in the future.The results of this study contribute to our knowledge about these aspects of morphological variability in this species as well as in hynobiid salamanders.

    Keywords allometry,geographic variation,hynobiid salamander,skull size and shape

    1.Introduction

    Geographic variation and the variation among populations in genetically based traits across the natural geographic range of a species (Mary,1977; Olvido and Mousseau,2012) has been a central theme in evolutionary biology (Fonseca and Astúa,2015).The traits of geographic variation in amphibians include many aspects and have been widely studied,such as morphology(e.g.,Valenzuela-Sánchezet al.,2015; Oromi et al.,2016; Yanget al.,2017; Liuet al.,2018; Amadoet al.,2019),behavior (e.g.,Rodríguez-Tejedaet al.,2014; Wise and Jaeger,2016),physiology(e.g.,Riddell and Sears,2015; Twomeyet al.,2015; Barria and Bacigalupe,2017; Xionget al.,2018),and life history (e.g.,Kopp and Baur,2000; Miaudet al.,2001; Morrison and Hero,2003;Oromiet al.,2014,2016; Liaoet al.,2016; Wanget al.,2019).Geographic variation in morphology is the most widespread phenomenon (Avise,2000),which reflects phenotypic responses to environmental gradients,genetic variation and evolutionary history of populations and species and may indicate local or regional changes in environmental conditions (Ellisonet al.,2004).Genetic components and environmental conditions were considered to be the main reasons resulting in geographic variation (Olvido and Mousseau,2012).Studying geographic variation can provide insights on the formation and evolution of species and subspecies,the generation of biodiversity,the adaptive mechanisms of species,as well as the predication of the adaption of species to future environmental changes (Losos and Glor,2003; Ellisonet al.,2004; Olvido and Mousseau,2012).

    The vertebrate skull,a developmentally and functionally complex morphological structure with multiple functions such as perception,protection,competition,reproduction,and predation (Hanken and Hall,1993; Ivanovi?et al.,2013),is a target of selection (Alarcón-Ríoset al.,2017).The morphology of the vertebrate skull easily allows for variations among populations of a species due to differences of environmental conditions.Geometric morphometrics (Rohlf and Marcus,1993) has been widely and successfully applied to research morphological variation of the vertebrate skull,which is particularly true for Urodela.Ivanovi?et al.(2009) showed significant variation in skull size among populations ofMesotriton alpestris.Ivanovi?et al.(2012) found statistically significant variation in skull size and skull shape among populations ofLissotriton vulgaris.Ivanovi?et al.(2013) reported significant divergence in skull shape but not in skull size between mitochondrial DNA lineages ofTriturus karelinii.üzümet al.(2015) found statistically significant variation in skull size and shape among populations ofOmmatotriton ophryticusandO.vittatus,and the variation in skull shape in these two species was almost entirely due to size-dependent,allometric shape changes.However,no research of geometric morphometrics on skull of hynobiid salamanders has been reported to date.

    The Chiala mountain salamander,Batrachuperus karlschmidti,was named by Liu (1950) based on specimens from Chiala[=Jiana],Luhohsien [=Luohuo County],Sikang [=Sichuan Province],China.It is differentiated from all other congeneric species (B.pinchonii,B.londongensis,B.tibetanus,andB.yenyuanensis) mainly by the uniformity of its dark olive-colored body,with a total lack of spots and marblings (Liu,1950).Several scholars have consideredB.karlschmidtito be a junior synonym ofB.tibetanus(Feiet al.,1983; Feiet al.,2006); however,the morphology,development,and habitat preferences (Zhao and Jiang,1988),cytogenetics (Yang,1992),and molecular biology (Fuet al.,2001; Liet al.,2004; Fu and Zeng,2008; Luet al.,2012; Xiaet al.,2012) support its validity.This species is widely distributed in the mountain streams of Sichuan Province (Fu and Zeng,2008; Lu et al.,2012; Xia et al.,2012) and Qinghai Province (Dinget al.,2014).This species is adapted to cold water and can be found under stones of small mountain streams from 1500 m to 4250 m,and the breeding season lasts from May to the first part of August (Liu,1950).This species is a poorly known and understudied species,and have been studied rarely.In this study,geographic variation in the skull morphology among four populations (Shade,Gexi,Shangluokema,and Xinduqiao populations) ofB.karlschmidtiwas analyzed using geometric morphometric methodology.The following questions were preliminary tested:(i) whether geographic divergence existed in skull size and shape,and (ii) whether divergences in skull shape are related to the skull size.This study improves our understanding of the evolution of skull shape and processes that lead to morphological diversification.

    2.Materials and methods

    2.1.Samples and skull preparationA total of 24 skulls ofB.karlschmidtiwere used in this study.Species were collected from four populations of Sichuan Province,China (Figure.1):Shade (29.5123°N,101.4374°E,altitude 3447 m),Gexi (30.9696°N,101.2229°E,altitude 3622 m),Shangluokema (31.6168°N,100.7780°E,altitude 3644 m),and Xinduqiao (29.7906°N,101.5623°E,altitude 3743 m).Each population included six specimens (three males and three females).Only adult specimens(identified via examination of the gonad development) were included in this analysis to avoid additional ontogenetic variation.Upon arrival at the laboratory,animals were euthanized via submergence in a buffered MS-222 solution and were then stored in 10% formalin.Specimens were sexed by inspection of the gonads.The skulls were prepared by clearing and double-staining using a bone and cartilage staining procedure (Hanken and Wassersug,1981),which has been briefly summarized by Xionget al.(2013) and Xionget al.(2016).The cleared and stained skulls were stored in glycerol and deposited in the Henan University of Science and Technology Museum (HNUSTM).

    All applicable international,national,and/or institutional guidelines for the care and use of animals were strictly followed.All animal sample collection protocols complied with the current laws of China.

    2.2.Data acquisitionPictures of the stained skull specimens were taken via a mounted OLYMPUS DP26 digital camera.The skulls were positioned in the center of the optical field to reduce and equalize distortion (Cvijanovi?et al.,2017).TpsUtil ver.1.74 (Rohlf,2017) was employed to create TPS files that contained all coordinate datasets.Landmarks,which enabled the definition of shapes,were digitized on the pictures of each skull specimen using TpsDig2 ver.2.16 (Rohlf,2010).Nineteen landmarks were used for the dorsal and 21 landmarks for the ventral view of the skull (Figure.2).All landmarks were placed on the left side of the skull,and were digitized three times by the same person (QQL).Digitizing hemi-skull was not only done to avoid redundancy information in symmetric structures,but also to reduce the number of analyzed parameters in the statistical processing of the data set (Abramon et al.,2017).In addition,although directional asymmetry and fluctuating asymmetry of shape are widespread in the animal kingdom,these are very small (Klingenberg,2015).Thus,the potential left-right differences,directional asymmetry and fluctuating asymmetry were ignored in this investigation.The definition of each landmark is listed in Table 1.

    Figure 1 Localities of samples used in the present study.

    Figure 2 Landmarks digitized on the skull in dorsal (A) and ventral (B) views.

    2.3.Geometric morphometricsA full Procrustes fit in MorphoJ v 1.06d was performed to eliminate effects of orientation,position,and size (Klingenberg,2011),which provided two new set of variables:Centroid size (CS,the square root of the sum of squared distance of all landmarks from their centroid) values (Dryden and Mardia,1998) and a matrix of shape coordinates (Procrustes coordinates,representing the difference between the consensus specimen and each sample).The centroid size value was computed for each specimen.Procrustes ANOVA (Klingenberg and McIntyre,1998;Klingenberget al.,2002) was used to estimate the measurement error.When the measurement error was not significant,the mean values and co-ordinate of each individual were calculated and used for the following analyses.The differences of CS among populations were tested by analysis of variance(ANOVA) using the RRPP package (Version 0.5.1) in R (Version 3.6.2).Principal component analysis (PCA) was performed on the covariance matrix of the Procrustes coordinates to explore and visualize the main trends of variation among populations.To further quantify the shape differences between populations,Procrustes distances,which is an absolute measure of the magnitude of shape difference between two configurations,were calculated for each pair of populations.The statistical significance of differences in the mean shape between populations was estimated by permutation test based on 10 000 iterations.Multivariate regression of Procrustes coordinates on log CS was conducted to estimate the relationship between shape and size (allometry) with 10 000 permutation among and within populations (Klingenberg,2011).

    Due to the limited specimen number,differences of size and shape between sexes were not explored in this analysis.The analyses were run separately for the dorsal and ventral data.All geometric morphometric analyses and visualization were conducted with MorphoJ v 1.06d (Klingenberg,2011),unless stated otherwise.

    3.Results

    3.1.Measurement errorMeasurement error explained the smaller portion on both dorsal and ventral size and shape variation (dorsal size 0.1%,dorsal shape 2.0%,ventral size 0.1%,and ventral shape 2.9%) (Table 2).Thus,the digitalizing error was not considered in our data,and the mean values of three times of each individual were calculated and used for the following analyses.

    3.2.Skull size variationThe mean CS values of Shade and Xinduqiao populations were similar,and larger than those of Gexi and Shangluokema populations,which were similar,in both dorsal and ventral skull (Table 3).Although the mean CS values showed variations,the analysis results of ANOVA with permutation showed no significant variation neither for dorsal(F=0.3707,P=0.539) nor ventral skulls (F=0.6526,P=0.419)among populations.

    3.3.Skull shape variationThe results of Procrustes ANOVA showed that the shape differed significantly among populations for both dorsal (F=3.58,P< 0.0001) and ventral (F=2.76,P< 0.0001) skulls.For the dorsal skull,the first three principal components described 72.56% of the total shape differences.PC1 (41.64%) showed the shape change of frontal (landmark 2)(Figure 3); PC2 (23.38%) mainly reflected the shape changes of squamosal (landmarks 8,9,10) and exoccipital (landmarks 4,5,6) (Figure 3); and PC3 (7.54%) represented the shape changes of squamosal,exoccipital and processus dorsalis praemaxillaris(landmark 11) (Figure 4).In the plot of the first two axes,Shade population largely overlapped with Shangluokema and Xinduqiao populations,but could be clearly distinguishedfrom Gexi population; Gexi population overlapped with Shangluokema population,but could be clearly distinguished from Shade and Xinduqiao populations.Shangluokema population only could be clearly distinguished from Xinduqiao population (Figure 3).The ordination of PC1 vs.PC3 enabled clear distinction of Shade and Xinduqiao populations from Gexi and Shangluokema populations,respectively; however,Gexi and Shangluokema populations largely overlapped(Figure 4).The pairwise Procrustes distances (Table 4) indicated that the distance between Gexi and Shangluokema populations was smallest,while the distance between Gexi and Xinduqiao largest.Compared with the overall mean configuration,Shade population had slight backward-extending frontal (Figure 5A);Gexi population had backward-extending frontal (Figure 5B);Shangluokema population had slight laterally extending frontal(Figure 5C); Xinduqiao population had forward-extending frontal (Figure 5D).

    With regard to the ventral skull,the first three principal components described 59.047% of the total shape differences.PC1 (30.60%) reflected the shape changes of maxilla,pterygoid and vomer (Figure 6); PC2 (17.45%) represented shape changes of pterygoid,maxilla,and vomer (Figure 6); PC3 (11.00%) mainly reflected shape changes of petergoid,vomer,and maxilla(Figure 7).In the plot of the first two axes,except for Shade andXinduqiao populations,which largely overlapped and could not be distinguished,Gexi and Shangluokema populations could be well distinguished and could also be distinguished from Shade and Xinduqiao populations (Figure 6).The ordination of PC1 vs.PC3 showed that Shangluokema and Gexi populations largely overlapped,and Shade and Xinduqiao populations also largely overlapped; however,Shangluokema population could be clearly distinguished from Shade and Xinduqiao populations(Figure 7).The pairwise Procrustes distances indicated that the distance between Shade and Xinduqiao populations was smallest,and the distance between Shade and Shangluokema population was largest (Table 4).Compared with the overall mean configuration,Shade population had backwardextending vomer (landmarks 2,3,11),laterally extending maxilla (landmarks 12,13) and pterygoid (landmarks 8,9,10)(Figure 8A); Gexi population had longer maxilla (Figure 8B);Shangluokema population had shorter maxilla and adducent pterygoid (Figure 8C); Xinduqiao population had adducentpterygoid (Figure 8D).

    Table 2 Procrustes ANOVA of skull size and shape in Batrachuperus karlschmidti from three replicates.

    Figure 3 Shape variations in the dorsal skull view.A.Scatter plot of PC1 versus PC2; B-E.Wireframe deformations depict the shape changes along the respective PC axes.

    Table 3 Descriptive statistics of dorsal and ventral skull sizes (means ± standard error) of Batrachuperus karlschmidti among different populations.Skull sizes are given as centroid sizes (CS); N:number of specimens.

    Table 4 Procrustes distance of dorsal and ventral skull between pairwise geographical populations and its respective P-values after permutation test with 10 000 permutation rounds.Significant of Procrustes distances are shown in bold.

    Figure 4 Shape variations in the dorsal skull view.A.Scatter plot of PC1 versus PC3; B-E.Wireframe deformations depict the shape changes along the respective PC axes.

    Figure 5 Wireframe deformations depict the shape changes of the overall mean versus population means in dorsal skull.A.Shade population mean versus overall mean; B.Gexi population mean versus overall mean; C.Shangluokema population mean versus overall mean; D.Xinduqiao population mean versus overall mean.

    Figure 6 Shape variations in the ventral skull view.A.Scatter plot of PC1 versus PC2; B-E.Wireframe deformations depict the shape changes along the respective PC axes.

    3.4.Static allometryMultivariate regression of the Procruste coordinates on log CS (pooled regression within populations)showed that size high percentages of prediction were obtained(dorsal:total sums of squares=0.0226,Predicted=5.8905%;ventral:total sums of squares=0.0252,Predicted=6.3483%),but shape changes did not significantly correlate with changes in size both in dorsal (P=0.2103) and ventral skull (P=0.1190).Within each population,multivariate regression showed that shape changes significantly correlated with changes in size only in dorsal skull of Gexi population (P=0.0193),but not significantly in dorsal and ventral skull of other populations(P> 0.05).

    4.Discussion

    To the best of our knowledge,this study is the first to use geometric morphometric methods to describe size and shape variations of the skulls of hynobiid salamanders.Although the sample populations and size are limited,the presented results shed new insight into important issues of geographic variation in hynobiid salamanders.The outcome of the present study demonstrates that geographic variation occurs in skull shape but not in skull size.The skull shape changes did not result from allometry.

    Figure 7 Shape variations in the ventral skull view.A.Scatter plot of PC1 versus PC3; B-E.Wireframe deformations depict the shape changes along the respective PC axes.

    Figure 8 Wireframe deformations depict the shape changes of the overall mean versus population means in ventral skull.A.Shade population mean versus overall mean; B.Gexi population mean versus overall mean; C.Shangluokema population mean versus overall mean; D.Xinduqiao population mean versus overall mean.

    Centroid size was used as an indicator of the overall body-size of specimens in geometric morphometric analyses(Zelditchet al.,2012).Geographic variation of skull size(centroid size) varies from species to species.For example,geographic variations of skull size are present inTriturus cristatussuperspecies (Ivanovi?et al.,2008),Mesotriton alpestris(Ivanovi?et al.,2009),Lissotriton vulgaris(Ivanovi?et al.,2012),Ommatotriton ophryticusandO.vittatus(üzümet al.,2015),but are absent inTriturus kareliniilineages (Ivanovi?et al.,2013).In this study,the centroid size of both dorsal and ventral skull did not significantly vary among fourB.karlschmidtipopulations.In taxa with indeterminate growth,age,environmental conditions,and habitat resources largely affect body size (Arntzen,2000;Gotthard,2001; Cog?lniceanu and Miaud,2003; Abramovet al.,2017).In this study,only adult individuals were analyzed,and habitat resources of four populations were similarly based on our field survey.Although the environmental conditions (e.g.,altitude,longitude,and latitude) were different,the differences were small.These result indicate a lack of variation of skull size among the four testedB.karlschmidtipopulations.

    Since the vertebrate head is a structure with relevance in ecological and social functions,the shape of the skull is susceptible to selection pressures (Alarcón-Ríoset al.,2017).Previous analyses on variations of the urodela skull shape showed a high level of variation in skull shape between populations,and notable shape changes are varied.For example,the most prominent shape changes were in the skull base,palatal,snout,and vomeral teeth inTriturus karelinii(Ivanovi?et al.,2013),in the skull base,palatal,vomer,snout,maxilla,and praemaxillae inLissotriton vulgaris(Ivanovi?et al.,2012),as well as the exoccipital,snout,squamosal,and frontal inMesotriton alpestris(Ivanovi?et al.,2009).In this study,the most notable shape changes were found in the frontal,maxilla,pterygoid,and vomer among the four tested populations.These shape changes can clearly distinguish most populations.Compared with dorsal skull,ventral skull showed higher variation,this is consistent with the findings of other studies(e.g.,Ivanovi?et al.,2011,2013; üzümet al.,2015).The variation of skull shape within species may result from static allometry,genetic differentiation,and ecological preferences (Ivanovi?et al.,2009,2012,2013; Ivanovi? and Arntzen,2014; üzümet al.,2015).The results of multivariate regression showed no significant divergence in allometry of dorsal and ventral skull among populations,and regression within population showed that significant divergence in allometry was only found in the dorsal skull of the Gexi population.These results suggest that allometry is not the influencing factor in the skull morphological variation ofB.karlschmidti.The genetic data and ecological preferences (e.g.,dietary) of the individuals of these fourB.karlschmidtipopulations are absent.Thus,the variation of skull shape among populations ofB.karlschmidticannot be explained by existing data,and more information of these populations is needed.

    Research on geographic variation is usually based on a larger number of populations and individuals (e.g.,Ivanovi?et al.,2008,2009,2013; üzümet al.,2015).Here,the skull size and shape variation ofB.karlschmidtiwas studied based on limited sample populations and size.The obtained results of this study need to be verified/explored by more sample populations and larger sample sizes in the future.Geographic variation may result from genetic components and environmental conditions(Olvido and Mousseau,2012).In this study,the genetic data of four populations are absent.Such data can not only be used to analyze the mechanism of variation but also provides phylogeographic structuring to analyze the phylogenetic signal of variation.Then,genetic studies should also be included in the following research.

    5.Conclusion

    In conclusion,geographic variation does not affect skull size,which may result from a lack of differences of affecting factors (age,environmental conditions and habitat resources),but rather affects skull shape.Due to the limitation of sample populations and their size in this study,to better understand the mechanism and skull shape disparity pattern,considerable efforts should be directed toward a broader range of populations and individuals,and the genetic diversity of this species should be studied in the future.

    AcknowledgementsWe thank X.M.ZENG,S.J.ZHANG,W.LUO,and X.Y.YUAN of the Chengdu Institute of Biology(CIB),Chinese Academy of Sciences for their help in field work,Z.Q.YOU of Mianyang Teachers’ College for his help in analyzing part data.This work was supported by the National Natural Science Foundation of China (31471971).

    国产免费男女视频| a级毛片a级免费在线| 午夜福利在线观看吧| 又爽又黄无遮挡网站| av专区在线播放| 国产视频一区二区在线看| 村上凉子中文字幕在线| 丰满乱子伦码专区| 少妇人妻精品综合一区二区 | 国产激情偷乱视频一区二区| 国内精品美女久久久久久| 精品一区二区免费观看| 丝袜美腿在线中文| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 久久精品国产自在天天线| 听说在线观看完整版免费高清| 亚洲国产精品成人久久小说 | 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看 | 99热这里只有是精品在线观看| 99热这里只有是精品50| 亚洲中文字幕日韩| 十八禁网站免费在线| 午夜老司机福利剧场| 性欧美人与动物交配| 日日摸夜夜添夜夜添av毛片| 18禁黄网站禁片免费观看直播| 欧美一区二区亚洲| 欧美成人免费av一区二区三区| 特级一级黄色大片| avwww免费| 免费人成在线观看视频色| 九九在线视频观看精品| 亚洲精品色激情综合| 最后的刺客免费高清国语| 日本三级黄在线观看| 亚洲国产精品合色在线| 久久这里只有精品中国| 性色avwww在线观看| 高清毛片免费看| 91久久精品电影网| 久久精品综合一区二区三区| 乱系列少妇在线播放| 亚洲人成网站高清观看| 国产成人精品久久久久久| 日韩欧美三级三区| 国产精品美女特级片免费视频播放器| 国产亚洲精品av在线| 又粗又爽又猛毛片免费看| 国产一区二区在线av高清观看| 久久久色成人| 亚洲三级黄色毛片| 91久久精品电影网| 免费看美女性在线毛片视频| 干丝袜人妻中文字幕| 国产精品99久久久久久久久| 无遮挡黄片免费观看| 免费看美女性在线毛片视频| 成年av动漫网址| 伦理电影大哥的女人| eeuss影院久久| 丝袜美腿在线中文| 亚洲天堂国产精品一区在线| 一进一出抽搐gif免费好疼| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 国产精品电影一区二区三区| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 真实男女啪啪啪动态图| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 一本一本综合久久| 国产欧美日韩精品一区二区| 欧美日本亚洲视频在线播放| 嫩草影院入口| 啦啦啦观看免费观看视频高清| 寂寞人妻少妇视频99o| 亚洲18禁久久av| 国产片特级美女逼逼视频| 免费观看精品视频网站| 亚洲精品日韩在线中文字幕 | 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 国产在线男女| 五月伊人婷婷丁香| 午夜免费激情av| 亚洲人成网站高清观看| 日本五十路高清| 一级毛片久久久久久久久女| 久久久久精品国产欧美久久久| 亚洲中文字幕日韩| 日韩强制内射视频| 老司机福利观看| 波野结衣二区三区在线| 大香蕉久久网| 色噜噜av男人的天堂激情| 欧美成人a在线观看| 国产综合懂色| 中文字幕av成人在线电影| 俄罗斯特黄特色一大片| 内地一区二区视频在线| 亚洲中文字幕日韩| 我要看日韩黄色一级片| 九九爱精品视频在线观看| 在线天堂最新版资源| 十八禁网站免费在线| 亚洲人与动物交配视频| 成年版毛片免费区| 亚洲av成人av| 美女高潮的动态| 亚洲国产精品合色在线| 国产精品,欧美在线| 国内精品宾馆在线| 亚洲,欧美,日韩| 精品久久久久久久久亚洲| 男女视频在线观看网站免费| 亚洲三级黄色毛片| 久久人人精品亚洲av| 99国产精品一区二区蜜桃av| 淫妇啪啪啪对白视频| 日韩一本色道免费dvd| 听说在线观看完整版免费高清| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 国产av不卡久久| 麻豆乱淫一区二区| 波野结衣二区三区在线| 波多野结衣高清作品| 51国产日韩欧美| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 男人的好看免费观看在线视频| 啦啦啦观看免费观看视频高清| 欧美又色又爽又黄视频| 99riav亚洲国产免费| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 精品久久久久久久末码| 亚洲中文日韩欧美视频| 日韩精品有码人妻一区| 成人性生交大片免费视频hd| 老熟妇乱子伦视频在线观看| 免费高清视频大片| 欧美成人免费av一区二区三区| 在线天堂最新版资源| 色哟哟·www| 欧美3d第一页| av福利片在线观看| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| 一进一出抽搐gif免费好疼| 国产精品女同一区二区软件| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 大香蕉久久网| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区| 老熟妇乱子伦视频在线观看| 亚洲内射少妇av| 干丝袜人妻中文字幕| 小说图片视频综合网站| 丰满乱子伦码专区| 一本精品99久久精品77| 色在线成人网| 亚洲国产色片| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 欧美色欧美亚洲另类二区| 亚洲经典国产精华液单| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 亚洲国产高清在线一区二区三| 久久精品综合一区二区三区| 日韩欧美国产在线观看| 神马国产精品三级电影在线观看| 一边摸一边抽搐一进一小说| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲91精品色在线| 亚洲美女搞黄在线观看 | 国产精品一区www在线观看| 啦啦啦观看免费观看视频高清| 免费观看在线日韩| 不卡视频在线观看欧美| 久久人人精品亚洲av| 国产精品精品国产色婷婷| 综合色丁香网| 欧美xxxx性猛交bbbb| 看黄色毛片网站| 欧美日韩一区二区视频在线观看视频在线 | 国产精品av视频在线免费观看| 亚洲av.av天堂| 九九热线精品视视频播放| 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 国内精品一区二区在线观看| 亚洲国产精品sss在线观看| 国产高清视频在线观看网站| 一本久久中文字幕| 欧美成人精品欧美一级黄| av在线亚洲专区| 又粗又爽又猛毛片免费看| 亚洲自偷自拍三级| 日韩高清综合在线| 91精品国产九色| 国产伦一二天堂av在线观看| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站| 日韩 亚洲 欧美在线| 亚洲三级黄色毛片| 日本免费一区二区三区高清不卡| 国产亚洲91精品色在线| 春色校园在线视频观看| 男女那种视频在线观看| 亚洲人成网站在线播放欧美日韩| 日日撸夜夜添| 亚洲欧美清纯卡通| 精品人妻一区二区三区麻豆 | 久久亚洲精品不卡| 俄罗斯特黄特色一大片| 三级毛片av免费| 一级毛片aaaaaa免费看小| 两个人的视频大全免费| 久久久精品94久久精品| 国产久久久一区二区三区| ponron亚洲| 欧美激情在线99| 国产在线男女| 久久中文看片网| 亚洲一区高清亚洲精品| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 久久人人爽人人爽人人片va| 亚洲不卡免费看| 亚洲精品日韩在线中文字幕 | 成年免费大片在线观看| 亚洲欧美精品自产自拍| 久久午夜福利片| 国产亚洲精品综合一区在线观看| 国产精品,欧美在线| 蜜桃亚洲精品一区二区三区| 亚洲精品一区av在线观看| 最近手机中文字幕大全| 国产精品1区2区在线观看.| 亚洲性夜色夜夜综合| 99热这里只有是精品50| 菩萨蛮人人尽说江南好唐韦庄 | 欧美性猛交╳xxx乱大交人| 国产综合懂色| 日韩制服骚丝袜av| 校园春色视频在线观看| 久久国产乱子免费精品| 亚洲国产色片| 午夜福利在线观看免费完整高清在 | 亚洲五月天丁香| 亚洲欧美成人精品一区二区| 亚洲熟妇熟女久久| 观看免费一级毛片| 日韩欧美一区二区三区在线观看| 欧美成人精品欧美一级黄| 91午夜精品亚洲一区二区三区| 99riav亚洲国产免费| 天天一区二区日本电影三级| 免费大片18禁| 亚洲欧美成人精品一区二区| 久久久精品94久久精品| 联通29元200g的流量卡| 亚洲综合色惰| 亚洲第一电影网av| 国产精品av视频在线免费观看| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频| 级片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 一级毛片久久久久久久久女| 精品久久久久久久人妻蜜臀av| 国产精品一及| 国产在视频线在精品| 国产午夜精品久久久久久一区二区三区 | 国产又黄又爽又无遮挡在线| 精品一区二区免费观看| 亚洲图色成人| 搡女人真爽免费视频火全软件 | 成人毛片a级毛片在线播放| 精品久久久久久久末码| 国产黄片美女视频| 黄色视频,在线免费观看| 一级毛片aaaaaa免费看小| 国产精品三级大全| 国产色爽女视频免费观看| 男女下面进入的视频免费午夜| 国产精品一二三区在线看| 亚洲成人久久性| 亚洲精品久久国产高清桃花| 国产高清不卡午夜福利| 久久午夜福利片| 看免费成人av毛片| 狠狠狠狠99中文字幕| 欧美日本视频| 国产精品精品国产色婷婷| 国产av麻豆久久久久久久| 国产一区亚洲一区在线观看| 国产aⅴ精品一区二区三区波| 18禁黄网站禁片免费观看直播| 秋霞在线观看毛片| 男人舔奶头视频| 日韩亚洲欧美综合| 日本-黄色视频高清免费观看| 免费搜索国产男女视频| 国产白丝娇喘喷水9色精品| 精品免费久久久久久久清纯| 国产成人freesex在线 | 精品熟女少妇av免费看| 最后的刺客免费高清国语| 看十八女毛片水多多多| 97超碰精品成人国产| 久久精品国产清高在天天线| 最近的中文字幕免费完整| 白带黄色成豆腐渣| 激情 狠狠 欧美| 亚洲在线观看片| avwww免费| 亚洲成a人片在线一区二区| 久久鲁丝午夜福利片| 十八禁网站免费在线| 欧美丝袜亚洲另类| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 天堂网av新在线| 亚洲精品成人久久久久久| 一本久久中文字幕| 国产精品乱码一区二三区的特点| 国产成人福利小说| 午夜精品国产一区二区电影 | 美女cb高潮喷水在线观看| 日韩欧美在线乱码| 少妇被粗大猛烈的视频| 国产成人影院久久av| 午夜免费男女啪啪视频观看 | 精品99又大又爽又粗少妇毛片| 欧美三级亚洲精品| 国国产精品蜜臀av免费| 老司机午夜福利在线观看视频| 日本黄色视频三级网站网址| 我要看日韩黄色一级片| 国内久久婷婷六月综合欲色啪| 精品人妻偷拍中文字幕| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清| 精华霜和精华液先用哪个| 最近的中文字幕免费完整| 又黄又爽又免费观看的视频| 久久人人爽人人爽人人片va| 精品99又大又爽又粗少妇毛片| 成人高潮视频无遮挡免费网站| 国产伦一二天堂av在线观看| 国产不卡一卡二| 少妇熟女欧美另类| 久久人妻av系列| 亚洲成人精品中文字幕电影| 天美传媒精品一区二区| 国产高清三级在线| 人人妻人人澡欧美一区二区| 99国产精品一区二区蜜桃av| 国产亚洲精品av在线| 我的女老师完整版在线观看| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看 | 少妇的逼好多水| 午夜福利成人在线免费观看| 亚洲第一区二区三区不卡| 综合色av麻豆| 亚洲人成网站在线播| 国产极品精品免费视频能看的| 俄罗斯特黄特色一大片| 国产高清三级在线| 五月伊人婷婷丁香| 乱系列少妇在线播放| 欧美最新免费一区二区三区| 欧美性猛交黑人性爽| 级片在线观看| 亚洲自拍偷在线| 最新在线观看一区二区三区| 少妇被粗大猛烈的视频| av黄色大香蕉| 国产一区亚洲一区在线观看| 天堂av国产一区二区熟女人妻| 久久久久久大精品| 欧美+日韩+精品| av在线播放精品| 少妇高潮的动态图| 一本久久中文字幕| 欧美一区二区精品小视频在线| 狂野欧美白嫩少妇大欣赏| 亚洲精品日韩在线中文字幕 | 国产伦一二天堂av在线观看| 丝袜美腿在线中文| 在线天堂最新版资源| 日本欧美国产在线视频| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 亚洲一级一片aⅴ在线观看| 久久久精品大字幕| 日韩强制内射视频| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 不卡一级毛片| 一级黄片播放器| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 麻豆国产av国片精品| 午夜福利高清视频| 夜夜夜夜夜久久久久| 精华霜和精华液先用哪个| 亚洲美女搞黄在线观看 | 97超碰精品成人国产| 午夜亚洲福利在线播放| 国产高清不卡午夜福利| 亚洲国产色片| 久久人人精品亚洲av| 亚洲av不卡在线观看| 色综合亚洲欧美另类图片| 亚洲在线自拍视频| 国产一区二区三区在线臀色熟女| 久久久久国产网址| 亚洲va在线va天堂va国产| 亚洲一区二区三区色噜噜| 国产黄色视频一区二区在线观看 | 日本免费一区二区三区高清不卡| 日本撒尿小便嘘嘘汇集6| 五月伊人婷婷丁香| 久久久a久久爽久久v久久| 国产黄a三级三级三级人| 亚洲成av人片在线播放无| 日日干狠狠操夜夜爽| 小说图片视频综合网站| 可以在线观看的亚洲视频| 免费看a级黄色片| 精品日产1卡2卡| 久久精品国产清高在天天线| 免费一级毛片在线播放高清视频| 精品一区二区三区视频在线| 欧美区成人在线视频| 男人和女人高潮做爰伦理| 午夜福利高清视频| 中出人妻视频一区二区| 日日撸夜夜添| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清| h日本视频在线播放| 久久国内精品自在自线图片| 婷婷精品国产亚洲av在线| 桃色一区二区三区在线观看| 久久精品久久久久久噜噜老黄 | 校园春色视频在线观看| 日本精品一区二区三区蜜桃| 久久亚洲国产成人精品v| 亚洲aⅴ乱码一区二区在线播放| 你懂的网址亚洲精品在线观看 | 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 直男gayav资源| 久久精品影院6| 色5月婷婷丁香| 亚洲精品影视一区二区三区av| 国内精品美女久久久久久| 99热全是精品| 日韩精品有码人妻一区| 免费观看精品视频网站| 校园人妻丝袜中文字幕| 夜夜看夜夜爽夜夜摸| 51国产日韩欧美| eeuss影院久久| 99热这里只有是精品50| 欧美一区二区亚洲| 亚洲人成网站在线播放欧美日韩| 非洲黑人性xxxx精品又粗又长| 亚洲精品日韩av片在线观看| 国产又黄又爽又无遮挡在线| 嫩草影院精品99| 成年版毛片免费区| 老司机影院成人| 午夜福利18| 精品人妻一区二区三区麻豆 | 亚洲在线观看片| 18禁在线播放成人免费| av天堂中文字幕网| 日韩 亚洲 欧美在线| 日韩中字成人| 亚洲在线自拍视频| 少妇裸体淫交视频免费看高清| 成人亚洲欧美一区二区av| 亚洲欧美中文字幕日韩二区| 日韩中字成人| 国产探花在线观看一区二区| 69人妻影院| 不卡一级毛片| 中出人妻视频一区二区| 国产男人的电影天堂91| 欧美激情国产日韩精品一区| 毛片女人毛片| 美女大奶头视频| 精品久久久久久久久久免费视频| 亚洲av一区综合| 亚洲中文字幕日韩| 美女高潮的动态| 我的女老师完整版在线观看| av在线亚洲专区| 亚洲va在线va天堂va国产| 99国产极品粉嫩在线观看| 亚洲国产精品国产精品| 淫秽高清视频在线观看| 免费av不卡在线播放| 午夜福利视频1000在线观看| 亚洲中文字幕日韩| 日本欧美国产在线视频| 我的老师免费观看完整版| 日韩亚洲欧美综合| 麻豆久久精品国产亚洲av| 99久国产av精品国产电影| 国内精品美女久久久久久| 国产精品嫩草影院av在线观看| 国产精品一区二区性色av| 人妻少妇偷人精品九色| 日韩人妻高清精品专区| 午夜激情欧美在线| 免费看a级黄色片| 国产精品伦人一区二区| 久久精品国产自在天天线| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 麻豆国产97在线/欧美| 午夜日韩欧美国产| 欧美性感艳星| 免费看光身美女| av卡一久久| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久| 中文字幕av成人在线电影| 国产亚洲欧美98| 欧美bdsm另类| 国产在视频线在精品| 日本精品一区二区三区蜜桃| 日韩欧美在线乱码| 亚洲精品久久国产高清桃花| 村上凉子中文字幕在线| 午夜精品一区二区三区免费看| 天美传媒精品一区二区| 1000部很黄的大片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲最大成人av| 亚洲中文字幕日韩| 老司机午夜福利在线观看视频| 天堂√8在线中文| 白带黄色成豆腐渣| 秋霞在线观看毛片| 在线免费观看的www视频| 日韩国内少妇激情av| 成人av在线播放网站| 男女下面进入的视频免费午夜| 成人精品一区二区免费| 国产成人影院久久av| 少妇人妻一区二区三区视频| 精品国内亚洲2022精品成人| 99久久无色码亚洲精品果冻| 人人妻,人人澡人人爽秒播| 久久人妻av系列| 狠狠狠狠99中文字幕| 大型黄色视频在线免费观看| 午夜久久久久精精品| 免费大片18禁| 日韩欧美 国产精品| 内地一区二区视频在线| 黄色视频,在线免费观看| 午夜福利在线观看免费完整高清在 | 欧美成人精品欧美一级黄| 久久久久久久午夜电影| 三级男女做爰猛烈吃奶摸视频| 麻豆av噜噜一区二区三区| 免费高清视频大片| 婷婷精品国产亚洲av| 夜夜夜夜夜久久久久| 久久精品影院6| 亚洲专区国产一区二区| 欧美中文日本在线观看视频| 国产一区二区激情短视频| 在线观看66精品国产| 久久精品国产99精品国产亚洲性色| 天堂√8在线中文| 三级男女做爰猛烈吃奶摸视频| 干丝袜人妻中文字幕| 有码 亚洲区| 插逼视频在线观看| 蜜桃亚洲精品一区二区三区| 色综合站精品国产| 国产亚洲精品久久久久久毛片| 晚上一个人看的免费电影| 91久久精品国产一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 99热6这里只有精品| 亚洲自偷自拍三级| 人人妻人人澡人人爽人人夜夜 | 欧美+日韩+精品| 俺也久久电影网| 婷婷精品国产亚洲av在线| 在线播放国产精品三级|