• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tail Display Intensity is Restricted by Food Availability in an Asian Agamid Lizard (Phrynocephalus vlangalii)

    2020-09-30 02:30:20XinxinZHUZhongyiYAOandYinQI
    Asian Herpetological Research 2020年3期

    Xinxin ZHU ,Zhongyi YAO and Yin QI

    1 Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China

    2 University of Chinese Academy of Sciences,Beijing 101409,China

    Abstract To ascertain the function of signals,we have to first uncover the reasons behind signal variation.There are several potential driving forces,including background noise,predation cost,receiver perception,and energy limitations.The energy limitation hypothesis assumes that individuals trade off signal intensity and energy expenditure according to resource condition,while variation of signal intensity likely associates with food availability.This hypothesis has been evidenced by a great number of researches on vocal signals,but no studies evaluated the influence of food availability on motion visual signal in lizards.Here we used an Asian agamid lizard Phrynocephalus vlangalii and examined the effect of food availability on tail display intensity.We designed two food restriction treatments as well as a nature control treatment,and quantified individual tail display speed and display duration under different food availability conditions.Consistent with our prediction,our results showed that males significantly reduced their average tail display speed and maximum display speed in both food restriction treatments when compared to nature control condition.Therefore,our study provides direct evidence that lizards would trade off their display intensity according to the food condition,suggesting tail display is energetically costly and likely provides honest information on individual body condition and resource hold potential.

    Keywords animal communication,energy limitation,lizard,signal variation,tail display

    1.Introduction

    Signal va ria tion plays crucial roles in a nimal communication,because of its relevance on signal function (Martin,2013).Information regarding individual body conditions and resource hold potentials can be transmitted among conspecifics in virtue of signal variation (Dochertyet al.,1995; Howardet al.,1998;Brepsonet al.,2013; Humfeld,2013).This is particularly true for motion visual signals,which requires an intimate coordination among different body organs and likely reflect individual ability in resource and social competition (Fleishman,1992; Vanhooydoncket al.,2005;Mowleset al.,2017).For example,variation of claw waving in male fiddler crabUca mjoebergireflects individual sprint speed (Mowleset al.,2017),while variation of dewlap size inAnolislizards manifests individual bite force(Vanhooydoncket al.,2005).To ascertain the function of signals,we have to first figure out the reasons behind signal variation.

    Many hypotheses were proposed to address the reasons behind signal variation,including background noise,predation risk and energy limitation (Zuk and Kolluru,1998; Peters and Christopher,2003).The background noise hypothesis assumes that signal variation is aimed to cope with the problem of background noise (Peterset al.,2008; Kaiseret al.,2009; Hannaet al.,2014; Halfwerket al.,2016).Individuals would modify their signal intensity to overcome the interference from background noise,e.g.waterfalls,wind,and urban noise (Ordet al.,2007; Luther and Gentry.,2013; Halfwerket al.,2016).The predation risk hypothesis assumes that signal variation plays crucial roles in camouflage; individuals would modify their signal variation to alleviate the predation risk (Simon,2007;Steinberget al.,2014).The energy limitation hypothesis proposes that signal variation reflects the status of individual energy condition,and thus there would be a trade-off between signal intensity and individual energy expenditure,in particularly for motion visual signal,as it requires an intimate coordination among different body organs (Endler,1993; Kimet al.,2008; Takeshitaet al.,2018).Display signals often exert significant influence on individual energy metabolism and have high requirements on individual physical condition (Sallyet al.,2003;Christopheet al.,2013; Doubellet al.,2017).For example,male African clawed frogsXenopus laevisdecrease call rate under high food constraint (Wanget al.,2019).High speed drumming display in male wolf spidersHygrolycosa rubrofasciatareduces individual weight and intensifies individual mortality rate (Mappeset al.,1996).To alleviate the effect of energy costs,individuals often modulate their signal intensity to adapt to their energy condition.

    Compared with background noise and predation risk hypotheses,the effect of energy limitation on signal variation remains largely unclear,in particular for motion visual signals in lizards.The Qinghai toadheaded agamid lizard,Phrynocephalus vlangalii,a common and widespread viviparous lizard at the Qinghai-Tibetan plateau,provides an excellent system testing the association between motion visual signal modulation and energy limitation.Both male and female lizards use complex tail displays in social communications,including male-male competition,male courtship,female-female competition,and female mate defense (Figure 1 a,Qiet al.,2011a; Peterset al.,2016; Wuet al.,2018).Tail coil and tail lash are the two main display components inP.vlangalii(Peterset al.,2016),and variation of tail coil and tail lash largely depends on the individual anaerobic metabolism capacity (Zhu,unpublished data).We also found that variation of tail coil and tail lash informs individual performance and burrow quality (Qiu,unpublished data).Both male and female are territorial and defend certain home range area around their burrow.They would stay near the burrow entrance,and initiate a quick predation as soon as the insects land on the grass two meters away (Qiet al.,2011b,2012; Wuet al.,2015).As a high elevation species,the availability for food are very limited,individuals likely have a trade-off between food availability and display intensity to maintain the normal metabolism and reproduction (Aspeyet al.,1983; Briffaet al.,2001; Dammhahnet al.,2018).

    In this study,we test the applicability of energy limitation hypothesis in motion visual signal.We achieved the manipulation of food availability through restriction on individual foraging behavior,which serves as an important method for food availability restriction in the field condition.According to trade-off between signal intensity and individual energy expenditure,we predicted thatP.vlangaliiwould reduce their display intensity when food availability was low.

    2.Materials and Methods

    2.1.Study siteWe conducted our experiment at the Xiaman Conservation Station in the Zoige Wetland Nature Reserve (33.71389° N,102.48543° E,elevation 3475 m a.s.l),northeast Sichuan Province,China.Phrynocephalus vlangaliiin this area occurs in sand dunes surrounded by grassland,with a population density of approximately 3000 lizards/ha and a sex ratio (female/male) of 1.76/1 in mating season (Wuet al.,2002; Wu,2003).The active season of lizards in this area lasts from May to late August,with mating occurring from early May to late June,and young emerging in late August and early September,with a clutch size ranging from 1 to 4(Wuet al.,2015).The vegetation around lizards’ burrow is predominantly composed of three grass species (Kobresia humilis,K.prattii and Elymus natans) and a shrub (Salix sclerophylla) (Qiet al.,2011a).The climate in this area is characterized by a short spring and summer (four months,from April to July) and a long autumn and winter (eight months,from August to March of the following year)(Chenet al.,1996).

    2.2.Experiment designTwo food restriction treatments,food restriction one (FRO) and food restriction two (FRT),as well as a nature control treatment,were designed to examine the effect of food availability on tail display intensity during breeding season that occurs from May and June (Figure 1 b).In FRO,we removed the bottom of plastic case (60 cm × 45 cm × 34 cm),and replaced it using fishing net.We then put the case with bottom up around the lizards’ burrow and restricted the lizards’ foraging behavior.In FRT,we used the similar plastic case,but did not replace the removed bottom with fishing net.Therefore,the similarity of the FRO and FRT is that the focal lizard could venture out of its burrow and move in a restricted area of 60 cm × 45 cm,but could not approach the plants where the insects likely to land on and forage efficiently as in a nature condition (Qiet al.,2012).We assume that insect availability in nature control is higher when compared with those in FRO and FRT,while insect availability of FRT is higher than FRO due to the absence of fishing net.This is designed according to the foraging behavior inP.vlangalii(Qiet al.,2011a).

    Figure 1 Diagrammatic drawing of experimental design.(a) an image of male tail display around its burrow in Phrynocephalus vlangalii; (b)general view of nature control,food restriction one (FRO) and food restriction two (FRT); (c) general view of display collection process.R=Resident,I=Intruder.In FRO,we removed the bottom of plastic case (60 cm × 45 cm × 34 cm),and replaced it using fishing net.We then put the modified case with bottom up around the lizards’ burrow and restricted the foraging behavior of lizards.In FRT,we used the similar case,but did not replace the removed bottom with fishing net.The similarity of the two treatments is that the focal lizard could venture out of its burrow and move in a restricted area of 60 cm × 45 cm,but could not approach the plants where the insects likely to land on and forage efficiently as nature condition.We assume that insect availability in nature control is higher compared with those in FRO and FRT,while insect availability in FRT is higher than FRO due to the absence of fishing net.

    One day before trials,we searched the study area for resident males and captured them by noose.The body mass and snout-vent length (SVL) were measured respectively using an electronic scale (MAXN,precision 0.01 g) and a clear plastic ruler as soon as they were caught.We then released the resident to its burrow and marked the burrow using a chopstick.To reduce the likelihood of previous interactions between lizards,we captured intruder males from a different site three kilometers away.

    A minimum of 24 h later,we returned to the marked male residents and tested their responses to male intruders under nature control treatment.We tethered an intruder male to approach the resident using a four meters’fishing rod.To allow the lizard move freely,we used a 40 centimeters’ dental floss with one end tied around the waist of lizard and the other end attached to the fishing rod.Meanwhile,a video camera (50 frames per second,Sony HDR PJ670) was set up in front of the resident and recorded the display responses.We terminated the trial when resident stopped its display or stayed without displaying within a maximum of five minutes.At the conclusion of each trial,a ping-pong ball was immediately placed at the signaling site as a scale for display digitizing.After that,the focal lizard was randomly assigned a food restriction treatment (FRO or FRT,Figure 1 b).To avoid the lizards’ escape,we inserted the edge of plastic case into the sand and buried its edge.To facilitate individual recognition,we marked the burrow using a numbered chopstick.After three days’ food restriction (Yueet al.,2012),we re-collected the tail display of focal lizard using the same method.

    To avoid biasing display variation due to the intruder and camera,we standardized each trial from three aspects:1) SVL and mass were matched between resident and intruder,allowing SVL differences between individuals as much as 0.4 cm and mass difference as much as one gram; 2) distance between resident and intruder was kept at approximately 30 cm; 3) distance between camera and resident was kept at three meters.To alleviate the stress,we did not catch the focal lizard a second time again after food restriction treatment.Each intruder was used in a maximum of three times and was released back to the capturing site to alleviate physiological stress.

    2.3.Display digitizingWe used the DLT dv5 software in Matlab 2015b (MathWorks Inc.,Natick,MA,U.S.A.)and followed the methods outlined by Hedrick (2008)in display digitizing.We first located the position of tail tip in successive frames to generatex-ycoordinate data over time for each display.After that,we extracted the average display speed,maximum display speed and display duration respectively for tail coil and tail lash.The definition of average display speed,maximum display speed and average duration was consistent with the description in Wuet al.(2018).Briefly,the average display speed was defined as the average distance moved by tailtip within a specific period of time,while the maximum display speed was defined as the maximum distance moved by tail-tip during that time.The display duration was computed as the time period display sustained.As orientation of the lizard relative to the camera likely affect display speed quantification (Bianet al.,2016; Wuet al.,2018),we categorized each display as either facing towards/away from the camera or at right angles to the camera.Finally,we transformed the grid-based display variables to Euclidean distance using the ping-pong ball scale.

    2.4.Statistical analysisWe included tail displays of 43 lizards in final analysis.Thirteen out of original 56 lizards were excluded,because of escaping from the plastic case,lack of morphological measurements,or failing to display during trials.A total of 220 display bouts were quantified,including 132 bouts in natural control (26 lizards),36 bouts in FRO (8 lizards) and 52 bouts in FRT (9 lizards).

    All statistical analysis was carried out in R version 3.6.0 (R Developmental Core Team,2017).We used thelmerfunction from lme4 package to establish linear mixed models (Bateset al.,2015).For models of average display speed and maximum display speed,we regarded average display speed and maximum display speed as dependent variables,while food availability treatment,display action and display view were considered as fixed factors,with lizard identity using as random factor.For model of display duration,we regarded display duration as dependent variable,while food availability treatment and display action were considered as fixed factors.To satisfy the assumption of linear mixed model,we conducted a log transformation for each independent variable before modeling.We also included possible interactions between fixed factors.In addition,we considered intruder and resident SVL as covariates to explain potential effect of lizards’ body size.ThelmerTestfunction was used to assess the significance of each factor (Kuznetsovaet al.,2016).We examined pairwise contrast from the model for significant main effect.Descriptive statistics were given as mean ±SE.

    3.Results

    The mean value of average display speed was 13.06 ± 1.06 cm/s,9.38 ± 1.15 cm/s and 9.80 ± 1.37 cm/s,for natural control,FRO and FRT,respectively (Figure 2a).Significant association was found between average display speed and food availability treatment (Table 1).The average display speed in the natural control was significantly larger than both restriction treatments,while no difference was found between two food restriction treatments (Table 1,natural control -FRO:t=-2.39,P=0.018; natural control -FRT:t=-2.61,P=0.011; FRO -FRT:t=0.59,P=0.56).

    The mean value of maximum display speed was 50.85 ± 2.69 cm/s,40.24 ± 2.90 cm/s and 35.56 ± 2.89 cm/s,for natural control,FRO and FRT,respectively(Figure 2b).We found significant association between maximum display speed and food availability treatment(Table 2).The maximum display speed under natural control was larger than FRO,although the difference was not significant (Table 2,natural control -FRO:t=-1.15,P=0.25).The maximum display speed in FRT was significantly smaller than natural control (Table 2,natural control -FRT:t=-2.34,P=0.028).

    The mean value of display duration was 4.13 ± 0.29 s,4.79 ± 0.54 s and 3.88 ± 0.44 s,for natural control,FRO and FRT,respectively (Figure 2c).We found no association between display duration and food availability treatment (Table 3).

    4.Discussion

    We found evidence thatP.vlangaliimodify tail display intensity depending on food availability.In particular,average and maximum tail display speed decreased when lizards experienced food restriction.This result is consistent with our prediction according to energy limitation hypothesis.Similar results have been found in fiddler crapU.lacteaand wolf spidersSchizocosa ocreata,in which ample food would makes courtship display more intensive (Kimet al.,2003; Gibsonet al.,2012).Another case was found in three-spined sticklebackGasterosteus aculeatus,in which food deprivation reduces the courtship display intensity in male individuals (Candolin,1999).The energy-dependent signal modulation was also found in other signal models.For example,in lizardsLacerta viridis,male individuals increase nuptial color brightness under high food condition (Mészároset al.,2017),while in male European tree frogsHyla arborea,individuals supplied with additional food call more frequently than control males(Meuche and Grafe,2009).Similar pattern was found in SilvereyesZosterops lateralis,in which food supplement prolongs call duration and increase call frequency(Barnett and Briskie,2006).The association between tail display intensity and food availability suggests tail display intensity could provide honest information on individual body condition and resources hold potential.Only individual with ample food could maintain high level of tail display intensity,thereby gain high dominance in mate competition and territory defense (Qiet al.,2011a,2012; Peterset al.,2016).

    Figure 2 Mean value and standard error of three tail display parameters in P.vlangalii.(a) average tail display speed; (b) maximum tail display speed; (c) average tail display duration.Asterisk denotes significant effect between treatments (P < 0.05).FRO=food restriction one,FRT=food restriction two.

    Table 1 Summary of linear mixed models examining variation of average display speed against treatment,action,display view and potential interactions.dfNum=numerator degrees of freedom,dfDen=denominator degrees of freedom with corrections based on the Satterthwaite approximation.Bold numbers denote significant effect.

    Table 2 Summary of linear mixed models examining variation of maximum display speed against treatment,action,display view and potential interactions.dfNum=numerator degrees of freedom,dfDen=denominator degrees of freedom with corrections based on the Satterthwaite approximation.Bold numbers denote significant effect.

    Table 3 Summary of linear mixed models examining variation of display duration against treatment,action,display view and all potential interactions.dfNum=numerator degrees of freedom; dfDen=denominator degrees of freedom with corrections based on the Satterthwaite approximation.Bold numbers denote significant effect

    There are several potential reasons on energydependent display modification inP.vlangalii.IndividualP.vlangaliilikely requires enough food to maintain the normal metabolism capacity and provides necessary energy associated with display.As a special kind of signal,this display requires intimate coordination among different organs and hence likely has high requirements on individual food condition.Individual current body condition affects the structure of display signals (Kotiahoet al.,1998; Scheuberet al.,2003; Ritschardet al.,2011;Gibsonet al.,2012).For example,in tungara frogPhysalaemus pustulosus,male individuals without food supplement decrease call activity (Marleret al.,1996).When food availability is low,individuals likely reduce display intensity to alleviate the negative impact from predation risk and immunocompetence (Bennett,1980;Slavíket al.,2017; Turbillet al.,2019).For example,in fiddler crabAustruca lacteal,male individuals decrease the number of courtship waves when experiencing food-deprivation treatment (Takeshita1et al.,2018).Alternatively,individualP.vlangaliilikely requires enough food to maintain muscle force associated with display intensity.Muscle force largely depends on the amount of muscle protein,which would be lost with the amino acid oxidation and/or carbon donation for gluconeogenesis(Wackerhageet al.,2006; Athertonet al.,2012).Individuals have to take a large number of amino acids from dietary protein (Wackerhageet al.,2006; Athertonet al.,2012).When food availability is low,the dynamic relationship between muscle protein and amino acid oxidation would be broken (Li and Goldberg,1976),and lizards likely weaken the muscle capacity and reduce the display intensity.

    We admitted that our food restriction treatment have some flaws.First,we detected none difference in tail display intensity between two food restriction treatments.This is out of our expectation.We initially assume that two food restriction treatments likely differ in foraging restriction efficiency,and the tail display intensity would be lower in FRO compared with that in FRT.One possible reason is thatP.vlangaliiprefer small insects,which could not be restricted by fishing net added at the bottom of plastic case.In addition,food restriction treatments likely simultaneously restricted lizards’ social interaction;thereby evoke the reduction in display intensity.This possibility can be excluded by the lizards’ normal territorial defense and display behavior after three days’food restriction treatment.

    Conclusion

    Our results evidenced that food availability would affect the tail display intensity inP.vlangalii.This is the first evidence,as our knowledge,that motion visual signal intensity varies with food availability in lizards.Our study casts an important insight into the honesty of motion visual signal inP.vlangalii,suggesting that motion visual signal variation likely reflects the individual quality or resource hold potential,which lays the foundation of signal function during social communication.In following up research,careful design is needed to determine the mechanism behind the tail display weakening under different food availability conditions.

    AcknowledgementsWe are grateful to X.Q.ZENG for assistance in field experiment in Zoige.Thanks to X.QIU and Y.Y.WU for assistance in data analysis.We thank J.Z.FU and J.P.JIANG for their constructive comments that improved this manuscript.This project was supported by the biodiversity survey and assessment project of the ministry of ecology and environment,China (grant number 2019HJ2096001006) and from the National Natural Science Foundation of China to Y.QI (grant number 31872233).All activities were under permission from local conservation authorities and animal handling followed the approved protocols(protocol number 2017005,Chengdu Institute of Biology).We also adhered to the ABS/ASAB “Guidelines for the treatment of animals in behavioral research and teaching”.

    Reference

    Aspey P.W.,Lustick I.S.1983.Behavioral Energetics:The Cost of Survival in Vertebrates.America:Ohio State University Press

    Atherton P.J.,Smith K.2012.Muscle protein synthesis in response to nutrition and exercise.J Physiol,590:49-57

    Barnett C.A.,Briskie J.V.2006.Energetic state and the performance of dawn chorus in silvereyes (Zosterops lateralis).Behav Ecol Sociobiol,61:579-587

    Bates D.,Maechler M.,Bolker B.,Walker,S.2015.Fitting linear mixed-effects models using lme4.J Stat Softw,67:1-48

    Bennett A.F.1980.The metabolic foundations of vertebrate behavior.BioScience,30:452-456

    Bian X.,Elgar M.A.,Peters R.A.2016.The swaying behavior ofExtatosoma tiaratum:motion camouflage in a stick insect? Behav Ecol,27:83-92

    Brepson L.,Voituron Y.,Lengagne T.2013.Condition-dependent ways to manage acoustic signals under energetic constraint in a tree frog.Behav Ecol,24(2):488-496

    Briffa M.,Elwood W.R.2001.Decision rules,energy metabolism and vigour of hermit-crab fights.Proc R Soc Lond B,268:1841-1848

    Candolin U.1999 The relationship between signal quality and physical condition:is sexual signalling honest in the three-spined stickleback? Anim Behav 58:1261-1267

    Chen K.M.,Song G.Q.,Cheng L.Q.1996.Zoige county annals.Ethnic Press (95-96 pp)

    Christophe L.,Alatalo R.V.,Siitari H.2013.Physiological costs enforce the honesty of lek display in the black grouse (Tetraotetrix).Oecologia,172:983-993

    Dammhahn,M.,Dingemanse,N.J.,Niemel?,P.T.,Réale D.2018.Pace-of-life syndromes:a framework for the adaptive integration of behaviour,physiology and life history.Behav Ecol Sociobiol,72(3):62

    Docherty S.,Bishop P.J.,Passmore N.I.1995.Calling behavior and male condition in the frogHyperolius marmoratus.J Herpetol,29:616-618

    Doubell M.,Grant P.B.C.,Esterhuizen N.,Bazelet C.S.,Addison P.,Terblanche J.S.2017.The metabolic costs of sexual signalling in the chirping katydidPlangia graminea(Serville) (Orthoptera:Tettigoniidae) are context dependent:cumulative costs add up fast.J Exp Biol,220:4440-4449

    Endler J.A.1993.Some general comments on the evolution and design of animal communication systems.Philos Trans R Soc Lond B,340:215-225

    Fleishman,L.J.1992.The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates.Am Nat,139:S36-S61

    Gibson J.S.,Uetz G.W.2012.Effect of rearing environment and food availability on seismic signalling in male wolf spiders(Araneae:Lycosidae).Anim Behav,84:85-92

    Halfwerk K.,Lea A.M.,Guerra M.A.,Page R.A.,Ryan M.J.2016.Vocal responses to noise reveal the presence of the Lombard effect in a frog.Behav Ecol,27(2):669-676

    Hanna D.E.L.,Wilson D.R.,Blouin-Demers G.,Mennill D.J.2014.Spring peepersPseudacris crucifermodify their call structure in response to noise.Curr Zool,60:438-448

    Hedrick T.L.2008.Software techniques for two-and threedimensional kinematic measurements of biological and biomimetic systems.Bioinspir Biomim,3:1-7

    Howard R.D.,Young J.R.,1998.Individual variation in male vocal traits and female preferences inBufo americanus.Anim Behav,55:1165-1179

    Humfeld S.C.2013.Condition-dependent signaling and adoption of mating tactics in an amphibian with energetic displays.Behav Ecol,24(4):859-870

    Kaiser K.,Hammers J.L.2009.The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog,Dendropsophus triangulum.Behaviour,146:1053-1069

    Kim T.W.,Sakamoto K.,Henmi Y.,Choe J.C.2008.To court or not to court:reproductive decisions by male fiddler crabs in response to fluctuating food availability.Behav Ecol Sociobiol,62:1139-1147

    Kim T.W.,Choe J.C.2003.The effect of food availability on the semilunar courtship rhythm in the fiddler crabUca lactea(de Haan) (Brachyura:Ocypodidae).Behav Ecol Sociobiol,54:210-217

    Kotiaho J.S.,Alatalo R.V.,Mappes J.,Nielsen M.G.,Parri S.,Rivero A.1998.Energetic costs of size and sexual signalling in a wolf spider.Proc R Soc Lond B Bio,265:2203-2209

    Kuznetsova A.,Brockhoff P.B.,Christensen R.H.B.2016.lmerTest:tests in linear mixed effects models.R package version 2.0-33.https://CRAN.R-project.org/package/lmerTest

    Li J.B.,Goldberg A.L.1976.Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles.Am J Physio,231(2):441-448

    Luther D.,Gentry K.2013.Sources of background noise and their influence on vertebrate acoustic communication.Behaviour,150:1045-1068

    Mappes J.,Alatalo R.V.,Kotiaho J.S.,Parri S.1996.Viability costs of condition-dependent sexual male display in a drumming wolf spiders.P Roy Soc B-Biol Sci,263:785-789

    Marler C.A.,Ryan M.J.1996.Energetic constraints and steroid hormone correlates of male calling behavior in the tungara frog.J Zool Lond,240:397-409

    Martin S.2013.Sensory ecology,behaviour,and evolution.UK:Oxford University Press

    Mészáros B.,Herczeg G.,Bajer K.,T?r?k J.,Molnár O.2017 Effects of energy and thermoregulation time on physiological state and sexual signal in a lizard.J Exp Zool,327:570-578

    Meuche I.,Grafe T.U.2009.Supplementary feeding affects the breeding behaviour of male European treefrogs (Hyla arborea).BMC Ecol,9:1

    Mowles S.L.,Jennions M.,Backwell P.R.Y.2017 Multimodal communica tion in courting fiddler cra bs reveals male performance capacities.R Soc open sci,4:161093

    Ord T.J.,Peters R.A.,Clucas B.,Stamps J.A.2007.Lizards speed up visual displays in noisy motion habitats.Proc Biol Sci,274:1057-1062

    Peters R.A.,Ramos J.A.,Hernandez J.,Wu Y.,Qi Y.2016.Social context affects tail displays byPhrynocephalus vlangaliilizards from China.Sci Rep,6:31573

    Peters R.A.,Christopher S.E.2003.Introductory tail-filck of the Jack dragon visual display:signal efficacy depends upon duration.J Exp Biol,206:4293-4307

    Peters R.A.,Hemmi J.,Zeil J.2008.Image motion environments:background noise for movement-based animal signals.J Comp Physiol A.,194:441-456

    Qi Y.,Suo L.D.J.,Li H.,Wang Y.Z.2011a.An ethogram of the toadheaded lizardPhrynocephalus vlangaliiduring the breeding season.Asian Herpetol Res,2:110-116

    Qi Y.,Wan H.F.,Gu H.J.,Wang Y.Z.2011b.Do display and badges function in establishing the social structure of male toad-headed lizards,Phrynocephalus vlangalii? J Ethol,29:381-387

    Qi Y.,Noble D.W.A.,Fu J.,Whiting M.J.2012.Spatial and social organization in a burrow-dwelling lizard (Phrynocephalus vlangalii) from China.PLoS One,7:e41130

    R Development Core Team.2017.R:a language and environment for statistical computing.R Foundation for Statistical Computing,Vienna,Austria,Retrieved from http://www.R-project.org

    Ritschard M.,Brumm H.2011.Zebra finch song reflects current food availability.Evol Ecol,26:801-812

    Sally W.,Speakman J.R.,Slater P.J.B.2003.The energy cost of song in the canary,Serinus canaria.Anim Behav,66:893-902

    Scheuber H.,Jacot A.,Brinkhof M.W.G.2003 The effect of past condition on a multicomponent sexual signal.Proc R Soc Lond B Bio,270:1779-1784

    Simon V.B.2007.Not All signals are equal:male brown anole lizards (Anolis sagrei) selectively decrease pushup frequency following a simulated predatory attack.Ethology,113:793-801

    Slavík O.,Horky P.,Douda K.,Velí?ek J.,Kolá?ová J.,Lepi? P.2017.Parasite-induced increases in the energy costs of movement of host freshwater fish.Physiol Behav,171:127-134

    Steinberg D.S.,Losos B.J.,Schoener T.W.,Spiller D.A.,Kolbe J.J.,Leal M.2014.Predation-associated modulation of movementbased signals by a Bahamian lizard.Proc Natl Acad Sci USA,111:9187-9192

    Takeshita F.,Murai M.,Matsumasa M.,Henmi Y.2018.Multimodal signaling in fiddler crab:waving to attract mates is conditiondependent but other sexual signals are not.Behav Ecol Sociobiol,72:140-150

    Turbill C.,McAllan B.M.,Prior S.2019.Thermal energetics and behaviour of a small,insectivorous marsupial in response to the interacting risks of starvation and predation.Oecologia,191:803-815

    Vanhooydonck B.H.,Damme A.Y.V.,Irschick.D.J.2005.Does dewlap size predict male bite performance in Jamaican Anolis lizards? Funct Ecol,19:38-42

    Wang X.C.,Zhao Z.J.,Cao Y.,Cui J.G.,Tang Y.Z.,Chen J.F.,2019.Condition dependence of advertisement calls in male African clawed frogs.J Ethol,37:75-81

    Wackerhage H.,Rennie M.J.2006.How nutrition and exercisemaintain the human musculoskeletal mass.J Anat,208:451-458

    Wu Y.Y.,Fu J.Z.,Yue B.S.,Qi Y.2015.An atypical reproductive cycle in a common viviparous Asia AgamidPhrynocephalus vlangalii.Ecol Evol,5:5138-5147

    Wu Y.,Ramos J.A.,Qiu X.,Peters R.A.,Qi Y.2018.Female-female aggression functions in mate defence in an Asian agamid lizard.Anim Behav,135:215-222

    Wu P.F.,Wang Y.Z.,Wang S.G.,Zeng T.,Guo H.Y.,Cai H.X.2002.The age structure and sex ratio ofPhrynocephalus vlangalii(Sauria:Agamidae).J Sichuan Univ (Nat Sci Edition),39:1134-1139

    Wu P.F.2003.Phrynocephalus vlangaliipopulation ecology research in Zoige.Master′s thesis.Sichuan University,20-43 pp

    Yue F.,Tang X.L.,Zhang D.J.,Yan X.F.,Xin Y.,Chen Q.2012.Body temperature and standard metabolic rate of the female viviparous lizardEremias multiocellataduration reproduction.Can J Zool,90:79-84

    Zuk M.,Kolluru I.C.1998.Exploitation of sexual signals by predators and parasitoids.Q Rev Biol,73:415-438

    中文资源天堂在线| 嘟嘟电影网在线观看| 国产视频内射| 嘟嘟电影网在线观看| 免费黄网站久久成人精品| 涩涩av久久男人的天堂| 丝袜喷水一区| 少妇被粗大的猛进出69影院 | 日韩欧美 国产精品| av天堂中文字幕网| 亚洲欧美精品自产自拍| 日韩av不卡免费在线播放| 制服丝袜香蕉在线| 欧美亚洲 丝袜 人妻 在线| 久久国产乱子免费精品| 草草在线视频免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久噜噜| 日韩 亚洲 欧美在线| 亚洲精品中文字幕在线视频 | 永久网站在线| 婷婷色麻豆天堂久久| 成人毛片60女人毛片免费| 成人亚洲欧美一区二区av| 夜夜看夜夜爽夜夜摸| 久久女婷五月综合色啪小说| 一个人看视频在线观看www免费| 亚洲,欧美,日韩| 国产成人精品福利久久| 亚洲av日韩在线播放| 国产成人精品久久久久久| 肉色欧美久久久久久久蜜桃| 成人毛片a级毛片在线播放| 欧美亚洲 丝袜 人妻 在线| 免费av中文字幕在线| 曰老女人黄片| 国产av一区二区精品久久| 欧美精品一区二区大全| 噜噜噜噜噜久久久久久91| 一区二区三区乱码不卡18| 99热6这里只有精品| 丝袜在线中文字幕| 中文字幕免费在线视频6| 熟妇人妻不卡中文字幕| 久久久久国产网址| 制服丝袜香蕉在线| 亚洲无线观看免费| 国产女主播在线喷水免费视频网站| 久久久久精品久久久久真实原创| 亚洲综合色惰| 成人特级av手机在线观看| 国产精品一区二区在线不卡| 免费大片18禁| 久久午夜福利片| 自线自在国产av| 日韩熟女老妇一区二区性免费视频| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品专区欧美| 国产亚洲欧美精品永久| av天堂久久9| 一二三四中文在线观看免费高清| 久久久久久久国产电影| 99视频精品全部免费 在线| 久久久久久伊人网av| 人妻人人澡人人爽人人| 亚洲精品第二区| 丝瓜视频免费看黄片| 亚洲第一av免费看| 欧美xxⅹ黑人| 搡老乐熟女国产| 色视频www国产| 蜜桃在线观看..| 午夜福利网站1000一区二区三区| 国产极品粉嫩免费观看在线 | 天天躁夜夜躁狠狠久久av| 人人妻人人澡人人看| 国产国拍精品亚洲av在线观看| 国产精品一区二区在线不卡| 99热这里只有精品一区| 看十八女毛片水多多多| 亚洲av福利一区| av女优亚洲男人天堂| 久久精品国产亚洲av天美| 国产在线男女| 久久久国产精品麻豆| 日本色播在线视频| 一级毛片我不卡| 久久久国产欧美日韩av| av.在线天堂| 七月丁香在线播放| 亚洲情色 制服丝袜| 人人澡人人妻人| 国产精品久久久久久精品电影小说| 大又大粗又爽又黄少妇毛片口| 亚洲精品aⅴ在线观看| 国产亚洲午夜精品一区二区久久| 成人二区视频| 国产av码专区亚洲av| 国产欧美另类精品又又久久亚洲欧美| 最近的中文字幕免费完整| 亚洲精品一二三| 街头女战士在线观看网站| 日韩成人av中文字幕在线观看| 免费看日本二区| 女人久久www免费人成看片| 国产精品福利在线免费观看| 亚洲自偷自拍三级| 欧美日韩视频高清一区二区三区二| 少妇熟女欧美另类| 国产白丝娇喘喷水9色精品| 日韩制服骚丝袜av| a 毛片基地| 日韩成人伦理影院| 国产成人91sexporn| 久久国内精品自在自线图片| 久久亚洲国产成人精品v| 国产 一区精品| 国产精品久久久久久av不卡| 精品一区二区三卡| 日本色播在线视频| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 欧美人与善性xxx| 欧美日韩综合久久久久久| 精品国产乱码久久久久久小说| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| av卡一久久| 在线观看人妻少妇| 在线观看免费日韩欧美大片 | 制服丝袜香蕉在线| 成人特级av手机在线观看| 国产精品熟女久久久久浪| 九九爱精品视频在线观看| 少妇被粗大的猛进出69影院 | av线在线观看网站| 永久网站在线| 久久久久久久精品精品| 国产成人精品一,二区| 精品人妻偷拍中文字幕| 国产成人a∨麻豆精品| tube8黄色片| 国产永久视频网站| 好男人视频免费观看在线| 成人综合一区亚洲| 精品久久久久久久久亚洲| 久久6这里有精品| 香蕉精品网在线| 美女中出高潮动态图| 国产在线视频一区二区| 亚洲精品乱码久久久久久按摩| av又黄又爽大尺度在线免费看| 天美传媒精品一区二区| 午夜激情福利司机影院| 国产精品一区二区在线观看99| 久久久久视频综合| 亚洲精品中文字幕在线视频 | 人人澡人人妻人| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 亚洲,一卡二卡三卡| av在线老鸭窝| 国产真实伦视频高清在线观看| 99久久综合免费| 在线观看一区二区三区激情| 亚洲精品亚洲一区二区| 视频区图区小说| 亚洲精品乱久久久久久| 亚洲精品国产成人久久av| 亚洲色图综合在线观看| 国产美女午夜福利| 涩涩av久久男人的天堂| 亚洲国产日韩一区二区| 哪个播放器可以免费观看大片| 日韩强制内射视频| 国内精品宾馆在线| 高清毛片免费看| 伊人久久精品亚洲午夜| 亚洲av福利一区| 欧美3d第一页| 国产精品99久久久久久久久| 只有这里有精品99| 日韩中文字幕视频在线看片| 五月开心婷婷网| 日本免费在线观看一区| 少妇的逼好多水| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 国产精品一区二区在线不卡| 高清在线视频一区二区三区| 国产黄色免费在线视频| 精品卡一卡二卡四卡免费| 久热这里只有精品99| 日本黄大片高清| 日韩大片免费观看网站| 99热这里只有精品一区| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 狂野欧美激情性bbbbbb| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜| 午夜久久久在线观看| 中文字幕免费在线视频6| 男的添女的下面高潮视频| 青青草视频在线视频观看| 18禁动态无遮挡网站| 两个人免费观看高清视频 | a级毛片免费高清观看在线播放| 中文字幕精品免费在线观看视频 | 丰满迷人的少妇在线观看| 久久精品国产亚洲网站| av视频免费观看在线观看| 久久人妻熟女aⅴ| 一级毛片电影观看| 香蕉精品网在线| 免费观看在线日韩| 各种免费的搞黄视频| 国产精品嫩草影院av在线观看| 在线观看一区二区三区激情| 久久人妻熟女aⅴ| 九色成人免费人妻av| 久久久久久久国产电影| 国产精品福利在线免费观看| 国产美女午夜福利| 99视频精品全部免费 在线| 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 80岁老熟妇乱子伦牲交| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| 三级国产精品欧美在线观看| 美女福利国产在线| 又黄又爽又刺激的免费视频.| 免费观看在线日韩| 18禁裸乳无遮挡动漫免费视频| 国产免费一区二区三区四区乱码| av在线app专区| 欧美激情极品国产一区二区三区 | 亚洲第一区二区三区不卡| 中国国产av一级| 亚洲第一av免费看| 日本vs欧美在线观看视频 | 国产探花极品一区二区| 91午夜精品亚洲一区二区三区| 亚洲自偷自拍三级| 精品一区二区三区视频在线| 99视频精品全部免费 在线| 人人妻人人添人人爽欧美一区卜| 少妇被粗大的猛进出69影院 | av在线老鸭窝| 国产女主播在线喷水免费视频网站| 久久人人爽av亚洲精品天堂| 久热这里只有精品99| 女人精品久久久久毛片| 女的被弄到高潮叫床怎么办| 最新的欧美精品一区二区| 高清欧美精品videossex| 97超碰精品成人国产| 亚州av有码| 99热6这里只有精品| 伦精品一区二区三区| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 在线 av 中文字幕| 免费人成在线观看视频色| 久久人妻熟女aⅴ| 一级毛片电影观看| 久久久精品94久久精品| 内地一区二区视频在线| 国产黄片美女视频| 哪个播放器可以免费观看大片| 成人18禁高潮啪啪吃奶动态图 | 丰满迷人的少妇在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲欧美一区二区三区黑人 | 国产色婷婷99| 2022亚洲国产成人精品| 成人特级av手机在线观看| 午夜激情福利司机影院| 99热这里只有精品一区| 日韩欧美 国产精品| 最后的刺客免费高清国语| 伊人久久精品亚洲午夜| 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 亚洲欧美日韩东京热| 国产黄色免费在线视频| 丰满迷人的少妇在线观看| 国产91av在线免费观看| 免费观看在线日韩| 国产精品三级大全| 自线自在国产av| 欧美日韩在线观看h| 国产黄色视频一区二区在线观看| 边亲边吃奶的免费视频| 亚洲国产色片| 国产毛片在线视频| 视频区图区小说| 中文乱码字字幕精品一区二区三区| 久久国产精品大桥未久av | 色94色欧美一区二区| 国产精品女同一区二区软件| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久人人人人人人| 亚洲av成人精品一二三区| av卡一久久| 久久精品熟女亚洲av麻豆精品| av播播在线观看一区| av国产久精品久网站免费入址| 99热这里只有是精品50| 午夜日本视频在线| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 18禁在线无遮挡免费观看视频| 亚洲欧美日韩东京热| 久久综合国产亚洲精品| 亚洲久久久国产精品| 伦理电影免费视频| 日韩在线高清观看一区二区三区| 大码成人一级视频| 免费看日本二区| 永久网站在线| 精品久久国产蜜桃| 亚洲欧美中文字幕日韩二区| 久久av网站| 多毛熟女@视频| 午夜影院在线不卡| 日韩制服骚丝袜av| 麻豆乱淫一区二区| tube8黄色片| 精品一区二区三区视频在线| 国产淫语在线视频| 亚洲美女视频黄频| 女性被躁到高潮视频| 在线观看免费视频网站a站| 成年美女黄网站色视频大全免费 | 天天躁夜夜躁狠狠久久av| 久久久国产一区二区| 亚洲国产成人一精品久久久| 国产免费一级a男人的天堂| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 国产成人免费无遮挡视频| 久久久久国产网址| 嫩草影院入口| 国产熟女欧美一区二区| 中文字幕精品免费在线观看视频 | 日产精品乱码卡一卡2卡三| 国产美女午夜福利| 国产极品天堂在线| 欧美3d第一页| 日韩伦理黄色片| 国产爽快片一区二区三区| 少妇丰满av| 国产欧美日韩一区二区三区在线 | 久久国产亚洲av麻豆专区| 九草在线视频观看| 一区二区三区免费毛片| 免费观看在线日韩| 亚洲欧美中文字幕日韩二区| 亚洲av国产av综合av卡| 丰满饥渴人妻一区二区三| 久久99蜜桃精品久久| 久久精品久久久久久久性| 欧美精品一区二区免费开放| 极品教师在线视频| 亚洲av成人精品一二三区| 乱人伦中国视频| 国产一区二区在线观看av| 97在线人人人人妻| 精品午夜福利在线看| 日韩视频在线欧美| 97在线视频观看| 国产又色又爽无遮挡免| 青青草视频在线视频观看| 99国产精品免费福利视频| 日本av手机在线免费观看| 一个人看视频在线观看www免费| 日本爱情动作片www.在线观看| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 国产精品伦人一区二区| 欧美精品人与动牲交sv欧美| 精品少妇内射三级| 麻豆成人av视频| 亚州av有码| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 欧美成人午夜免费资源| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 欧美高清成人免费视频www| 偷拍熟女少妇极品色| 国产在线视频一区二区| 午夜日本视频在线| 性色av一级| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆| 爱豆传媒免费全集在线观看| av视频免费观看在线观看| 国产成人精品婷婷| 国产又色又爽无遮挡免| 啦啦啦中文免费视频观看日本| 伦理电影大哥的女人| 六月丁香七月| 高清午夜精品一区二区三区| 国产 精品1| 亚洲av国产av综合av卡| 如何舔出高潮| av免费在线看不卡| 美女中出高潮动态图| 伦理电影免费视频| 亚洲国产日韩一区二区| 一区二区三区乱码不卡18| 国产精品一区二区性色av| 精品人妻熟女av久视频| 日本av免费视频播放| 纯流量卡能插随身wifi吗| 少妇人妻久久综合中文| 日韩精品免费视频一区二区三区 | 亚洲真实伦在线观看| 久热久热在线精品观看| 女人精品久久久久毛片| 99久久精品一区二区三区| 在线观看国产h片| 日韩,欧美,国产一区二区三区| 亚洲成人手机| 夜夜看夜夜爽夜夜摸| a 毛片基地| av播播在线观看一区| 国产91av在线免费观看| 日韩三级伦理在线观看| 国产精品人妻久久久久久| 日本av手机在线免费观看| 国产精品一区二区在线观看99| 欧美 亚洲 国产 日韩一| 精品人妻偷拍中文字幕| 丝袜在线中文字幕| 日韩大片免费观看网站| 另类亚洲欧美激情| 久久 成人 亚洲| 日本免费在线观看一区| 99热6这里只有精品| 日本午夜av视频| 高清在线视频一区二区三区| 午夜久久久在线观看| 人人妻人人爽人人添夜夜欢视频 | 人人妻人人澡人人看| 在线观看人妻少妇| 国产亚洲最大av| 日韩中文字幕视频在线看片| 免费高清在线观看视频在线观看| 国产精品久久久久久精品古装| 亚洲av成人精品一二三区| 99热这里只有是精品50| 亚洲国产精品一区三区| 亚洲av二区三区四区| 女性被躁到高潮视频| 国产亚洲5aaaaa淫片| 三上悠亚av全集在线观看 | 亚洲欧美成人精品一区二区| 91精品伊人久久大香线蕉| 成年美女黄网站色视频大全免费 | 麻豆成人av视频| 亚洲高清免费不卡视频| 日韩欧美 国产精品| 国产无遮挡羞羞视频在线观看| 国产一区二区在线观看av| 久久精品熟女亚洲av麻豆精品| 一级毛片久久久久久久久女| 最近中文字幕2019免费版| 熟女人妻精品中文字幕| 欧美日韩精品成人综合77777| 精品亚洲成国产av| 成人影院久久| 岛国毛片在线播放| 老司机影院成人| 国产黄频视频在线观看| 新久久久久国产一级毛片| 欧美另类一区| 精品酒店卫生间| 日韩亚洲欧美综合| 欧美日韩视频精品一区| 日本91视频免费播放| 国国产精品蜜臀av免费| 少妇高潮的动态图| 久久久久精品性色| 看非洲黑人一级黄片| 欧美精品高潮呻吟av久久| 在线观看国产h片| 国产精品一区二区在线观看99| 简卡轻食公司| 日韩中字成人| 免费人成在线观看视频色| 久久久久久久精品精品| 欧美xxⅹ黑人| 国产精品伦人一区二区| av又黄又爽大尺度在线免费看| 国产毛片在线视频| 美女cb高潮喷水在线观看| 国产亚洲5aaaaa淫片| 高清在线视频一区二区三区| 狂野欧美激情性xxxx在线观看| h日本视频在线播放| 国产精品一区www在线观看| 美女主播在线视频| 免费人成在线观看视频色| av国产精品久久久久影院| 男女免费视频国产| 晚上一个人看的免费电影| 亚洲av福利一区| 伊人久久精品亚洲午夜| 亚洲精品日本国产第一区| 国产 一区精品| 在线观看一区二区三区激情| 视频中文字幕在线观看| 亚洲欧美精品自产自拍| 91精品国产九色| 中文精品一卡2卡3卡4更新| 伊人久久精品亚洲午夜| 中文乱码字字幕精品一区二区三区| 哪个播放器可以免费观看大片| 日本欧美视频一区| 久久97久久精品| 日韩欧美 国产精品| 亚洲人成网站在线播| √禁漫天堂资源中文www| 亚洲无线观看免费| 亚洲欧美日韩卡通动漫| 18禁在线无遮挡免费观看视频| 精品酒店卫生间| 精品久久久精品久久久| 高清午夜精品一区二区三区| 人妻人人澡人人爽人人| 全区人妻精品视频| 99久久精品国产国产毛片| 成人毛片60女人毛片免费| 狂野欧美白嫩少妇大欣赏| 欧美亚洲 丝袜 人妻 在线| 亚洲成人一二三区av| 少妇被粗大猛烈的视频| av线在线观看网站| 黑人高潮一二区| 国产av一区二区精品久久| 亚洲高清免费不卡视频| 亚洲电影在线观看av| 麻豆成人午夜福利视频| 亚洲精品自拍成人| 男人狂女人下面高潮的视频| 99热国产这里只有精品6| 极品少妇高潮喷水抽搐| 国产男女内射视频| 中文资源天堂在线| 在线观看国产h片| 高清视频免费观看一区二区| 校园人妻丝袜中文字幕| 欧美区成人在线视频| 精品一区二区三区视频在线| 交换朋友夫妻互换小说| 五月天丁香电影| 91午夜精品亚洲一区二区三区| 简卡轻食公司| 亚洲一区二区三区欧美精品| 国产亚洲一区二区精品| 最黄视频免费看| 97在线人人人人妻| 大片电影免费在线观看免费| 国产成人午夜福利电影在线观看| 观看美女的网站| 国产精品一区二区在线观看99| 我要看黄色一级片免费的| 人妻夜夜爽99麻豆av| 熟妇人妻不卡中文字幕| 亚洲精品国产色婷婷电影| 日本免费在线观看一区| 国产精品蜜桃在线观看| 欧美另类一区| 全区人妻精品视频| 亚洲av不卡在线观看| av一本久久久久| 亚洲电影在线观看av| 纯流量卡能插随身wifi吗| av一本久久久久| 免费观看av网站的网址| 狠狠精品人妻久久久久久综合| 噜噜噜噜噜久久久久久91| 欧美xxⅹ黑人| 欧美成人午夜免费资源| 偷拍熟女少妇极品色| 交换朋友夫妻互换小说| 日日啪夜夜爽| 美女xxoo啪啪120秒动态图| 两个人的视频大全免费| 免费黄网站久久成人精品| 99九九线精品视频在线观看视频| 久久99一区二区三区| 亚洲国产精品国产精品| 久久久久久久精品精品| 亚洲精品亚洲一区二区| 亚洲av成人精品一区久久| 男男h啪啪无遮挡| 国产精品无大码| 国产欧美日韩精品一区二区| 人妻人人澡人人爽人人| 精品国产乱码久久久久久小说|