• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    理性設(shè)計(jì)核-殼Rh@沸石催化材料用于二烯烴選擇加氫反應(yīng)

    2020-09-28 11:19:34張建王亮伍芷毅王成濤蘇澤瑞肖豐收
    物理化學(xué)學(xué)報(bào) 2020年9期
    關(guān)鍵詞:北京化工大學(xué)王亮高精尖

    張建,王亮,伍芷毅,王成濤,蘇澤瑞,肖豐收,2,

    1北京化工大學(xué)北京軟物質(zhì)科學(xué)與工程高精尖創(chuàng)新中心,北京 100029

    2浙江大學(xué)化學(xué)工程與生物工程學(xué)院,生物質(zhì)化工教育部重點(diǎn)實(shí)驗(yàn)室,杭州 310027

    3浙江大學(xué)化學(xué)系,浙江省應(yīng)用化學(xué)重點(diǎn)實(shí)驗(yàn)室,杭州 310028

    1 Introduction

    Catalytic conversion of unsaturated hydrocarbons such as dienes and alkynes to monoenes is important in the field of pharmacology and organic synthesis1–6. Various strategies have been developed for optimizing the product selectivity. For example, the fast desorption of monoene molecules and the controllable steric adsorption of diene molecules have been regarded as a promising principle for developing the catalysts6–17.The former strategy has been extensively used in the conversion of alkynes to alkenes over various Pd catalysts8–10, which is insufficient for the selective hydrogenation of symmetric dienes.In contrast, the steric adsorption control strategy could work more efficiently, which has been realized through the modification of the metal nanoparticle surface6,7. After inducing of Bi species into Rh nanoparticles, RhBi/SiO2exhibited 90% selectivity to 2-hexene with 95% conversion of 1,4-hexadiene under ambient conditions because of the suppressed adsorption of internal C=C bond6. However, the activity was remarkably decreased. Under the same reaction conditions, the reaction rate of RhBi/SiO2 was about 27 times lower than that of Rh/SiO2.

    The controlled steric adsorption of diene molecules could also be achieved by the construction of porous channels around the metal nanoparticles18–20. For example, the metal-organic framework (ZIF-8) or mesoporous silica (MCM-41)encapsulated noble metals exhibited high selectivity for the hydrogenation of terminal C=C bond19,20. However, these catalysts suffer from unsatisfactory in durability under the thermal/hydrothermal reaction/regeneration conditions. In contrast, the zeolite has superior durability under the harsh reaction conditions, but it is rarely used in the semihydrogenation reactions.

    On the other hand, we recently found that the metal nanoparticles fixed within zeolite crystals (e.g. ZSM-5 and Beta)are efficient in the selective hydrogenation of various molecules with more than one reducible groups17,21–23. Inspired by these works, we report the synthesis of Rh nanoparticles fixed in CHA zeolite crystals with core-shell structureviaan inter-zeolite transformation method24. As expected, the core-shell Rh@CHA catalyst exhibited high monoene selectivity in the hydrogenation of dienes, which readily outperforms the conventionally supported catalysts.

    2 Experimental

    2.1 Synthesis of catalysts

    2.1.1 Chemicals

    KCl (AR),γ-Al2O3(AR), SiO2(AR), TiO2(anatase, AR), and KOH (AR) were purchased from Aladdin Chemical Reagent Co.RuCl3 (AR), NaBH4 (AR), H2SO4 (98%), HCl (35%), NH4NO3(AR), and PVA (MW 9000–10000) were bought from Sinopharm Chemical Reagent Co., LTD. Ultra-stable Y zeolite(Si/Al molar ratio = 2.6) was purchased from Nankai University Catalyst Co., Ltd. All the reagents were directly used without further purification.

    2.1.2 Synthesis of Rh@CHA sample

    The synthesis of Rh@CHA sample involved two steps:fixation of Rh nanoparticles in Y zeolite (Rh@Y) and subsequent transformation of Rh@Y to Rh@CHA under hydrothermal conditions. The fixation of Rh nanoparticles in Y zeolite was performed as follows: commercial ultra-stable Y(USY) was exchanged with 1 mol·L?1KCl aqueous solution (1 g Y/50 mL solution) at 80 °C for 20 h. After filtrating, washing with large amount of water, drying at 80 °C, 1 g of the solid was dispersed into 40 mL of KCl aqueous solution (0.1 mol·L?1).Then, 50 μL of HCl (0.1 mol·L?1) was added into the above mixture under stirring. After heating the suspension to 90 °C,2.95 mL of RhCl3 aqueous (0.1 mol·L?1) was dropwisely added and stirred for another 6 h. The Rh@Y sample was obtained after filtrating, washing with large amount of water, drying at 80 °C for 4 h, calcining at 350 °C for 3 h in air and reducing at 300 °C for 2 h in 10% H2/Ar. 1 g of Rh@Y zeolite was dispersed in 9 g of KOH aqueous solution (5.4% (mass fraction,w)), followed by hydrothermal treatment at 100 °C for 4 days. The Rh@CHA sample was separated by filtrating, washing with large amount of water, ion-exchanged with NH4NO3aqueous solution (1 g in 50 mL), calcining at 550 °C for 4 h, and reducing at 300 °C for 2 h. The loading amount of Rh in the final product is 0.88% (w)by ICP analysis.

    2.1.3 Synthesis of Rh/Al2O3, Rh/SiO2, and Rh/TiO2 samples

    The Rh/Al2O3, Rh/SiO2, and Rh/TiO2samples were synthesized from the impregnation method. Typically, the commercialγ-Al2O3, SiO2, and TiO2(anatase) were impregnated with RhCl3aqueous solution. Then water was removed at 60 °C.The solids were calcined at 400 °C for 4 h in air, followed by reduction at 300 °C for 2 h in 10% H2/Ar. The loading amounts of Rh on Rh/Al2O3, Rh/SiO2, and Rh/TiO2samples are ~1.0%(w).

    2.1.4 Synthesis of Rh/CHA

    The CHA zeolite was synthesized as follows: 1 g of Y zeolite was dispersed in 9 g of KOH aqueous solution (5.4% (w)),followed by hydrothermal treatment at 100 °C for 4 days. After filtrating, washing with large amount of water, ion-exchanging with NH4NO3aqueous solution (1 g/50 mL), calcining at 550 °C for 4 h, and reducing at 300 °C for 2 h, the CHA zeolite was obtained.

    For the synthesis of Rh/CHA sample, 20.3 mg of RhCl3and 12 mg of PVA were dissolved in 60 mL of water. After stirring for 30 min at 0 °C, 2 mL of newly-made NaBH4solution (0.1 mol·L?1) was quickly added into the solution under vigorous stirring. After stirring for another 2 h, 1 g of CHA zeolite was added, followed by adjusting the pH value at 3 using H2SO4 (1 mol·L?1). After stirring for another 2 h, filtrating, washing, and drying at 80 °C, the Rh/CHA was finally obtained. The loading amount of Rh in Rh/CHA is 1.0% (w).

    2.2 Characterization

    X-ray diffraction (XRD) patterns were collected on a Rigaku D/MAX 2550 diffractometer with CuKα radiation (λ= 1.5418 ? (1 ? = 0.1 nm)). Nitrogen sorption isotherms were measured using a Micromeritics ASAP 2020 system. Scanning electron microscopy (SEM) experiments were performed with a Hitachi SU-8010 electron microscope. The samples were degassed for 10 h at 120 °C before each test. Transmission electron microscopy (TEM), scanning transmission electron microscopy(STEM) imaging were performed on a JEOL JEM-2100F electron microscope with an acceleration voltage of 200 kV or on a FEI Tecnai G2F20 microscope. It is difficult to characterize the metal nanoparticles on the surface or within zeolite crystals from the general TEM images. In order to resolve this matter, we have cut the metal@zeolite crystals into thin slices with thickness smaller than 100 nm. The TEM images of these slices are called tomographic TEM images, providing sectional views of the zeolite crystals, providing the evidence of metal nanoparticles fixed inside of the zeolite crystals (Scheme S1, see Supporting Information).

    2.3 Catalytic test

    The catalytic hydrogenation was performed in a roundbottomed flask equipped with a condenser. Typically, the reactant, catalyst, and solvent were mixed in the flask. The air in the reactor was carefully removed by flowing H2, then the reactor was connected with a gasbag and localized into a preheated oil-bath to initiate the reaction. After reaction, the unreacted substrates and products were analyzed by gas chromatograph equipped with flame ionized detector (FID). In the recyclable tests, the solid catalyst was separated by filtration and washed with large amount of tetrahydrofuran after each run.After drying under ambient conditions, the catalyst was used in the next run, the amount of substrate and solvent were adjusted to make sure that the ratio of substrate to catalysts and solvent to catalyst are constant.

    3 Results and discussion

    Fig. 1 (a) XRD pattern of Rh@Y and Rh@CHA samples; (b) SEM image, (c) N2-sorption isotherms, and(d) STEM tomographic image of Rh@CHA sample.

    The Rh@CHA sample was synthesizedviaan inter-zeolite transformation method24: Rh nanoparticles was loaded on the Y zeolite (Fig. S1, see Supporting Information) by ionexchangement (Rh@Y), followed by transformation of the Rh@Y sample to Rh@CHA sample in KOH aqueous solution under hydrothermal conditions. The successful transformation of Rh@Y into Rh@CHA was confirmed by the XRD patterns (Fig.1a). The Rh@Y sample exhibited typical peaks associated with FAU-type zeolite (Fig. 1a-i). After hydrothermal treatment, the peaks assigned to CHA-type zeolite (Rh@CHA) appeared on the XRD pattern (Fig. 1a-ii). The synthesis procedures are shown in Scheme 1.

    Fig. 1b shows the SEM image of the Rh@CHA sample,exhibiting uniform morphology with high crystallinity24,25.After ion-exchange with a NH4NO3aqueous solution and calcination at 550 °C, the Rh@CHA exhibited typical Langmuir sorption curve, confirming the presence of micropores (Fig. 1c).Correspondingly, the BET (Brunauer-Emmett-Teller) surface area is 634.7 m2?g?1, confirming the good crystallinity of the Rh@CHA sample. The STEM tomographic image (Scheme S1,see Supporting Information) of the Rh@CHA sample is shown in Fig. 1d. The uniform Rh nanoparticle distribution with mean size at 1.8 nm (Fig. S2, see Supporting Information) are highly dispersed in the zeolite region. These results demonstrate the successful synthesis of Rh@CHA sample with Rh nanoparticles fixed into the CHA zeolite crystal. In contrast, the Rh/CHA catalyst synthesized from conventional method has only Rh nanoparticles on the external surface of the zeolite crystals (Fig.S3, see Supporting Information).

    Scheme 1 Proposed synthesis process of Rh@CHA sample.

    The catalytic hydrogenation of 1-octene and 2-vinylnaphthalene were performed over Rh@CHA, Rh/CHA,commercial Rh/C (Rh loading at 5% (w)), Rh/Al2O3, Rh/SiO2,and Rh/TiO2catalysts (Figs. S4–S7 (see Supporting Information), Fig. 2a, Table 1). All these catalysts exhibited high activities in the hydrogenation of 1-octene, while the Rh@CHA sample was almost inactive in the catalytic hydrogenation of 2-vinylnaphthalene. This is because that the molecular diameter of 2-vinylnaphthalene is larger than the channels of the CHA zeolite (~3.8 ?) while the 1-octene molecule could facile diffuse inside the CHA zeolite26. The relative ratio of the TOF values in the catalytic hydrogenation of 1-octene (TOF1-octene) and 2-vinylnaphthalene (TOF2-vinylnaphthalene) were calculated as a scale to evaluate the surrounding environment on the Rh nanoparticles. The TOF1-octene/TOF2-vinylnaphthaleneover Rh@CHA,Rh/CHA, commercial Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2were 5.6, 0.30, 1.2, 1.4, 0.53, and 0.56, respectively (Fig. 2a).The value over Rh@CHA was much higher than those over the unencapsulated Rh nanoparticles, confirming the Rh nanoparticles in the Rh@CHA sample are entirely encapsulated into the CHA zeolite crystals.

    Fig. 2 (a) TOF values in the catalytic hydrogenation of 1-octene (navy column) and 2-vinylnaphthalene (red column) and the ratio of TOF1-octene to TOF2-vinylnaphthalene (TOF1-octene/TOF2-vinylnaphthalene) (star); (b) TOF values in the catalytic hydrogenation of 2-octene (royal column) and the ratio of TOF1-octene to TOF2-octene (TOF1-octene/TOF2-octene) (star) over Rh@CHA, Rh/CHA, commercial Rh/C, Rh/Al2O3,Rh/SiO2, and Rh/TiO2 samples. Reaction conditions: 2 mmol of substrate, 0.05% Rh catalyst, 10 mL of tetrahydrofuran, 30 °C,1 atm (1 atm = 100 kPa) H2. The reaction time are controlled to make sure that the conversions of substrates are lower than 8%.

    Table 1 Textual parameters of various Rh-containing samples.

    Although the alkene molecules could diffuse into the channel of CHA zeolite, but the internal carbon atoms on the alkene molecules could not access with the Rh nanoparticles within the CHA zeolite because of the steric hindrance of the micropores(See Scheme 2). In other words, the Rh@CHA sample could only catalyze the hydrogenation of terminal C=C bond even in the presence of internal C=C bond. The TOF values in the selective hydrogenation of 1-octene and 2-octene were measured(Fig. 2b). The relative ratios of TOF1-octeneto TOF2-octene(TOF1-octene/TOF2-octene) were calculated to evaluate the activity in the hydrogenation of terminal and internal C=C bonds over various Rh catalysts6. The TOF1-octene/TOF2-octeneover Rh@CHA, Rh/CHA, commercial Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2were 3.3, 0.46, 1.3, 1.5, 0.72, and 0.64, respectively(Fig. 2b). The ratio over Rh@CHA is higher than those over other supported Rh catalysts, indicating the preferred hydrogenation of terminal C=C bond than the internal C=C for the Rh@CHA sample.

    Scheme 2 Proposed model of 1,4-hexadiene adsorbed on Rh@CHA sample.

    The results in the catalytic hydrogenation of dienes over Rh@CHA, Rh/CHA, commercial Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2catalysts are shown in Fig. 3. 1,4-hexadiene and 1,3-hexadiene with both terminal and internal C=C bonds are employed as the substrates. The generally supported Rh catalysts exhibited poor internal alkene selectivity. For example,selectivities to 2-hexene in the catalytic hydrogenation of 1,4-hexadiene over Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2were 12.1%, 39.1%, 53.3%, and 21.1%, with the conversion of 1,4-hexadiene at > 99.9%, 93.5%, 98.9%, and 94.1%, respectively(Fig. 3a). Interestingly, the Rh@CHA catalyst exhibited high selectivity to 2-hexene in the catalytic hydrogenation of 1,4-hexadiene, achieving 2-hexene selectivity of 86.7% with 91.2% conversion of 1,4-hexadiene (Fig. 3a). In contrast, the generally supported Rh nanoparticle catalyst (Rh/CHA) only gave 37.2% selectivity to 2-hexene although the conversion of 1,4-hexadiene exceeded 99.9% (Fig. 3a).

    Fig. 3 Catalytic hydrogenation of (a) 1,4-hexadiene and (b) 1,3-hexadiene over Rh@CHA, Rh/CHA, commercial Rh/C, Rh/Al2O3,Rh/SiO2, and Rh/TiO2 catalysts. Reaction conditions: 0.2 mmol of substrate, 0.5% Rh catalyst, 5 mL of tetrahydrofuran, 30 °C;reaction time: 15 min for Rh/CHA, commercial Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2, 40 min for Rh@CHA.

    Moreover, the Rh@CHA catalyst also exhibited higher selectivity to 3-hexene than other Rh nanoparticle catalysts in the catalytic hydrogenation of 1,3-hexadiene (Fig. 3b). The Rh@CHA catalyst showed 3-hexene selectivity of 70.4% with 54.2% conversion of 1,3-hexadiene. The relative lower conversion should be caused by the different properties of the substrates. Similar phenomena are also observed on the Rh/CHA, Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2catalysts. The conversions of 1,3-hexene over Rh/CHA, Rh/C, Rh/Al2O3,Rh/SiO2, and Rh/TiO2 catalysts were 64.7%, 88.8%, 69.3%,73.4%, 75.1%, which are all lower than those in the catalytic hydrogenation of 1,4-hexadiene. The selectivities to 3-hexene over Rh/CHA, Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2catalysts were 35.0%, 6.4%, 30.6%, 23.9%, and 19.5%, which are all lower than that of Rh@CHA catalyst (Fig. 3b).

    The Rh/CHA sample with Rh nanoparticles on the external surface of the catalyst exhibited similar results with the general Rh/C, Rh/Al2O3, Rh/SiO2, and Rh/TiO2catalysts. However, the Rh@CHA sample with Rh nanoparticles fixed inside of the CHA zeolite crystals displayed much higher internal monoene selectivity. Considering that the Rh@CHA and Rh/CHA have the same CHA zeolite crystal (Fig. 1) and similar Rh nanoparticle sizes (Figs. S1 and S2), the considerable different selectivity of Rh@CHA should be caused by the steric adsorption of dienes on the Rh surface controlled by the micropores of CHA zeolite.

    Fig. 4 shows recyclable tests in the hydrogenation of 1,4-hexadiene over the Rh@CHA. After fifth run, the Rh@CHA still gave the 1,4-hexadiene conversion at 88.1% and 2-hexene selectivity at 82.9%, which are only slightly lower than that of the fresh catalyst. The spent Rh@CHA catalyst gives comparable Rh nanoparticle size to the fresh one (Fig. S8). These results suggest the good recyclability of Rh@CHA catalyst.

    Fig. 4 Recyclable tests in the catalytic hydrogenation of 1,4-hexadiene over Rh@CHA.

    4 Conclusions

    In summary, we successfully synthesize Rh nanoparticles fixed in CHA zeolite (Rh@CHA) with core-shell structureviaan inter-zeolite transformation method. The Rh@CHA catalyst exhibits high internal monoene selectivity in the catalytic hydrogenation of dienes to outperform the generally supported catalysts. For example, the Rh@CHA exhibited the 2-hexene selectivity of 86.7% with 91.2% conversion of 1,4-hexadiene. In contrast, the generally supported Rh nanoparticle catalyst (Rh/CHA) exhibited the 2-hexene selectivity at only 37.2% under the equivalent reaction conditions. The significant selectivity on Rh@CHA catalyst is reasonably assigned to the steric adsorption of dienes on the Rh surface controlled by the micropores of CHA zeolite. This work demonstrates that the zeolite fixed metal particle with a core-shell structure is powerful for developing efficient catalysts in diene hydrogenation.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    北京化工大學(xué)王亮高精尖
    永榮股份邁向“高精尖”
    為高精尖產(chǎn)業(yè)工人插上騰飛“翅膀”
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    黑龍江:糧食產(chǎn)業(yè)邁向“高精尖”
    請(qǐng)你吃飯
    故事會(huì)(2019年6期)2019-03-27 05:12:18
    王亮:用音樂致敬家鄉(xiāng)
    商周刊(2018年16期)2018-08-14 01:51:52
    本市認(rèn)定首批高校高精尖創(chuàng)新中心
    投資北京(2015年12期)2015-05-30 10:48:04
    国产精品乱码一区二三区的特点| 亚洲真实伦在线观看| www日本在线高清视频| 一区二区三区国产精品乱码| 夜夜躁狠狠躁天天躁| 日本一本二区三区精品| 欧美国产日韩亚洲一区| 午夜免费激情av| 国产精品三级大全| 欧美av亚洲av综合av国产av| 免费在线观看影片大全网站| 熟女电影av网| 白带黄色成豆腐渣| 国产综合懂色| 国产69精品久久久久777片| 18禁黄网站禁片午夜丰满| 欧美乱妇无乱码| 99riav亚洲国产免费| 舔av片在线| 男女做爰动态图高潮gif福利片| 日韩欧美 国产精品| 亚洲专区国产一区二区| 在线免费观看不下载黄p国产 | 色精品久久人妻99蜜桃| 一二三四社区在线视频社区8| 熟女电影av网| 757午夜福利合集在线观看| 一级毛片高清免费大全| 69人妻影院| 国产真实伦视频高清在线观看 | 国产男靠女视频免费网站| 久久久久免费精品人妻一区二区| 欧美3d第一页| 亚洲狠狠婷婷综合久久图片| 99久久久亚洲精品蜜臀av| 夜夜躁狠狠躁天天躁| 99久久99久久久精品蜜桃| 香蕉久久夜色| 一进一出抽搐gif免费好疼| 99riav亚洲国产免费| 变态另类成人亚洲欧美熟女| 嫁个100分男人电影在线观看| 在线视频色国产色| 国产又黄又爽又无遮挡在线| 亚洲av熟女| 人人妻人人澡欧美一区二区| 中文字幕高清在线视频| 国产成人aa在线观看| 极品教师在线免费播放| 亚洲专区中文字幕在线| 精品一区二区三区av网在线观看| 18美女黄网站色大片免费观看| 深夜精品福利| 国产男靠女视频免费网站| 久久久成人免费电影| 免费高清视频大片| 在线观看美女被高潮喷水网站 | 精品国产三级普通话版| 一二三四社区在线视频社区8| 欧美最新免费一区二区三区 | 亚洲成a人片在线一区二区| 高清毛片免费观看视频网站| 亚洲成人精品中文字幕电影| 亚洲午夜理论影院| 国产真实乱freesex| 淫秽高清视频在线观看| 少妇人妻一区二区三区视频| 中文资源天堂在线| 国产97色在线日韩免费| 一本一本综合久久| 成人特级av手机在线观看| 日本免费一区二区三区高清不卡| 亚洲欧美日韩高清在线视频| 51国产日韩欧美| 我要搜黄色片| 无遮挡黄片免费观看| 久久精品亚洲精品国产色婷小说| 中文字幕人妻熟人妻熟丝袜美 | 熟妇人妻久久中文字幕3abv| 久久伊人香网站| 男插女下体视频免费在线播放| 欧美午夜高清在线| 午夜福利在线观看免费完整高清在 | 在线看三级毛片| 色播亚洲综合网| 日韩 欧美 亚洲 中文字幕| 少妇高潮的动态图| 免费观看精品视频网站| av片东京热男人的天堂| 乱人视频在线观看| 午夜福利高清视频| 亚洲国产日韩欧美精品在线观看 | 中文亚洲av片在线观看爽| 亚洲在线观看片| 又爽又黄无遮挡网站| av视频在线观看入口| 亚洲专区中文字幕在线| 小蜜桃在线观看免费完整版高清| 99热6这里只有精品| 日韩高清综合在线| 综合色av麻豆| 亚洲精品久久国产高清桃花| 性色avwww在线观看| 琪琪午夜伦伦电影理论片6080| www日本黄色视频网| 国产毛片a区久久久久| 精品99又大又爽又粗少妇毛片 | 一区二区三区国产精品乱码| 在线观看舔阴道视频| 精品不卡国产一区二区三区| av黄色大香蕉| 国产精品嫩草影院av在线观看 | 一级黄片播放器| 国产激情偷乱视频一区二区| 看片在线看免费视频| 在线国产一区二区在线| 久久精品亚洲精品国产色婷小说| 国产精品乱码一区二三区的特点| www日本在线高清视频| av在线蜜桃| 国产男靠女视频免费网站| 99精品欧美一区二区三区四区| 久久久久久久午夜电影| 女人十人毛片免费观看3o分钟| 国产成人aa在线观看| 九色国产91popny在线| 黄色日韩在线| 午夜影院日韩av| 噜噜噜噜噜久久久久久91| 日韩有码中文字幕| 精品久久久久久成人av| 精品久久久久久久久久免费视频| 亚洲欧美日韩东京热| 国产成+人综合+亚洲专区| 色老头精品视频在线观看| 日本熟妇午夜| 变态另类成人亚洲欧美熟女| 亚洲成人久久性| 亚洲乱码一区二区免费版| 五月玫瑰六月丁香| 欧美在线一区亚洲| 精品午夜福利视频在线观看一区| 国产 一区 欧美 日韩| 看片在线看免费视频| 一区二区三区国产精品乱码| 级片在线观看| 免费在线观看日本一区| 国产精品99久久久久久久久| 亚洲国产高清在线一区二区三| 99国产极品粉嫩在线观看| 国产成人系列免费观看| 久久精品夜夜夜夜夜久久蜜豆| 少妇的逼好多水| 床上黄色一级片| 哪里可以看免费的av片| 美女高潮喷水抽搐中文字幕| 99久久精品热视频| www.色视频.com| 久久99热这里只有精品18| www.色视频.com| 宅男免费午夜| 97超视频在线观看视频| or卡值多少钱| 免费看美女性在线毛片视频| 欧美成人性av电影在线观看| 欧美性猛交╳xxx乱大交人| 久久天躁狠狠躁夜夜2o2o| 日韩欧美精品免费久久 | 露出奶头的视频| 久久久精品欧美日韩精品| 国产伦人伦偷精品视频| 亚洲五月天丁香| 午夜激情欧美在线| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 午夜免费观看网址| 少妇裸体淫交视频免费看高清| 久久6这里有精品| 亚洲av日韩精品久久久久久密| 亚洲av美国av| 综合色av麻豆| 国产精品 国内视频| 无人区码免费观看不卡| 很黄的视频免费| 亚洲精品乱码久久久v下载方式 | 美女免费视频网站| 免费高清视频大片| 久久久久久久精品吃奶| 亚洲人与动物交配视频| 亚洲av不卡在线观看| 99精品在免费线老司机午夜| 欧美精品啪啪一区二区三区| 又粗又爽又猛毛片免费看| 九九久久精品国产亚洲av麻豆| 18禁在线播放成人免费| 亚洲内射少妇av| 最近视频中文字幕2019在线8| 国产精品免费一区二区三区在线| www.999成人在线观看| 欧美成人a在线观看| 国产精品美女特级片免费视频播放器| 亚洲五月婷婷丁香| 日本一二三区视频观看| 18禁裸乳无遮挡免费网站照片| 最近最新中文字幕大全免费视频| 成年人黄色毛片网站| 久久久久久久精品吃奶| 亚洲欧美日韩卡通动漫| 欧美激情在线99| 搡老妇女老女人老熟妇| 日韩av在线大香蕉| 我要搜黄色片| 国产精品精品国产色婷婷| 91在线精品国自产拍蜜月 | 小蜜桃在线观看免费完整版高清| 99热这里只有精品一区| 久久性视频一级片| 日韩欧美精品免费久久 | 国产三级黄色录像| 国产精品一区二区三区四区久久| 国产精品日韩av在线免费观看| 久久久久久久久久黄片| 丰满人妻一区二区三区视频av | 亚洲性夜色夜夜综合| 国产精品女同一区二区软件 | 久久伊人香网站| 国产精品久久久久久久久免 | 一个人免费在线观看电影| 亚洲狠狠婷婷综合久久图片| 久久6这里有精品| 天美传媒精品一区二区| 嫩草影院精品99| 成人无遮挡网站| 欧美成人a在线观看| 国产精品久久视频播放| 午夜免费激情av| 国产成人影院久久av| 99riav亚洲国产免费| 高清毛片免费观看视频网站| 午夜福利在线观看吧| 久久九九热精品免费| 欧美成人一区二区免费高清观看| 老鸭窝网址在线观看| 国产欧美日韩一区二区精品| 久久九九热精品免费| 在线观看日韩欧美| 两人在一起打扑克的视频| 女警被强在线播放| 欧美色欧美亚洲另类二区| 国产成人av教育| 夜夜夜夜夜久久久久| 国产在视频线在精品| 级片在线观看| 99精品在免费线老司机午夜| 国产色婷婷99| 精品久久久久久久人妻蜜臀av| 国产毛片a区久久久久| 免费无遮挡裸体视频| 国产精品亚洲一级av第二区| 亚洲中文字幕一区二区三区有码在线看| 日本黄色视频三级网站网址| 又粗又爽又猛毛片免费看| 此物有八面人人有两片| 国产三级在线视频| 国产蜜桃级精品一区二区三区| 黄色女人牲交| 亚洲国产欧洲综合997久久,| 变态另类丝袜制服| 国产一区二区激情短视频| 久久久久久久精品吃奶| 精品久久久久久久末码| 欧美成人一区二区免费高清观看| tocl精华| 国产麻豆成人av免费视频| 亚洲不卡免费看| 国产综合懂色| 国产激情偷乱视频一区二区| 亚洲午夜理论影院| 内射极品少妇av片p| 一区二区三区高清视频在线| 国内少妇人妻偷人精品xxx网站| 亚洲av成人不卡在线观看播放网| 2021天堂中文幕一二区在线观| 美女大奶头视频| 黄色视频,在线免费观看| 亚洲av第一区精品v没综合| 亚洲最大成人手机在线| 操出白浆在线播放| 婷婷丁香在线五月| 日本一本二区三区精品| 亚洲av中文字字幕乱码综合| 国产亚洲精品久久久久久毛片| 麻豆久久精品国产亚洲av| 午夜a级毛片| 在线免费观看的www视频| 十八禁人妻一区二区| 亚洲欧美精品综合久久99| 搡老熟女国产l中国老女人| 九九在线视频观看精品| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 首页视频小说图片口味搜索| 搡老熟女国产l中国老女人| 女人高潮潮喷娇喘18禁视频| 中文字幕熟女人妻在线| 日本撒尿小便嘘嘘汇集6| 中文资源天堂在线| 18禁黄网站禁片免费观看直播| 我要搜黄色片| 可以在线观看的亚洲视频| 制服人妻中文乱码| 精品一区二区三区视频在线观看免费| 亚洲国产精品sss在线观看| 国产三级黄色录像| 国产真实乱freesex| 亚洲欧美日韩高清在线视频| 成人av一区二区三区在线看| 天堂√8在线中文| 99国产精品一区二区蜜桃av| 又爽又黄无遮挡网站| 欧美+日韩+精品| 国产真实伦视频高清在线观看 | 欧美最黄视频在线播放免费| 欧美三级亚洲精品| 亚洲av美国av| 在线观看午夜福利视频| 欧美国产日韩亚洲一区| 亚洲av二区三区四区| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| 欧美+亚洲+日韩+国产| 亚洲av成人av| 嫩草影院入口| 欧美极品一区二区三区四区| 亚洲午夜理论影院| ponron亚洲| 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 美女高潮的动态| 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 国产私拍福利视频在线观看| 夜夜爽天天搞| 色综合欧美亚洲国产小说| 无限看片的www在线观看| 国产av在哪里看| 久久久久久国产a免费观看| 日韩有码中文字幕| 最新美女视频免费是黄的| 国产午夜福利久久久久久| 日本 av在线| 免费搜索国产男女视频| 特大巨黑吊av在线直播| 中文资源天堂在线| 又粗又爽又猛毛片免费看| 国产精品三级大全| 18禁裸乳无遮挡免费网站照片| 美女高潮的动态| 欧美乱码精品一区二区三区| 丁香欧美五月| 亚洲精品久久国产高清桃花| 精品一区二区三区av网在线观看| 国产爱豆传媒在线观看| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 久久精品综合一区二区三区| 亚洲国产色片| 国产欧美日韩精品一区二区| 一区二区三区激情视频| 亚洲美女视频黄频| 久久久久久久精品吃奶| 亚洲第一电影网av| 欧美日韩黄片免| 亚洲18禁久久av| 久久久久国内视频| 两个人看的免费小视频| 一进一出抽搐gif免费好疼| 欧美性感艳星| 久久伊人香网站| av在线蜜桃| 偷拍熟女少妇极品色| 老司机福利观看| 九九在线视频观看精品| 成年女人永久免费观看视频| 老司机午夜十八禁免费视频| 手机成人av网站| 亚洲国产欧洲综合997久久,| 一级黄片播放器| 757午夜福利合集在线观看| 日韩精品青青久久久久久| 亚洲av免费在线观看| 久久天躁狠狠躁夜夜2o2o| 99久国产av精品| 色老头精品视频在线观看| 露出奶头的视频| 在线播放国产精品三级| 男女午夜视频在线观看| 亚洲欧美日韩高清专用| 波野结衣二区三区在线 | 国产精品嫩草影院av在线观看 | 久久久精品欧美日韩精品| 午夜福利视频1000在线观看| 国产激情欧美一区二区| 动漫黄色视频在线观看| 91麻豆精品激情在线观看国产| 成人午夜高清在线视频| 成年女人毛片免费观看观看9| 国产亚洲精品综合一区在线观看| 欧美一区二区精品小视频在线| 波多野结衣高清作品| 国产精华一区二区三区| 一本精品99久久精品77| av天堂中文字幕网| 久久精品国产亚洲av香蕉五月| 久久6这里有精品| 欧美日韩亚洲国产一区二区在线观看| 特级一级黄色大片| 18禁黄网站禁片免费观看直播| 日韩欧美免费精品| 久久久国产成人精品二区| 国产熟女xx| 亚洲国产精品999在线| 天天躁日日操中文字幕| 看黄色毛片网站| 国产精品一及| 国产成人欧美在线观看| 国产伦精品一区二区三区四那| 每晚都被弄得嗷嗷叫到高潮| 天堂√8在线中文| 精品一区二区三区视频在线 | 亚洲成人精品中文字幕电影| 免费观看人在逋| 91麻豆av在线| 日韩精品中文字幕看吧| 色吧在线观看| 午夜福利视频1000在线观看| 在线播放无遮挡| 免费看a级黄色片| 51午夜福利影视在线观看| 99久国产av精品| 精品福利观看| 国产精品一及| 国产精品嫩草影院av在线观看 | 国产一区二区亚洲精品在线观看| 久9热在线精品视频| 成人欧美大片| 国产精品久久久人人做人人爽| 一边摸一边抽搐一进一小说| 国产高清三级在线| 12—13女人毛片做爰片一| 国产一区二区激情短视频| 一级黄片播放器| 伊人久久精品亚洲午夜| 国产高清激情床上av| 18美女黄网站色大片免费观看| 国产成人av教育| 欧美极品一区二区三区四区| 精品一区二区三区视频在线观看免费| 五月玫瑰六月丁香| 一进一出抽搐动态| 国产亚洲精品一区二区www| 搡老岳熟女国产| 国产精品 国内视频| 两个人看的免费小视频| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 日本一本二区三区精品| 国产高潮美女av| av在线天堂中文字幕| 欧美日韩亚洲国产一区二区在线观看| 在线观看66精品国产| 变态另类丝袜制服| e午夜精品久久久久久久| 女同久久另类99精品国产91| 中文字幕人妻丝袜一区二区| 国产视频内射| 欧美精品啪啪一区二区三区| 精品国产美女av久久久久小说| 精品欧美国产一区二区三| 午夜日韩欧美国产| 国产真人三级小视频在线观看| 免费看十八禁软件| 一个人看视频在线观看www免费 | 老司机午夜十八禁免费视频| 婷婷亚洲欧美| 亚洲精品美女久久久久99蜜臀| 91麻豆av在线| 亚洲电影在线观看av| 淫秽高清视频在线观看| 亚洲男人的天堂狠狠| 人妻夜夜爽99麻豆av| 51午夜福利影视在线观看| 国产在视频线在精品| 午夜免费成人在线视频| 啪啪无遮挡十八禁网站| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 啪啪无遮挡十八禁网站| 99久久99久久久精品蜜桃| avwww免费| 别揉我奶头~嗯~啊~动态视频| 免费看光身美女| 88av欧美| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 精品免费久久久久久久清纯| xxx96com| 精品久久久久久,| 51国产日韩欧美| 老司机在亚洲福利影院| 麻豆国产97在线/欧美| 91麻豆av在线| 悠悠久久av| 亚洲五月婷婷丁香| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 午夜激情福利司机影院| 欧美日韩黄片免| 日韩欧美精品免费久久 | 亚洲国产欧美网| 哪里可以看免费的av片| 国产色爽女视频免费观看| 九九久久精品国产亚洲av麻豆| 老司机福利观看| 在线视频色国产色| 在线免费观看不下载黄p国产 | 国产精品嫩草影院av在线观看 | 99在线人妻在线中文字幕| 制服人妻中文乱码| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区 | 婷婷精品国产亚洲av| 叶爱在线成人免费视频播放| 亚洲中文日韩欧美视频| 国产黄a三级三级三级人| 丁香六月欧美| 变态另类丝袜制服| 成人欧美大片| 国产黄a三级三级三级人| 亚洲在线自拍视频| 宅男免费午夜| 精品人妻一区二区三区麻豆 | 免费在线观看成人毛片| 国内精品一区二区在线观看| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| 18禁国产床啪视频网站| 日韩欧美国产在线观看| 久久99热这里只有精品18| 99热这里只有精品一区| 国内揄拍国产精品人妻在线| 亚洲男人的天堂狠狠| 国产一区在线观看成人免费| www国产在线视频色| www日本黄色视频网| 老司机午夜福利在线观看视频| 亚洲国产精品sss在线观看| 亚洲av不卡在线观看| 男女做爰动态图高潮gif福利片| 丰满人妻熟妇乱又伦精品不卡| 久久中文看片网| 午夜久久久久精精品| 日本 欧美在线| 熟妇人妻久久中文字幕3abv| 乱人视频在线观看| 亚洲午夜理论影院| 欧美一区二区国产精品久久精品| 中文字幕久久专区| 国产高清视频在线观看网站| 黑人欧美特级aaaaaa片| 美女黄网站色视频| 国产 一区 欧美 日韩| 国产精品一及| 中文在线观看免费www的网站| 99久久精品热视频| www.熟女人妻精品国产| 国产伦精品一区二区三区视频9 | 欧美高清成人免费视频www| 九九热线精品视视频播放| 中文字幕av在线有码专区| 中文字幕熟女人妻在线| 国产亚洲精品一区二区www| 性色av乱码一区二区三区2| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月 | 一个人免费在线观看的高清视频| 成人欧美大片| 国产精品爽爽va在线观看网站| 国产亚洲精品综合一区在线观看| a级毛片a级免费在线| 中文字幕av在线有码专区| 色综合站精品国产| 好看av亚洲va欧美ⅴa在| 久久6这里有精品| www日本在线高清视频| 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 午夜免费激情av| 日本黄大片高清| av女优亚洲男人天堂| 91字幕亚洲| 桃色一区二区三区在线观看| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 国产蜜桃级精品一区二区三区| 国产高清videossex| 久久久久久久久久黄片| 欧美一级a爱片免费观看看|