• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有優(yōu)異甲醇耐受性的Rh摻雜PdCu有序金屬間化合物納米粒子增強(qiáng)氧還原電催化

    2020-09-28 11:19:56李蒙剛夏仲泓黃雅榮陶璐晁玉廣尹坤楊文秀楊微微于永生郭少軍
    物理化學(xué)學(xué)報(bào) 2020年9期
    關(guān)鍵詞:工學(xué)院電催化北京大學(xué)

    李蒙剛,夏仲泓,黃雅榮,陶璐,晁玉廣,尹坤,楊文秀,楊微微,*,于永生 ,*,郭少軍 ,3,*

    1哈爾濱工業(yè)大學(xué)化工與化學(xué)學(xué)院,新能源轉(zhuǎn)化與儲(chǔ)存關(guān)鍵材料技術(shù)工信部重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150001

    2北京大學(xué)工學(xué)院材料科學(xué)與工程系,北京 100871

    3北京大學(xué)工學(xué)院工程科學(xué)與新興技術(shù)高精尖中心,北京 100871

    1 Introduction

    The rapidly rising energy demand and the expected exhaustion of environmentally unfriendly fossil energy carriers have strongly stimulated the exploration of highly efficient and alternative energy conversion devices1–3. Designing highperformance direct methanol fuel cells (DMFCs) has been regarded as an efficient and economical solution to achieve the conversion of sustainable andclean energy in a variety of applications ranging from portable electronics to electric vehicles4–6. However, even if the Pt or Pt-based alloys are applied for catalyzing the oxygen reduction reaction (ORR) in the cathode of DMFCs, intrinsically sluggish kinetics will still hinder their practical applications7–11. In addition, the extreme scarcity of Pt is also not sufficient to satisfy this requirement10,12,which calls for the exploration of new cathode catalysts with exciting activity and durability as alternatives to expensive Pt metals.

    As one of the most promising candidates for replacing non-Pt multimetallic electrocatalysts, a series of advanced Pd-based nanocatalysts, such as PdAg, PdPb, PdMo and PdCu,etc.have received extensive attention to address the technical challenges towards unaffordable Pt usage issues, especially in the alkaline conditions5,12–18. Nevertheless, a critical issue at present is that the reported Pd-based multimetallic nanocatalysts cannot meet the demanding application environment during practical fuel cell operation due to the unsatisfactory activity and durability, which can be explained as a result of the limited electronic or strain effects originated from the alloying metals atoms and their instability of disordered structures13–15,19–21. The ordered intermetallic structure is a valuable research model for improving this unfavorable situation due to its lower negative entropy and stronger electronic interaction between Pd and other metal atoms (M, usually Cu, Zn, Fe, Pb,etc.)20–25, which cannot only enhance the activity and durability, but also greatly alleviate the effect of poisoning caused by the shuttle of methanol from anode to cathode26–28. In addition, heteroatomic incorporation into the host catalysts is also another effective tactic to enhance electrocatalytic activity by rationally modulating the local electronic structure or optimizing the adsorption/desorption of oxygen intermediates (O*)29–32. Inspired by the abovementioned analysis, Rh, which can provide a positive effect towards ORR performance5,33, is anticipated to achieve a remarkable nano-electrocatalyst by being introduced into ordered intermetallics.

    Herein, a novel class of Rh-doped PdCu ordered intermetallic nanoparticles (NPs) was designed as highly active and stable electrocatalyts for ORR. Compared with the disordered PdCu NPs, ordered intermetallic PdCu NPs and disordered Rh-doped PdCu NPs, the optimal ordered intermetallic structure achieves the mass activityof as high as 0.96 A.mg?1at 0.9 V (vsRHE),7.4-fold higher than that of commercial Pt/C, and exhibits the excellent durability even after 20000 consecutive cycles. The significant role of the Rh atoms and the advantages of ordered intermetallics are perfectly manifested in this enhanced electrocatalytic system. Finally, we demonstrate the prominent methanol tolerance capacity for Rh-doped PdCu ordered intermetallics, indicating its favorable prospect as potential electrocatalysts towards the next-generation high-performance DMFCs.

    2 Experimental

    2.1 Chemicals

    Palladium (II) acetylacetonate (Pd(acac)2, 99%) and rhodium(III) acetylacetonate (Rh(acac)3, 97%) were purchased from Sigma-Aldrich. Copper (II) acetylacetonate (Cu(acac)2, 97%)and Nafion (5% (w, mass fraction)) were obtained from Alfa Aesar. Iron (III) chloride hexahydrate (FeCl3.6H2O, AR.), L-ascorbic acid (AA, AR.), citric acid (CA, AR.) and potassium hydroxide (KOH, GR., 95%) were all purchased from Aladdin.Methanol (CH3OH, GR.) ethanol (C2H5OH, AR.), isopropanol(C3H8O, GR.) and cyclohexane (C6H12O6, AR.) were supplied by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).The commercial carbon supported Pt catalyst (Pt/C, 20% (w))was provided by Johnson-Matthey Corp. All the reagents and chemicals were used directly without purification, and the ultrapure water (18.2 MΩ.cm?1) used in all experiments was prepared by an ultrapure purification system.

    2.2 Preparation of disordered and ordered Rh-PdCu NPs

    In the typical preparation of disordered Rh-PdCu NPs, 7.6 mg of Pd(acac)2, 6.5 mg of Rh(acac)3, 1 mg of Rh(acac)3, 5.4 mg of FeCl3, 35.6 mg of AA, 66 mg of CA and 5 mL of OAm were added into a 20 mL of vial. After being capped, the vial was sonicated until the reactants were completely dissolved. Then the resulting homogeneous solution was placed in a preheated oil bath of 200 °C for 15 h. As-obtained black colloids were separated by centrifugation and washed with the cyclohexane/ethanol mixture for three times.

    As-synthesized disordered Rh-PdCu NPs were dispersed in cyclohexaneviasonicating, and then were dropwise added to another ethanol dispersion containing the carbon supports(Ketjen Black-300J). After being sonicated for 3 h, the products were collected by centrifugation and washed with ethanol for several times. The as-prepared black products were then dried at 60 °C under ambient condition overnight. In order to remove the organic surfactants around the surface of Rh-PdCu/C, the products were further annealed at 230 °C for 2 h. The cleaned Rh-PdCu/C was annealed under 5% H2/Ar atmosphere at 500 °C for 2 h with a heating rate of 2 °C.min?1to promote the phase transformation from disordered Rh-PdCu to ordered intermetallic NPs (denoted as Rh-PdCu/C-500).

    2.3 Preparation of disordered and ordered PdCu NPs

    The preparation process of disordered PdCu NPs was similar to that of disordered Rh-PdCu NPs, except the absence of Rh precursor. The ordered PdCu NPs were prepared by similar annealing method with the Rh-PdCu counterpart, except for changing the annealing temperature from 500 to 400 °C. The asobtained ordered PdCu NPs was denoted as PdCu/C-400.

    2.4 Characterization

    The morphology and structure were conducted by the transmission electron microscopy (TEM) (HITACHI H-7700 transmission electron microscopy with an accelerating voltage of 100 kV) and high resolution TEM (HRTEM) (FEI Tecnai-G2 F30 at an accelerating voltage of 300 kV) images. The composition and amount were determined by the scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDS) spectra (EOL JSM-6360 scanning electron microscope with an accelerating voltage of 200 kV) and inductively coupled plasma atomic emission spectrometry (ICPAES) analysis (Agilent 8800 instrument). Power X-ray diffraction (PXRD) patterns (PANalytical-XRD instrument with a CuKαradiation at 40 kV voltage and 30 mA current) were collected to study the crystalline phase of as-prepared products.

    2.5 Electrochemical measurements

    As-prepared products were dispersed in a mixed solvent containing isopropanol, ultrapure water and Nafion (the volume ratio is 4/6/0.005) to obtain a homogeneous ink with a concentration of 1 mg.mL–1. 10 μL of ink was dropped onto the polished glassy carbon rotating disk electrode (RDE, Pine Research Instrumentation, diameter of 5 mm, area of 0.196 cm2)to prepare the working electrode with the loading mass of Pd at 7.3 μg.cm?2. All the electrochemical experiments were performed using a three-electrode cell configuration on a CHI 760E (Chenhua, Shanghai) electrochemical workstation at room temperature. The leak-free saturated calomel electrode (SCE), a Pt plate (1.5 cm × 1 cm) and catalysts-modified RDE were used as the reference, counter and working electrodes, respectively. A 0.1 mol.L?1KOH solution was served as the electrolyte for ORR measurements, followed with 0.5 mol.L?1CH3OH was added to study the methanol tolerance performance. All the potentials mentioned in this work were convertedversus(vs) the reversible hydrogen electrode (RHE) according to the follow formula:Evs.RHE =EvsSCE + 0.059pH + 0.241. The positive-going ORR polarization curves were recorded in O2-saturated conditions at a scan rate of 20 mV.s?1and the cyclic voltammograms (CVs)curves were conducted in N2-saturated electrolyte with a sweep rate of 50 mV.s?1. The electrochemical accelerated durability tests (ADTs) were tested in O2-saturated 0.1 mol.L?1KOH solutions by performing the CVs between 0.6 V and 1.1 V (vsRHE) for 20000 cycles at a sweep rate of 200 mV.s?1.

    3 Results and discussion

    TEM images were first used to characterize the structure of the Rh-PdCu NPs. The uniform near-spherical NPs with an average size of (6.5 ± 0.5) nm are observed (Fig. 1a and Fig. S1,see Supporting Information (SI)). The molar ratio of Rh/Pd/Cu in as-synthesized Rh-PdCu NPs is determined to be 5/48/47 by SEM-EDS, consistent with the corresponding ICP-AES result(Fig. 1b). Similarly, monodisperse PdCu NPs with the same size distribution can also be synthesizedviathe same approach,except without adding Rh precursor (Fig. S2, SI). Both NPs possess the typical fcc PdCu structure (JCPDS No. 48-1551),confirmed by PXRD patterns (Fig. 1c). In particular, the reflexes of Rh-PdCu NPs are shifted to lower 2θangles compared to those of PdCu NPs due to the incorporation of Rh atoms with a larger lattice constant (the inset of Fig 1c). The HRTEM and corresponding fast Fourier transformation (FFT) patterns of the Rh-PdCu NPs further indicate their fcc-phased structures, and the lattice spacings are measured to be 0.218 nm, which is slightly larger than that of the (111) facet of fcc PdCu (0.217 nm)(Fig. 1d).

    Fig. 1 Structural and compositional characterization of disordered Rh-PdCu NPs. (a) Representative TEM image (inset is the corresponding size distribution) and (b) SEM-EDS spectra of disordered Rh-PdCu NPs. (c) PXRD patterns of disordered PdCu and Rh-PdCu NPs (inset is the expanded (111) peak patterns). (d) HRTEM image of disordered Rh-PdCu NP (inset is the corresponding FFT).

    We then turned our attention to build a bridge between the disordered NPs with fcc structure and the ordered intermetallic NPs with bcc structureviaannealing under H2/Ar atmosphere.To avoid the undesired severe agglomeration of NPs, the asprepared NPs were deposited on carbon supports before the annealing treatment (Fig. S3, SI). For PdCu NPs, the ordered bcc-phased intermetallic NPs can be obtained by annealing at 400 °C (Fig. S4, SI). By contrast, the annealing temperature has to be elevated to 500 °C for Rh-PdCu NPs before they can be completely converted (Fig. 2a); otherwise, they can only be partially converted to bcc Rh-PdCu because the introduction of Rh atoms can inhibit the phase conversion of PdCu. As the annealing temperature increases, the monodispersity on carbon support of Rh-PdCu can be well maintained (Fig. 2b and Fig. S5,SI), accompanied with negligible particle agglomeration (Fig.S6, SI). Furthermore, the lattice spacing of 0.210 nm can be clearly obtained from HRTEM and corresponding FFT, which can be well assigned to (110) facet of bcc Rh-PdCu NPs. Based on the above-mentioned results, we can establish the structural models shown in Fig. 2d. Highly uniform disordered PdCu NPs can be first obtained by regulating the reaction conditions, and then Rh atoms are further substituted for Pd or Cu species to form disordered Rh-doped PdCu NPs, and thermal treatment is finally performed to achieve the ordered intermetallic NPs.

    Fig. 2 Structural and compositional characterization of ordered intermetallic Rh-PdCu NPs. (a) PXRD patterns of Rh-PdCu/C with different annealing temperatures. (b) Representative TEM image of Rh-PdCu/C-500 (inset is the corresponding size distribution).(c) HRTEM image of Rh-PdCu/C-500 (inset is the corresponding FFT). (d) An illustration of the possible structural models of disordered PdCu NPs, disordered Rh-PdCu NPs and ordered Rh-PdCu NP.

    In order to verify the advantages of ordered intermetallic Rhdoped PdCu NPs, the electrocatalytic ORR activities of PdCu/C,PdCu/C-400, Rh-PdCu/C and Rh-PdCu/C-500 were investigated in an O2-saturated 0.1 mol.L?1KOH solution at 1600 r?min?1with a scan rate of 20 mV.s?1. The commercial Pt/C served as a benchmark for comparing the electrocatalytic properties. Fig. 3a shows the positive-going ORR polarization curves of different catalysts, from which we can observe that both PdCu/C-400 and Rh-PdCu/C-500 have a positive shift compared with unannealed counterparts, respectively, indicative of the enhanced ORR activities of ordered intermetallic NPs. Moreover, for Rh-doped PdCu electrocatalysts, both the disordered and the ordered samples exhibit the decreased ORR overpotentials compared to the PdCu counterparts due to the positive potential shifts. The Rh-PdCu/C-500 possesses the highest half-wave potential (E1/2)of 0.909 V, which is 41, 13, 19 mV higher than that of PdCu/C,PdCu/C-400 and Rh-PdCu/C, respectively, and even 61 mV more positive than that of the commercial Pt/C, revealing the most remarkable electrocatalytic activity of Rh-doped ordered intermetallic NPs for ORR (Fig. S7, SI). The ORR kinetic currents were further normalized against the amount of noble metals (Pt or Pd) to quantify the intrinsic ORR mass activities of different catalysts. Among them, the Rh-PdCu/C-500 is found to exhibit the highest mass activity of 0.96 A.mg?1at 0.9 V (vsRHE), 7.4 times higher than that of commercial Pt/C (Fig. 3b).In addition, the mass activities of PdCu/C, PdCu/C-400 and Rh-PdCu/C are only 2.3, 5.4 and 4.5 fold higher than that of commercial Pt/C, respectively, indicating that the doping of Rh atoms and further ordering possess a significant effect in terms of enhanced ORR activities of PdCu NPs. Furthermore, the similar trend has been observed at 0.875 V (vsRHE), in which the Rh-PdCu/C-500 shows the most superior mass activity (1.72 A.mg?1), 6.3 times better than that of commercial Pt/C (Fig. 3c).Rh-PdCu NPs undergo an incomplete conversion when the annealing temperature cannot reach 500 °C (Fig. 2a), which results in decreased ORR activities (Fig. S8, SI). More excitingly, the ordered intermetallic Rh-doped PdCu NPs have far exceeded most of the state-of-the-art PdCu-based ORR electrocatalysts mentioned in previous reports with respect to ORR catalytic activity in alkaline condition (Table S1, SI).

    The poor durability has severely limited the practical application of cathode ORR catalysts in fuel cells, and therefore become an indispensable parameter for evaluating the ORR electrocatalytic performance. The electrochemical durability of different catalysts in alkaline solution was measured by conducting the ADTs with a scan rate of 200 mV.s?1between 0.6 V to 1.0 V (vsRHE). There is negatively-shiftedE1/2of only 6 mV in the ORR polarization curves of Rh-PdCu/C-500 before and after 20000 consecutive scanning cycles (Fig. 3d), while theE1/2of the commercial Pt/C, PdCu/C, PdCu/C-400 and Rh-PdCu/C negatively shifted by 40, 20, 16 and 8 mV, respectively(Fig. S9, SI). More distinctly, the Rh-PdCu/C-500 showed only 13.9% loss in mass activity, whereas the commercial Pt/C,PdCu/C, PdCu/C and Rh-PdCu/C declined by 69.2%, 31.4%,28.8% and 17.0%, respectively, indicating the superior durability of Rh-doped ordered intermetallic NPs (Fig. 3e). The excellent durability of Rh-PdCu/C-500 can further be evidenced by the structural and compositional changes before and after ADTs(Fig. S10, SI). There is negligible morphology change and size change and no obvious composition change (from 5/48/47 to 6/50/44 for Rh/Pd/Cu) after 20000 cycles.

    Fig. 3 ORR performance of different catalysts in 0.1 mol·L–1 KOH. (a) ORR polarization curves, (b) the mass activities and enhancement factors(vs the commercial Pt/C) at 0.9 V (vs RHE) and (c) the mass activities and enhancement factors (vs the commercial Pt/C) at 0.875 V (vs RHE) of different catalysts. (d) ORR polarization curves of Rh-PdCu/C-500 before and after different potential cycles. (e) The normalized mass activity changes of different catalysts at 0.9 V (vs RHE) before and after different potential cycles.

    By summarizing the ORR electrocatalytic performance of different catalysts in terms of both mass activities and durability,two crucial conclusions can be drawn as follows: (a) doping Rh atoms into PdCu NPs contributes to enhance the activity and durability efficiently toward ORR electrocatalysis; (b) further an ordered intermetallic counterpart can also promote an enhanced ORR activity and durability. We can attribute the superior ORR performance of the Rh-PdCu/C-500 to the electronic and stabilizing effect caused by the trace Rh-doping, as well as the optimized stronger atomic interaction due to the ordered intermetallic structure. Firstly, it is widely accepted that the doping of heteroatoms tends to cause the charge transfer from the dopants to Pt/Pd atoms34,35, thus the rearrangement induced bythe partial substitution of Pd or Cu atoms by Rh atoms would result in a strong electron transfer of Pd atoms and the change of the surface electronic structure of PdCu NPs, which shifts the center of thed-band downward and gives rise to the reduced affinity of Pd to oxygen-containing intermediates21,36–38. This is of great benefit for improving the ORR performance of PdCu NPs. Furthermore, Rh has been considered as a positive element to enhance ORR performance in terms of both activity and durability due to the stabilizing effect of Rh atoms for structure and composition and suppression of the loss of transition metal atoms5,29,33, which can be further confirmed by the abovementioned TEM image and SEM-EDS spectra after ADTs (Fig.S10, SI). Finally, by rationally modulating the ordered intermetallic structure, stronger geometric and electronic effect will function in combination compared with the disordered Rh-PdCu/C, which changes the surface coordination of the active site and therefore causes the shift of d-band center and the change of adsorption strength towards oxygenated species21,22,25.In addition, a stronger atomic interaction and higher mixing enthalpy of ordered intermetallic structure also improve the chemical and structural stability, thereby higher activities and more superior durability towards ORR can be achieved24,39–41.

    A common phenomenon in DMFCs is that the methanol molecules can crossover from anode to cathode through the proton exchange membranes, which dramatically decreases the power efficiency and stability of devices due to the strong adsorption of the CO-like species related to the interpenetrating methanol on catalysts surface, thus raising a challenge for the anti-poisoning properties of the cathode catalysts20,42–44. For this purpose, the methanol tolerance capacities of commercial Pt/C and Rh-PdCu/C-500 were further evaluated to highlight the preponderance on anti-poison of Rh-doped ordered intermetallic PdCu NPs. A typical methanol oxidation peak was clearly observed at 0.88 V (vsRHE) for commercial Pt/C in N2-saterated 0.1 mol.L–1KOH + 0.5 mol.L–1CH3OH (Fig. 4a), while this peak was hardly generated and CV curves underwent almost no variation in shape upon the addition of CH3OH for the Rh-PdCu/C-500 catalysts (Fig. 4b), indicating the lower electrocatalytic oxidation activity towards methanol of Rh-PdCu/C-500. The ORR polarization curves of commercial Pt/C exhibited a weak anti-methanol capacity as theE1/2negatively shifted by 235 mV and a distinct oxidation peak was observed(Fig. 4c). On the contrary, the shape of ORR polarization curve of Rh-PdCu/C-500 was almost unchanged, and theE1/2decreased by only 5 mV after adding 0.5 mol.L?1methanol into the electrolyte (Fig. 4d), revealing the better methanol antiinterference ability of Rh-PdCu/C-500 under ORR-tested conditions. The key factor to excellent methanol tolerance is that the CO poisoning generated during the diffusion of methanol molecules can be greatly relieved with the presence of Rh atoms45–47, which will significantly facilitate the application of ordered intermetallic Rh-doped PdCu NPs in practical devices.

    Fig. 4 The methanol tolerance capacities of commercial Pt/C and Rh-PdCu/C-500. CV curves of (a) commercial Pt/C and(b) Rh-PdCu/C-500 recorded in N2-saturated 0.1 mol·L?1 KOH and 0.1 mol·L–1 KOH + 0.5 mol·L?1 CH3OH. ORR polarization curves of(c) commercial Pt/C and (d) Rh-PdCu/C-500 recorded in O2-saturated 0.1 mol·L?1 KOH and 0.1 mol·L–1 KOH + 0.5 mol·L?1 CH3OH.

    4 Conclusions

    To summarize, we have successfully demonstrated the strategy of combining Rh doping and ordering to noticeably enhance the ORR performance of PdCu NPs. The complete phase transition temperature of NPs was increased from 400 °C to 500 °C due to the introduction of Rh atoms. The as-obtained ordered intermetallic Rh-doped PdCu NPs exhibit the highest mass activity at 0.9 V (vsRHE) for ORR in alkaline condition with an enhancement factor of 7.4 compared to that of commercial Pt/C. The ADTs have been further conducted to confirm that the strategies are not only beneficial for enhancing ORR activity but also for long-term durability. We attributed the enhanced electrochemical performance to the electronic and stabilizing effect caused by the Rh-doping, as well as the optimized stronger atomic interaction due to the ordered intermetallic structure. In addition, we also found this catalyst presented the highly methanol tolerance behavior compared to commercial Pt/C due to its special elemental composition. This work highlights the indispensable role of Rh atoms in achieving high-performance ORR catalysts as well as the potential of ordered intermetallics as candidate electrocatalysts in the field of DMFCs.

    Acknowledgment:The authors acknowledge the support from the Tencent Foundation through the XPLORER PRIZE.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    工學(xué)院電催化北京大學(xué)
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    就任北京大學(xué)校長(zhǎng)之演說(shuō)
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    欧美一区二区精品小视频在线| 久久国内精品自在自线图片| 国产一区二区激情短视频| 亚洲综合色惰| 一区福利在线观看| 波多野结衣高清无吗| 国产高潮美女av| 欧美精品一区二区大全| 两个人的视频大全免费| 亚洲第一区二区三区不卡| 午夜福利在线观看免费完整高清在 | 亚洲精品影视一区二区三区av| 一夜夜www| 少妇猛男粗大的猛烈进出视频 | 亚洲精品久久国产高清桃花| 男人和女人高潮做爰伦理| 午夜福利视频1000在线观看| 欧美色视频一区免费| 99riav亚洲国产免费| 99久久精品国产国产毛片| 男插女下体视频免费在线播放| 亚洲四区av| 在现免费观看毛片| 嫩草影院入口| 99久久无色码亚洲精品果冻| 中国美女看黄片| 18禁裸乳无遮挡免费网站照片| 成人av在线播放网站| 成年免费大片在线观看| 人妻久久中文字幕网| 别揉我奶头 嗯啊视频| 亚洲欧美日韩高清在线视频| 成人午夜精彩视频在线观看| 欧美高清成人免费视频www| 欧美日韩国产亚洲二区| 成人永久免费在线观看视频| 一个人看的www免费观看视频| 中文亚洲av片在线观看爽| 久久热精品热| 人人妻人人澡欧美一区二区| 黄片wwwwww| 久久久久久久久大av| 久久久久久伊人网av| 日韩精品有码人妻一区| 26uuu在线亚洲综合色| 在线免费观看的www视频| 我的女老师完整版在线观看| 日韩欧美三级三区| 成人特级av手机在线观看| 美女xxoo啪啪120秒动态图| 一夜夜www| 久久久久九九精品影院| 国产老妇伦熟女老妇高清| 久久九九热精品免费| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 亚洲国产精品久久男人天堂| 亚洲第一电影网av| 精品国内亚洲2022精品成人| 国产伦一二天堂av在线观看| 欧美不卡视频在线免费观看| 中文亚洲av片在线观看爽| 日日啪夜夜撸| 午夜a级毛片| 天堂√8在线中文| 国产精品精品国产色婷婷| 免费人成视频x8x8入口观看| 好男人在线观看高清免费视频| 久久99热6这里只有精品| 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 成人永久免费在线观看视频| 国产精品.久久久| 国产爱豆传媒在线观看| 91av网一区二区| 亚洲国产欧洲综合997久久,| 99九九线精品视频在线观看视频| 91久久精品国产一区二区成人| 一本久久精品| 国产精品一区www在线观看| 亚洲第一电影网av| 18+在线观看网站| 精品少妇黑人巨大在线播放 | 国产探花极品一区二区| 波野结衣二区三区在线| 亚洲成人久久性| 哪个播放器可以免费观看大片| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 美女xxoo啪啪120秒动态图| 舔av片在线| 丝袜美腿在线中文| 国内精品宾馆在线| 国产中年淑女户外野战色| 亚洲国产精品久久男人天堂| 一级毛片aaaaaa免费看小| 不卡视频在线观看欧美| av在线蜜桃| 成人三级黄色视频| 亚洲av男天堂| 97在线视频观看| 亚洲精品影视一区二区三区av| 精品一区二区三区视频在线| 干丝袜人妻中文字幕| 午夜久久久久精精品| 在线国产一区二区在线| 伦理电影大哥的女人| 亚洲人成网站在线播放欧美日韩| 日本黄色视频三级网站网址| 波多野结衣高清无吗| 国产精品一及| 亚洲精品色激情综合| 久久综合国产亚洲精品| 高清毛片免费观看视频网站| 乱系列少妇在线播放| 免费黄网站久久成人精品| 大又大粗又爽又黄少妇毛片口| 亚洲在久久综合| 九九在线视频观看精品| 亚洲av中文av极速乱| 男女做爰动态图高潮gif福利片| 九色成人免费人妻av| 女人十人毛片免费观看3o分钟| 国产精品嫩草影院av在线观看| 夜夜夜夜夜久久久久| 丝袜喷水一区| av在线亚洲专区| 久久精品91蜜桃| 亚洲精品自拍成人| 国产伦精品一区二区三区视频9| 色哟哟·www| 一本久久中文字幕| 成年免费大片在线观看| 国产综合懂色| 伦精品一区二区三区| 国产精品综合久久久久久久免费| av在线观看视频网站免费| www.色视频.com| 亚洲无线在线观看| 欧美成人一区二区免费高清观看| 人妻系列 视频| 国产精品麻豆人妻色哟哟久久 | 国产精品三级大全| 丝袜美腿在线中文| 99热6这里只有精品| 老女人水多毛片| 国产精品99久久久久久久久| av.在线天堂| 国产 一区精品| 99在线人妻在线中文字幕| 国模一区二区三区四区视频| 亚洲久久久久久中文字幕| 精品99又大又爽又粗少妇毛片| 国产色婷婷99| 国产黄片美女视频| 美女脱内裤让男人舔精品视频 | 国产一区二区三区在线臀色熟女| av黄色大香蕉| 黄片无遮挡物在线观看| 99久国产av精品国产电影| 久久久欧美国产精品| 亚洲欧美日韩无卡精品| 禁无遮挡网站| 国产激情偷乱视频一区二区| 日韩欧美一区二区三区在线观看| 最近2019中文字幕mv第一页| 黄色日韩在线| 中文字幕熟女人妻在线| av黄色大香蕉| 男女啪啪激烈高潮av片| 最后的刺客免费高清国语| 日韩一区二区视频免费看| 国产三级在线视频| 欧美色视频一区免费| av在线亚洲专区| 日韩欧美一区二区三区在线观看| 久久精品久久久久久久性| 久久久久久久久久久免费av| 国产成年人精品一区二区| 热99re8久久精品国产| 国产精品乱码一区二三区的特点| 长腿黑丝高跟| 青春草国产在线视频 | 看免费成人av毛片| 亚洲欧美日韩卡通动漫| 国产精品免费一区二区三区在线| 97热精品久久久久久| 中出人妻视频一区二区| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| 狂野欧美白嫩少妇大欣赏| 99精品在免费线老司机午夜| 久久99精品国语久久久| 一级毛片我不卡| 亚洲天堂国产精品一区在线| 日本黄大片高清| a级毛片a级免费在线| 日本黄色片子视频| 免费无遮挡裸体视频| 国产精品免费一区二区三区在线| 干丝袜人妻中文字幕| 久久久久国产网址| 国产av不卡久久| 国产美女午夜福利| 婷婷精品国产亚洲av| 亚洲精品粉嫩美女一区| 免费黄网站久久成人精品| 国产老妇女一区| 一边亲一边摸免费视频| 中出人妻视频一区二区| 久久久久久九九精品二区国产| 欧美一区二区亚洲| 国产久久久一区二区三区| 亚洲一区二区三区色噜噜| 听说在线观看完整版免费高清| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 久久精品综合一区二区三区| 国产久久久一区二区三区| 三级国产精品欧美在线观看| 亚洲欧美日韩卡通动漫| 国产精品人妻久久久久久| 久久精品国产自在天天线| 午夜福利视频1000在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产av不卡久久| 国产精品久久久久久久久免| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 精品久久久噜噜| 最好的美女福利视频网| 国产亚洲精品久久久com| 麻豆成人av视频| 久久久久久久久大av| 亚洲人与动物交配视频| 国产老妇女一区| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 1000部很黄的大片| 97热精品久久久久久| 看黄色毛片网站| 成人国产麻豆网| 亚洲国产精品成人久久小说 | 99久久无色码亚洲精品果冻| 小蜜桃在线观看免费完整版高清| 国产私拍福利视频在线观看| 久久精品国产99精品国产亚洲性色| 在线观看66精品国产| 久久精品综合一区二区三区| 十八禁国产超污无遮挡网站| www日本黄色视频网| 日本欧美国产在线视频| 少妇高潮的动态图| 嫩草影院精品99| 国产乱人偷精品视频| 又粗又爽又猛毛片免费看| 免费搜索国产男女视频| 在线播放无遮挡| 国产成人91sexporn| 久久久久性生活片| 三级国产精品欧美在线观看| 一边摸一边抽搐一进一小说| 搞女人的毛片| 色综合站精品国产| 久久人妻av系列| 欧美日本亚洲视频在线播放| 精品一区二区三区视频在线| 国产精品一区二区在线观看99 | 边亲边吃奶的免费视频| 成年女人看的毛片在线观看| 观看美女的网站| 午夜精品一区二区三区免费看| 日本色播在线视频| 久久人人爽人人片av| 亚洲成人av在线免费| 色综合站精品国产| 99热精品在线国产| 我的女老师完整版在线观看| 中文字幕免费在线视频6| 国产乱人视频| 午夜福利视频1000在线观看| 亚洲成人av在线免费| 欧美日韩乱码在线| 在线国产一区二区在线| 久久人人爽人人爽人人片va| 99久久成人亚洲精品观看| 人人妻人人澡欧美一区二区| 乱系列少妇在线播放| 免费av不卡在线播放| 欧美性猛交╳xxx乱大交人| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| 久久人人爽人人片av| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 99久久精品一区二区三区| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 国产精品一区二区三区四区免费观看| 欧美一区二区亚洲| 欧美高清成人免费视频www| 在线免费观看的www视频| 晚上一个人看的免费电影| 日日啪夜夜撸| 少妇人妻精品综合一区二区 | 岛国在线免费视频观看| 免费av观看视频| 国产成年人精品一区二区| 午夜精品国产一区二区电影 | 亚洲va在线va天堂va国产| 日本熟妇午夜| 免费看美女性在线毛片视频| 中文资源天堂在线| 亚洲精品国产成人久久av| 啦啦啦观看免费观看视频高清| 九九久久精品国产亚洲av麻豆| 日本黄色片子视频| 日本与韩国留学比较| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品自产自拍| 一本久久精品| 国产高清不卡午夜福利| 欧美成人一区二区免费高清观看| 岛国毛片在线播放| 日本爱情动作片www.在线观看| 国产在线男女| 久久久久久久午夜电影| 成人一区二区视频在线观看| 国产高清视频在线观看网站| 国产高清三级在线| www.色视频.com| 久久久久性生活片| 只有这里有精品99| 99热6这里只有精品| 永久网站在线| 欧美色视频一区免费| 国产高清不卡午夜福利| 成人无遮挡网站| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频 | 免费搜索国产男女视频| 日韩国内少妇激情av| 日韩强制内射视频| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 长腿黑丝高跟| 大又大粗又爽又黄少妇毛片口| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线观看66精品国产| 亚洲国产精品成人综合色| 国产精品乱码一区二三区的特点| а√天堂www在线а√下载| 在线播放无遮挡| 九九热线精品视视频播放| 精品久久久噜噜| 色综合亚洲欧美另类图片| 精品日产1卡2卡| 亚洲自拍偷在线| 桃色一区二区三区在线观看| 欧美日韩在线观看h| 秋霞在线观看毛片| 欧美又色又爽又黄视频| 精品无人区乱码1区二区| 日韩一本色道免费dvd| 好男人在线观看高清免费视频| 美女脱内裤让男人舔精品视频 | 中国美白少妇内射xxxbb| 成年女人永久免费观看视频| 欧美潮喷喷水| 国产一区二区激情短视频| 国产成人精品一,二区 | 色5月婷婷丁香| 久久久久久国产a免费观看| 亚洲丝袜综合中文字幕| 国产精品三级大全| 看片在线看免费视频| 天堂√8在线中文| 大又大粗又爽又黄少妇毛片口| 亚洲熟妇中文字幕五十中出| 联通29元200g的流量卡| 久久久精品94久久精品| 小蜜桃在线观看免费完整版高清| 最近视频中文字幕2019在线8| 欧美高清成人免费视频www| 噜噜噜噜噜久久久久久91| 国产精品野战在线观看| 长腿黑丝高跟| 看黄色毛片网站| 中文字幕熟女人妻在线| 国产免费男女视频| 69人妻影院| 国产成人一区二区在线| 听说在线观看完整版免费高清| 日韩成人伦理影院| 超碰av人人做人人爽久久| 国产精品不卡视频一区二区| 欧美性猛交╳xxx乱大交人| 中国美白少妇内射xxxbb| 成人漫画全彩无遮挡| 国产精品不卡视频一区二区| 国产黄色小视频在线观看| 欧美日韩国产亚洲二区| 一夜夜www| 搞女人的毛片| 国产精品久久久久久av不卡| 国产高清不卡午夜福利| 国内精品宾馆在线| 亚洲成人久久性| 久久久国产成人免费| 麻豆久久精品国产亚洲av| 久久久色成人| 男的添女的下面高潮视频| 午夜爱爱视频在线播放| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 神马国产精品三级电影在线观看| 麻豆精品久久久久久蜜桃| av在线观看视频网站免费| a级毛色黄片| 最好的美女福利视频网| 中文字幕制服av| 国产蜜桃级精品一区二区三区| 亚洲国产精品国产精品| 国产成人91sexporn| 又黄又爽又刺激的免费视频.| 亚洲一级一片aⅴ在线观看| 成人综合一区亚洲| 亚洲av成人av| 亚洲成av人片在线播放无| 青春草亚洲视频在线观看| 在线播放无遮挡| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区 | 欧美极品一区二区三区四区| 亚洲av.av天堂| 老女人水多毛片| av又黄又爽大尺度在线免费看 | 亚洲在久久综合| 日日干狠狠操夜夜爽| 国产毛片a区久久久久| 毛片一级片免费看久久久久| 91精品国产九色| 国产爱豆传媒在线观看| 秋霞在线观看毛片| 黄片wwwwww| 亚洲国产精品久久男人天堂| 亚洲18禁久久av| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| 国语自产精品视频在线第100页| 中国美女看黄片| 欧美日韩一区二区视频在线观看视频在线 | 99久久中文字幕三级久久日本| 亚洲人成网站高清观看| 国产视频首页在线观看| 久久精品国产亚洲av涩爱 | 国产高潮美女av| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说 | 亚洲人成网站在线播| 高清日韩中文字幕在线| 大又大粗又爽又黄少妇毛片口| 日韩强制内射视频| 少妇高潮的动态图| 亚洲av免费高清在线观看| 亚洲精品乱码久久久久久按摩| 能在线免费观看的黄片| av在线观看视频网站免费| 中文字幕免费在线视频6| 美女黄网站色视频| 赤兔流量卡办理| 最近中文字幕高清免费大全6| 变态另类成人亚洲欧美熟女| 日韩亚洲欧美综合| 99国产极品粉嫩在线观看| 人妻久久中文字幕网| 高清日韩中文字幕在线| 亚洲av中文字字幕乱码综合| av在线播放精品| 成人亚洲欧美一区二区av| 亚洲四区av| 欧美又色又爽又黄视频| 99热这里只有精品一区| 日韩三级伦理在线观看| 国产亚洲精品av在线| 欧美激情在线99| 欧美区成人在线视频| 国产片特级美女逼逼视频| 久久欧美精品欧美久久欧美| 欧美成人精品欧美一级黄| 久久久成人免费电影| 黄色欧美视频在线观看| 亚洲av一区综合| 国产精品国产高清国产av| 国产亚洲精品久久久com| 欧美又色又爽又黄视频| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 小蜜桃在线观看免费完整版高清| 99九九线精品视频在线观看视频| 亚洲经典国产精华液单| 日韩亚洲欧美综合| 国产真实伦视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区三区四区久久| 最近最新中文字幕大全电影3| 菩萨蛮人人尽说江南好唐韦庄 | 成人一区二区视频在线观看| 一夜夜www| 亚洲电影在线观看av| 精品人妻熟女av久视频| 国产 一区精品| 国内精品宾馆在线| 中文欧美无线码| 一本精品99久久精品77| 一级毛片电影观看 | 日本成人三级电影网站| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 中文字幕免费在线视频6| 亚洲av成人av| 少妇熟女aⅴ在线视频| 日本欧美国产在线视频| 国产一区二区三区av在线 | 亚洲一级一片aⅴ在线观看| 国产成人午夜福利电影在线观看| 午夜亚洲福利在线播放| 日本成人三级电影网站| 免费在线观看成人毛片| 亚洲欧洲国产日韩| 啦啦啦韩国在线观看视频| 我要搜黄色片| 国产亚洲精品久久久久久毛片| 免费在线观看成人毛片| 久久久久久久久大av| 欧美高清成人免费视频www| 18禁在线无遮挡免费观看视频| 大型黄色视频在线免费观看| 老司机福利观看| 国产av不卡久久| 人妻制服诱惑在线中文字幕| 久久久久网色| 深夜a级毛片| 亚洲在线观看片| 一级毛片久久久久久久久女| 美女脱内裤让男人舔精品视频 | 精品一区二区三区人妻视频| 国产v大片淫在线免费观看| 中文精品一卡2卡3卡4更新| 日韩国内少妇激情av| 老司机影院成人| 五月伊人婷婷丁香| 一级毛片aaaaaa免费看小| 亚洲av熟女| 精品一区二区三区人妻视频| 老司机福利观看| 亚洲精品粉嫩美女一区| 免费无遮挡裸体视频| 熟女人妻精品中文字幕| 只有这里有精品99| 成熟少妇高潮喷水视频| 精品一区二区免费观看| 老师上课跳d突然被开到最大视频| 日韩欧美三级三区| 啦啦啦韩国在线观看视频| 我要看日韩黄色一级片| 色5月婷婷丁香| 国产高清有码在线观看视频| 大香蕉久久网| 毛片一级片免费看久久久久| 成人特级黄色片久久久久久久| 99久久精品国产国产毛片| 日韩欧美 国产精品| 日韩 亚洲 欧美在线| av天堂在线播放| 成人二区视频| 国产蜜桃级精品一区二区三区| 亚洲在线观看片| or卡值多少钱| 看免费成人av毛片| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费| 在线免费观看不下载黄p国产| 人人妻人人澡欧美一区二区| 亚洲av不卡在线观看| 精品一区二区免费观看| 中文字幕久久专区| 91久久精品国产一区二区三区| 国产伦理片在线播放av一区 | 国产av一区在线观看免费| 久久人人爽人人爽人人片va| 在线国产一区二区在线| 91在线精品国自产拍蜜月| 午夜福利高清视频| 精品人妻一区二区三区麻豆| 我要搜黄色片| 两个人的视频大全免费| 欧美另类亚洲清纯唯美| 国产精品日韩av在线免费观看| h日本视频在线播放| 精品无人区乱码1区二区| 99热只有精品国产| 国产免费男女视频| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 日韩国内少妇激情av| 国产成人aa在线观看| 我的女老师完整版在线观看| 一个人看视频在线观看www免费| 人妻少妇偷人精品九色|