任海偉,王 莉,朱朝華,孫安琪,王治業(yè),李金平,李志忠
白酒糟與菊芋渣混合青貯發(fā)酵品質(zhì)及微生物菌群多樣性
任海偉1,3,4,王 莉1,朱朝華1,孫安琪1,王治業(yè)2,李金平1,3,4,李志忠1※
(1. 蘭州理工大學(xué)生命科學(xué)與工程學(xué)院/西部能源與環(huán)境研究中心,蘭州 730050;2. 甘肅省科學(xué)院生物研究所,蘭州 730050;3.甘肅省生物質(zhì)能與太陽(yáng)能互補(bǔ)供能系統(tǒng)重點(diǎn)實(shí)驗(yàn)室,蘭州 730050;4. 西北低碳城鎮(zhèn)支撐技術(shù)協(xié)同創(chuàng)新中心,蘭州 730050)
利用青貯原理將白酒糟和菊芋渣混合進(jìn)行固態(tài)發(fā)酵,二者按照不同鮮質(zhì)量比發(fā)酵10、30、60 d時(shí),分別考察營(yíng)養(yǎng)成分、木質(zhì)纖維含量和發(fā)酵特性的動(dòng)態(tài)變化,并通過高通量測(cè)序技術(shù)解析發(fā)酵微生物菌群多樣性。結(jié)果表明,當(dāng)白酒糟和菊芋渣以1.2:1和1:1.5比例發(fā)酵時(shí),可溶性碳水化合物含量顯著高于其他處理組(<0.05),中性洗滌纖維、酸性洗滌纖維和木質(zhì)素含量均顯著低于其他處理組(<0.05),相對(duì)飼用價(jià)值和生物降解潛力較高。發(fā)酵過程中pH值、乳酸和氨氮含量等特性參數(shù)均處于優(yōu)良青貯品質(zhì)范圍,-score評(píng)分均為優(yōu)等。白酒糟或菊芋渣單獨(dú)發(fā)酵期間主要以變形菌和厚壁菌門細(xì)菌為主,混合發(fā)酵時(shí)則演變?yōu)橐院癖诰T、乳桿菌屬細(xì)菌為主。總之,白酒糟與菊芋渣能通過生化互補(bǔ)特性發(fā)揮協(xié)同效應(yīng)實(shí)現(xiàn)優(yōu)質(zhì)青貯,綜合考慮糟渣生物質(zhì)資源的利用價(jià)值和處理效率等因素,實(shí)際生產(chǎn)中建議以1.2:1比例混合青貯發(fā)酵30 d為宜,可獲得良好發(fā)酵品質(zhì)。
廢棄物;發(fā)酵;菌群;白酒糟;菊芋渣
中國(guó)是農(nóng)產(chǎn)品生產(chǎn)加工大國(guó),每年有大量的酒糟、薯渣、果渣等加工副產(chǎn)物產(chǎn)生。據(jù)不完全統(tǒng)計(jì),2019年全國(guó)各類糟渣副產(chǎn)物的產(chǎn)量超過1.8億t,其中白酒釀造、蒸餾后的酒糟量高達(dá)2 600萬(wàn)t。這些廢棄物資源富含蛋白質(zhì)和碳水化合物(纖維素、半纖維素)等組分,可用于生產(chǎn)動(dòng)物飼料、生物肥料、生物能源、化工產(chǎn)品,利用潛力巨大[1]。但因其產(chǎn)量大、含水率高、營(yíng)養(yǎng)豐富、季節(jié)性加工等特點(diǎn),短期內(nèi)處理不及時(shí)或露天放置極易發(fā)生腐敗變質(zhì),從而造成環(huán)境污染和資源浪費(fèi)。若采用干燥或冷凍方式保存則能耗較高,既不經(jīng)濟(jì)也不現(xiàn)實(shí),如何短時(shí)間有效處置這些廢物資源(尤其夏秋高溫季節(jié))已成為農(nóng)產(chǎn)品加工業(yè)循環(huán)發(fā)展的難題。
青貯作為一種微生態(tài)保存技術(shù),是在含水率為65%~75%的厭氧環(huán)境中,通過附著(或外源添加)的有益乳酸菌繁殖代謝產(chǎn)生乳酸、乙酸等有機(jī)酸,使pH值快速下降并抑制酵母菌、霉菌等腐敗微生物,從而有效保存有機(jī)組分,已被廣泛用于酒糟、馬鈴薯渣、蘋果渣、甘蔗渣等副產(chǎn)物的加工貯存[2-4]。研究表明,青貯發(fā)酵是復(fù)雜的生物質(zhì)生化轉(zhuǎn)化和微生物菌群活動(dòng)過程,原料組分特性(如水分、糖分)和微生物菌群都會(huì)影響發(fā)酵品質(zhì)。酒糟一般可采用直接青貯、添加劑青貯和混合青貯等方式實(shí)現(xiàn)保存[5-6],而對(duì)于含水率較低的干酒糟而言,單獨(dú)青貯無(wú)法成功啟動(dòng),只有與水分、糖分含量較高的特定原料混合發(fā)酵才能獲得良好青貯品質(zhì)。菊粉提取加工后的菊芋渣中含水率約80%~85%[7],且富含可溶性碳水化合物,與干酒糟進(jìn)行混合固態(tài)發(fā)酵,可以通過特性互補(bǔ)來(lái)實(shí)現(xiàn)良好青貯,但這方面的研究還鮮有文獻(xiàn)報(bào)道。另一方面,青貯發(fā)酵品質(zhì)與發(fā)酵過程的微生態(tài)演變密切相關(guān)。高通量測(cè)序技術(shù)已被證實(shí)是探索復(fù)雜環(huán)境微生物和跟蹤發(fā)酵過程的有效研究手段,能動(dòng)態(tài)揭示發(fā)酵過程中微生物菌群變化,在解析傳統(tǒng)食品發(fā)酵及其副產(chǎn)物青貯過程中的微生物菌群方面發(fā)揮著重要作用[8-10]。
基于此,本文選取白酒糟和菊芋渣為研究對(duì)象,利用青貯原理將二者進(jìn)行混合固態(tài)發(fā)酵,從營(yíng)養(yǎng)成分、木質(zhì)纖維組分、發(fā)酵特性等角度探討混合發(fā)酵過程中主要有機(jī)物質(zhì)和微生物代謝產(chǎn)物的變化規(guī)律,并通過HiSeq2500高通量測(cè)序平臺(tái)對(duì)發(fā)酵過程中的細(xì)菌群落動(dòng)態(tài)演繹進(jìn)行跟蹤分析,從而確定適宜的混合發(fā)酵比例和周期,為農(nóng)產(chǎn)品加工副產(chǎn)物的及時(shí)處理與可持續(xù)利用奠定基礎(chǔ)。
自然風(fēng)干后的白酒糟取自甘肅金徽酒股份有限公司,含水率為15.83%;鮮濕菊芋渣來(lái)源于甘肅白銀熙瑞生物工程有限公司,含水率為89.30%。2種原料的有機(jī)組分含量如表1所示。
表1 白酒糟和菊芋渣的主要有機(jī)組分
1.2.1 混合青貯發(fā)酵的試驗(yàn)設(shè)計(jì)
依據(jù)青貯發(fā)酵原理,將白酒糟與菊芋渣按不同鮮質(zhì)量比(1:0,4:1,2:1,1.2:1,1:1.5,1:2.7,1:7和0:1)混合,總質(zhì)量均為1 kg?;旌象w系的含水率分別為15.83%、30%、40%、50%、60%、70%、80%、89.30%,依次命名為SJ、M3、M4、M5、M6、M7、M8、SY,合計(jì)8個(gè)處理組,每個(gè)處理組3個(gè)平行,(20±1)℃恒溫發(fā)酵10、30和60 d時(shí)取樣分析,考察營(yíng)養(yǎng)成分、木質(zhì)纖維組分、發(fā)酵特性的動(dòng)態(tài)變化和微生物菌群演繹。
1.2.2 取樣與預(yù)處理
稱取3份有代表性發(fā)酵樣品,一份用于測(cè)定干物質(zhì)和主要有機(jī)組分。另一份按照1:9料液比(質(zhì)量體積比)加入蒸餾水混合打漿,依次經(jīng)過4層紗布和定性濾紙過濾后離心(3 900 r/min,10 min),上清液抽濾獲得發(fā)酵浸提液,用于測(cè)定pH值和微生物代謝產(chǎn)物(乳酸、乙酸等微生物代謝物)。第三份樣品于?20 ℃凍存用于微生物菌群分析。
1.2.3 分析方法
1)有機(jī)組分分析
干物質(zhì)(Dry Matter,DM)含量測(cè)定采用105 ℃烘干恒質(zhì)量法;可溶性碳水化合物(Water Soluble Carbohydrates,WSC)含量采用蒽酮-硫酸比色法測(cè)定;總氮(Total Nitrogen,TN)含量采用K9840凱氏定氮儀測(cè)定,粗蛋白含量=總氮×6.25;淀粉(Starch,ST)含量采用酸水解法測(cè)定;酸性洗滌纖維(Acid Detergent Fiber,ADF)、中性洗滌纖維(Neutral Detergent Fiber,NDF)和酸性洗滌木質(zhì)素(Acid Detergent Lignin,ADL)含量采用F800纖維測(cè)定儀測(cè)定,纖維素(Cellulose,CL)、半纖維素(Hemicellulose,HC)、綜纖維素(Holocellulose,HoC)含量按照公式(1)~(3)計(jì)算[11]:
CL=ADF?ADL (1)
HC=NDF?ADF (2)
HoC=CL+HC (3)
生物降解潛力(Biodegradation Potential,BDP)計(jì)算公式為式(4):
BDP= HoC/ADL (4)
相對(duì)飼用價(jià)值(Relative Feed Value,RFV)計(jì)算公式為式(5)[12]:
2)發(fā)酵特性分析
pH值采用丹佛UB-7型酸度計(jì)測(cè)定;氨氮采用苯酚-次氯酸比色法測(cè)定;有機(jī)酸分析采用安捷倫1200高效液相色譜儀(配置KC-811離子柱和DAD檢測(cè)器),柱溫50 ℃,流動(dòng)相為3 mmol/L HCLO4溶液,進(jìn)樣量5L。發(fā)酵品質(zhì)評(píng)價(jià)采用-score評(píng)分法[13],分為優(yōu)(-score≥80)、中(60≤-score<80)和差(-score<60)三等。
3)高通量微生物菌群分析
無(wú)菌環(huán)境下取20 g青貯樣品與200 mL無(wú)菌生理鹽水混合,37 ℃振蕩2 h制得菌懸液,無(wú)菌濾膜過濾獲得微生物菌體。依Water DNA試劑盒步驟提取微生物總DNA。PCR擴(kuò)增區(qū)域?yàn)?6SrDNA V3-V4區(qū),選擇的引物為帶有barcode的515F(5'-ACTCCTACGGGAGGCAGCA-3')和907R(5'-GGACTACH VGG GTWTCTAAT-3')。采用PCR儀對(duì)細(xì)菌16SrDNA基因進(jìn)行PCR擴(kuò)增。每個(gè)樣本3個(gè)重復(fù),將同一樣本的PCR產(chǎn)物混合后用2%瓊脂糖凝膠電泳檢測(cè),使用AxyPrepDNA凝膠回收試劑盒(AXYGEN公司)切膠回收PCR產(chǎn)物,Tris-HCl洗脫;最后采用氫氧化鈉對(duì)PCR產(chǎn)物變性,產(chǎn)生單鏈DNA片段,用Illumina MiSeq平臺(tái)進(jìn)行測(cè)序。將測(cè)序結(jié)果與NCBI基因庫(kù)比對(duì),然后按照97%相似性水平劃分操作分類單元(OTU),選取最優(yōu)序列作為代表性序列。利用QIIME軟件計(jì)算Alpha多樣性指數(shù)(Shannon和Chao1指數(shù)等),并選取相對(duì)豐度高于0.1%的細(xì)菌類群進(jìn)行門、屬水平分析[14]。
1.2.4 數(shù)據(jù)分析
基礎(chǔ)數(shù)據(jù)經(jīng)Excel 2007軟件整理并用SPSS 20.0軟件統(tǒng)計(jì)分析,結(jié)果用平均值±標(biāo)準(zhǔn)差表示。對(duì)不同處理組數(shù)據(jù)進(jìn)行單因素和一般線性模型分析,<0.05代表差異顯著,<0.01代表差異極顯著,>0.05代表差異不顯著。
粗蛋白、可溶性碳水化合物和淀粉是重要的營(yíng)養(yǎng)物質(zhì),能直觀反映青貯發(fā)酵前后的營(yíng)養(yǎng)價(jià)值高低。由圖1a可知,與發(fā)酵前原料相比,除SY組外,SJ組及6個(gè)混合發(fā)酵組(M3~M8)中的粗蛋白含量均顯著下降(<0.05),這可能是由于發(fā)酵初期原料附著的某些好氧蛋白降解菌未能被及時(shí)抑制,在殘氧存在狀態(tài)下依然有一定活性,促進(jìn)了蛋白分解消耗。另一方面,發(fā)酵10、30、60 d時(shí),粗蛋白含量隨菊芋渣比例的增加而顯著升高(<0.05),說明添加菊芋渣有利于粗蛋白含量的保存和營(yíng)養(yǎng)價(jià)值提升。
可溶性碳水化合物(WSC)是發(fā)酵微生物菌群繁殖代謝的重要底物,較高的初始WSC含量(>5% 干物質(zhì)質(zhì)量)才能保證發(fā)酵成功[15]。試驗(yàn)中2種原料的WSC含量均高于青貯發(fā)酵必要條件,為微生物菌群繁殖提供了良好底物。發(fā)酵10 d時(shí),8個(gè)處理組的WSC被微生物消耗代謝轉(zhuǎn)化生成有機(jī)酸等中間產(chǎn)物,含量均顯著下降(<0.05);發(fā)酵30和60 d時(shí),WSC含量又有所增加(圖1b),這可能是由于長(zhǎng)時(shí)間發(fā)酵和酸性青貯環(huán)境,使纖維素、半纖維素等結(jié)構(gòu)性碳水化合物發(fā)生分解,產(chǎn)生可溶性糖所致[16]。從混合比例角度來(lái)看,發(fā)酵60 d期間M5和M6組的WSC含量顯著高于其他處理組(<0.05),說明適宜的混合比例(1.2:1和1:1.5)能減少WSC組分損失。
淀粉也是青貯發(fā)酵過程中一種重要的非結(jié)構(gòu)性碳水化合物和能量物質(zhì)。由圖1c可知,SJ和SY 2個(gè)單獨(dú)發(fā)酵處理組的淀粉含量隨時(shí)間變化呈波動(dòng)變化,規(guī)律不明顯。對(duì)6個(gè)混合發(fā)酵處理組而言,當(dāng)菊芋渣比例較低(4:1和2:1)時(shí)淀粉含量隨時(shí)間延長(zhǎng)呈增加趨勢(shì);當(dāng)菊芋渣比例較高(1.2:1、1:1.5和1:2.7)時(shí)淀粉含量呈先增加后減少趨勢(shì),且5個(gè)處理組(M3~M7)的淀粉含量均顯著高于發(fā)酵前。這是因?yàn)?,常見的青貯乳酸菌群并不具備分解淀粉的能力,WSC 是厭氧青貯發(fā)酵過程中乳酸菌群的主要發(fā)酵底物,乳酸菌優(yōu)先將WSC作為能量來(lái)源轉(zhuǎn)化為乳酸等有機(jī)酸,從而抑制好氧微生物菌群對(duì)淀粉的分解,導(dǎo)致其相對(duì)含量增加[17]。當(dāng)菊芋渣比例進(jìn)一步增至1:7(M8組),發(fā)酵10 d時(shí)的淀粉含量顯著下降,30d后變化差異不顯著(>0.05)。另一方面,隨著菊芋渣比例的提高,混合發(fā)酵處理組的淀粉含量呈整體下降趨勢(shì),這不僅與原料本底的淀粉含量有關(guān),還與發(fā)酵過程中降解淀粉的微生物及其分解酶相關(guān)[18]??傊?,發(fā)酵時(shí)間、混合比例及其交互作用對(duì)粗蛋白、可溶性碳水化合物和淀粉含量均有顯著影響。
注:SJ-白酒糟單獨(dú)青貯組;SY-菊芋渣單獨(dú)青貯組;M3、M4、M5、M6、M7和M8依次表示白酒糟與菊芋渣的鮮質(zhì)量比為4:1;2:1;1.2:1;1:1.5;1:2.7和1:7;不同大寫字母表示相同時(shí)間不同處理組之間差異顯著(P<0.05),不同小寫字母表示相同處理組不同時(shí)間差異顯著(P<0.05),下同。
酸性洗滌纖維(ADF)、中性洗滌纖維(NDF)和酸性洗滌木質(zhì)素(ADL)是影響生物質(zhì)消化降解性的主要組分,較低的NDF、ADL和一定含量的ADF有利于提高消化降解率[19]。由圖2a可知,當(dāng)菊芋渣比例過高或者過低時(shí),隨著發(fā)酵時(shí)間的延長(zhǎng)ADF含量呈現(xiàn)升高趨勢(shì);當(dāng)二者混合比例為1:1.5和1:2.7時(shí)ADF含量呈下降趨勢(shì),說明該混合比例范圍有助于提高青貯降解性。另一方面,ADF含量隨著菊芋渣比例的升高而呈上升趨勢(shì)。NDF由不溶性纖維素、半纖維素等非淀粉多糖和木質(zhì)素組成。發(fā)酵10和30 d時(shí),隨著菊芋渣比例的提高NDF含量總體呈現(xiàn)“升高-下降”趨勢(shì),而發(fā)酵60 d時(shí)呈下降趨勢(shì)(圖2b)。這是因?yàn)檩^高比例菊芋渣能提供豐富的營(yíng)養(yǎng)物質(zhì)使纖維分解菌變得旺盛;另一方面,隨著發(fā)酵時(shí)間的延長(zhǎng),發(fā)酵體系中WSC組分含量不足以供給微生物菌群代謝利用,需要分解部分結(jié)構(gòu)碳水化合物來(lái)補(bǔ)充碳源。再者,青貯過程中產(chǎn)生的乳酸等有機(jī)酸也會(huì)對(duì)結(jié)構(gòu)碳水化合物產(chǎn)生一定分解作用[20-21]。ADL是影響纖維素和半纖維素等結(jié)構(gòu)性碳水化合物降解的主要屏障,較高的ADL含量會(huì)導(dǎo)致生物降解率降低[19]。如圖2c所示,除M7和M8組外,其余處理組(除M3)在青貯發(fā)酵30 d時(shí)的ADL含量顯著低于其他時(shí)間段(<0.05);過高或過低的菊芋渣比例都使得ADL含量隨發(fā)酵時(shí)間延長(zhǎng)而呈現(xiàn)升高趨勢(shì);適宜的混合比例(如1.2:1)能促進(jìn)ADL分解,使其含量顯著降低??梢?,適宜的青貯發(fā)酵時(shí)間和混合比例有助于減少ADL含量。
圖2 發(fā)酵過程中木質(zhì)纖維組分含量的變化
相對(duì)飼用價(jià)值是衡量動(dòng)物攝入量和能量?jī)r(jià)值的重要指標(biāo),其值越高說明營(yíng)養(yǎng)價(jià)值越高。由圖3可知,當(dāng)混合比例為1.2:1和1:1.5時(shí)青貯發(fā)酵物的相對(duì)飼用價(jià)值顯著高于其他處理組,因?yàn)檫m宜的青貯發(fā)酵比例有助木質(zhì)纖維組分含量的降低,從而使其飼用價(jià)值升高。生物降解潛力也是衡量青貯前后生物質(zhì)可降解性能的重要指標(biāo)。試驗(yàn)中,無(wú)論單獨(dú)發(fā)酵還是混合青貯處理組,生物降解潛力均隨著青貯發(fā)酵時(shí)間的延長(zhǎng)而呈現(xiàn)增加趨勢(shì),說明較長(zhǎng)時(shí)間的青貯有助于提升降解性能。
圖3 發(fā)酵過程中相對(duì)飼用價(jià)值的變化
2.3.1 pH值
pH值是衡量青貯發(fā)酵品質(zhì)的重要指標(biāo),優(yōu)良青貯發(fā)酵pH值一般處于3.8~4.2范圍,當(dāng)pH值低于4.2時(shí)能有效抑制丁酸梭菌等有害微生物[22]。pH在4.4~4.7時(shí)發(fā)酵質(zhì)量一般;pH值高于4.7時(shí)質(zhì)量劣等。如圖4所示,發(fā)酵10 d時(shí),8個(gè)處理組的pH值均快速下降至3.78以下,且隨著菊芋渣比例的提升pH值呈現(xiàn)增加趨勢(shì)。發(fā)酵30和60 d時(shí)各處理組pH值處于3.8~4.2范圍,且隨時(shí)間延長(zhǎng)和菊芋渣比例的增加也呈顯著升高趨勢(shì)(<0.05)??梢?,不同比例酒糟和菊芋渣混合發(fā)酵或2種原料單獨(dú)青貯發(fā)酵均能獲得優(yōu)良青貯品質(zhì),但菊芋渣比重過高的M8組和SY組在發(fā)酵60 d時(shí)pH值瀕臨臨界閾值4.5或超出此范圍,有腐敗變質(zhì)傾向,這可能是由于過高的含水率易導(dǎo)致腐敗菌滋生所致[22]。
圖4 發(fā)酵過程中pH值的變化
2.3.2 氨氮含量
氨氮(占總氮比值)含量反映了發(fā)酵過程中的蛋白質(zhì)和氨基酸分解程度,氨氮含量越高說明氨基酸和蛋白質(zhì)分解越多,意味著發(fā)酵品質(zhì)變差,當(dāng)氨氮含量超出7%時(shí)即認(rèn)為腐敗變質(zhì)[23]。如圖5所示,發(fā)酵10和30 d時(shí),8個(gè)處理組的氨氮含量均隨菊芋渣比重的增加而總體呈現(xiàn)先升高后下降趨勢(shì);發(fā)酵60 d時(shí)總體呈現(xiàn)增加趨勢(shì)。但另一方面,8個(gè)處理組的氨氮含量均低于不良發(fā)酵閾值(7%TN),且最高值僅為5.38%,說明發(fā)酵期間蛋白質(zhì)分解相對(duì)較低,這是因?yàn)榍噘ApH值的快速降低能有效抑制酶或微生物引發(fā)的蛋白質(zhì)降解,從而降低氨氮含量[24]。另一方面,當(dāng)菊芋渣比例較低時(shí),由于微生物細(xì)胞滲透壓增高引起的生理抑制作用使蛋白分解微生物受到抑制;當(dāng)菊芋渣比例較高時(shí),乳酸菌等有益菌群生長(zhǎng)繁殖具備良好營(yíng)養(yǎng)環(huán)境,能代謝利用碳水化合物產(chǎn)生乳酸、乙酸等有機(jī)酸,使pH值下降,進(jìn)而抑制腐敗微生物對(duì)蛋白質(zhì)分解利用。這與姜富貴等[25]報(bào)道的降低含水率能有效抑制梭菌生長(zhǎng),進(jìn)而降低蛋白質(zhì)降解及氨生成相一致。
圖5 發(fā)酵過程中氨氮含量的變化
2.3.3 微生物代謝產(chǎn)物
發(fā)酵過程中微生物菌群的代謝活動(dòng)產(chǎn)生了乳酸、乙酸等小分子有機(jī)酸或醇類物質(zhì)。研究表明,良好青貯體系的乳酸含量應(yīng)占總有機(jī)酸(Lactic Acid/ Total Organic Acids,LA/TOA)60%以上,并占到干物質(zhì)含量的3%~8%;乙酸應(yīng)占到干物質(zhì)含量的1%~4%[26]。另一方面,LA/TOA比值越大,丁酸含量越小,或不含丁酸,則青貯發(fā)酵品質(zhì)越高。如表2所示,隨著發(fā)酵時(shí)間的延長(zhǎng)和菊芋渣比例增加,8個(gè)處理組的乳酸含量均呈現(xiàn)先升高后下降趨勢(shì),乙酸含量則呈顯著升高趨勢(shì),這是因?yàn)榘l(fā)酵初期的可溶性糖底物相對(duì)充足,能為乳酸菌生長(zhǎng)繁殖提供良好條件,代謝旺盛的乳酸菌產(chǎn)生大量乳酸(酸度系數(shù)pKa=3.86),使發(fā)酵體系pH值迅速下降,圖4中10 d時(shí)的pH值變化趨勢(shì)也印證了這一點(diǎn)。隨著時(shí)間的延長(zhǎng),大量發(fā)酵底物被消耗,加之較低的pH值酸性環(huán)境等因素,使乳酸菌繁殖速率放緩,乳酸累積量呈現(xiàn)下降趨勢(shì)(表2)。另一方面,發(fā)酵體系中的乙酸含量呈增加趨勢(shì),這可能是因?yàn)樯倭慨愋桶l(fā)酵乳酸菌能生成具有抗真菌作用的乙酸,從而提高有氧穩(wěn)定性[27-28]。這與Ranathunga、Mjoun等報(bào)道的酒糟與甜菜、酒糟與玉米秸稈混合青貯發(fā)酵過程中乙酸含量隨時(shí)間延長(zhǎng)而增加的趨勢(shì)相吻合[29-30]。有機(jī)酸組分的聯(lián)動(dòng)變化使乳酸/乙酸比值(乳/乙比)整體呈下降趨勢(shì),但仍高于2:1,且多數(shù)處理組的乳/乙比始終高于3,說明混合青貯發(fā)酵過程主要以同型乳酸發(fā)酵為主;同時(shí)LA/TOA在發(fā)酵60 d期間均高于0.6(除60 d時(shí)SY組),顯示出良好的乳酸發(fā)酵強(qiáng)度。另外,發(fā)酵60 d期間,部分處理組檢測(cè)出少量甲酸。甲酸在常規(guī)青貯發(fā)酵中相對(duì)少見,但它是一種常用的青貯添加劑。據(jù)報(bào)道,甲酸能使青貯物料快速酸化,進(jìn)而抑制有害微生物,減少蛋白質(zhì)損失,并對(duì)結(jié)構(gòu)性碳水化合物具有酸解作用[20]。有學(xué)者在銀杏葉青貯中發(fā)現(xiàn)有益微小桿菌()能發(fā)酵葡萄糖產(chǎn)生甲酸[28];本試驗(yàn)中的微生物菌群分析結(jié)果(圖7)也顯示有少量豐度的存在,這可能是甲酸存在的重要原因。此外,青貯發(fā)酵過程中丙酸、丁酸、戊酸等有機(jī)酸均未檢出。丁酸菌是青貯腐敗菌,未檢出丁酸說明青貯發(fā)酵過程未發(fā)生腐敗變質(zhì)。總體而言,8個(gè)處理組的乳酸含量在發(fā)酵60 d期間均符合良好青貯范圍,-score評(píng)分均為優(yōu)等(≥88),尤其酒糟與菊芋渣混合青貯的乳酸含量相對(duì)較高,這與Yuan等[31]報(bào)道的燕麥秸稈青貯時(shí)添加白酒糟能顯著增加乳酸含量結(jié)果一致??梢?,酒糟與菊芋渣混合青貯發(fā)酵品質(zhì)相對(duì)較好,發(fā)酵時(shí)間、混合比例及其交互作用對(duì)青貯發(fā)酵代謝產(chǎn)物均有極顯著影響(<0.001)。
表2 發(fā)酵過程中微生物代謝產(chǎn)物的變化
2.4.1 Alpha多樣性
青貯過程中微生物組成變化與發(fā)酵產(chǎn)物的生成和有機(jī)組分變化息息相關(guān),特別是優(yōu)勢(shì)微生物的種類將直接影響青貯品質(zhì)?;贏lpha多樣性分析的Chao1指數(shù)和ACE指數(shù)用于表示群落物種的豐富度,其值隨著群落物種豐富度的升高而增大;Shannon指數(shù)和Simpson指數(shù)用于表示群落物種的多樣性,Shannon指數(shù)隨著群落多樣性的升高而增大,Simpson指數(shù)則與之相反。由表3可知,隨著發(fā)酵時(shí)間的延長(zhǎng),除SJ組(下降)和M5組(先升后降)外,其余6個(gè)處理組的Chao1和ACE指數(shù)均呈現(xiàn)先下降后升高趨勢(shì),發(fā)酵期間的細(xì)菌群落豐富程度在30 d時(shí)最低。另一方面,8個(gè)處理組的Shannon指數(shù)和Simpson指數(shù)變化趨勢(shì)恰好相反。當(dāng)菊芋渣比例較低時(shí),Shannon指數(shù)呈先降后升趨勢(shì),而Simpson指數(shù)則呈先升后降趨勢(shì);當(dāng)菊芋渣比例超過一半以上時(shí),Simpson指數(shù)呈下降趨勢(shì),Shannon指數(shù)呈增加趨勢(shì)。說明當(dāng)菊芋渣比例較高時(shí),發(fā)酵時(shí)間愈長(zhǎng)細(xì)菌群落多樣性愈豐富,這與OUT數(shù)量變化趨勢(shì)基本一致。因?yàn)樘岣呔沼笤壤苁拱l(fā)酵體系中的水分和糖分含量有效增加,進(jìn)而為乳酸菌等有益微生物發(fā)酵代謝提供良好營(yíng)養(yǎng)環(huán)境。
表3 發(fā)酵過程中的微生物菌群Alpha多樣性
2.4.2 門水平細(xì)菌多樣性
如圖6所示,白酒糟原料的門水平優(yōu)勢(shì)細(xì)菌為變形菌(,62.41%)和厚壁菌(,19.24%),此外還有少量擬桿菌(,9.30%)、藍(lán)藻細(xì)菌(,3.86%)和放線菌(,3.07%)。單獨(dú)發(fā)酵后SJ組的變形菌門豐度從10 d時(shí)53.04%降至60 d時(shí)9.37%,而厚壁菌門豐度則從10 d 時(shí)12.45%上升至60 d 時(shí)47.78%。菊芋渣原料的門水平優(yōu)勢(shì)細(xì)菌主要為厚壁菌(97.84%),單獨(dú)青貯發(fā)酵10 d時(shí)仍以厚壁菌為主,但也出現(xiàn)少量變形菌,且隨發(fā)酵時(shí)間延長(zhǎng)厚壁菌相對(duì)豐度從98.73%(10 d)降至89.35%(60 d),變形菌豐度反而從10 d時(shí)0.36%增加至7.29%(30 d)和6.83%(60 d)。
二者混合發(fā)酵10 d時(shí)演變?yōu)橐院癖诰T(>62.07%)為主、含有少量變形菌門(<20.24%)、藍(lán)藻門(<6.77%)和擬桿菌門(<7.59%)的細(xì)菌微生態(tài)群落結(jié)構(gòu);發(fā)酵30和60 d時(shí)仍保持類似菌群結(jié)構(gòu),且均以厚壁菌門(相對(duì)豐度>54.00%)為主,但各門水平細(xì)菌的相對(duì)豐度隨時(shí)間變化趨勢(shì)不盡相同。另一方面,隨著菊芋渣比例的增加,混貯發(fā)酵體系中的厚壁菌門細(xì)菌逐步占據(jù)優(yōu)勢(shì)主導(dǎo)地位。喬江濤等[32]認(rèn)為厚壁菌門和變形菌門細(xì)菌在厭氧環(huán)境中能有效降解纖維類物質(zhì),為微生物活動(dòng)提供更多能量物質(zhì),這也是發(fā)酵過程中木質(zhì)纖維組分變化的重要原因之一。
注:SJ、SY及M3~M8的后綴1、2、3分別表示發(fā)酵時(shí)間為10、30、60 d。下同。
2.4.3 屬水平細(xì)菌多樣性
如圖7所示,白酒糟原料附著的乳酸細(xì)菌主要有乳桿菌(,11.29%)和少量腸球菌(,0.45%)、鏈球菌(,0.09%),附著的非乳酸細(xì)菌有伯克氏菌(,25.04%)、不動(dòng)桿菌(,15.45%)、志賀氏菌(,3.12%)等。單獨(dú)發(fā)酵10和30 d時(shí)SJ組的屬水平優(yōu)勢(shì)細(xì)菌分別為不動(dòng)桿菌(18.42%)和志賀氏菌(42.12%),乳桿菌屬豐度相對(duì)較低,分別為5.53%和0.27%;60d時(shí)優(yōu)勢(shì)細(xì)菌演變?yōu)槿闂U菌(45.14%)、擬桿菌(,15.66%)、鞘鞍醇單胞菌(,8.09%)、糞桿菌(,7.98%)、檸檬酸桿菌(,5.96%)和乳球菌(,2.44%)等,此時(shí)乳酸細(xì)菌總豐度達(dá)到47.58%以上。菊芋渣原料附著的有益乳桿菌含量豐富,相對(duì)豐度高達(dá)94.51%。單獨(dú)青貯(SY組)發(fā)酵60 d期間的優(yōu)勢(shì)菌屬始終以乳桿菌為主,10、30、60 d時(shí)的相對(duì)豐度分別為98.25%、89.45%和87.52%。
2種原料混合發(fā)酵后的屬水平優(yōu)勢(shì)細(xì)菌同樣以乳桿菌為主。發(fā)酵10 d時(shí),隨著菊芋渣比例的增加,6個(gè)混合發(fā)酵處理組(M3~M8)的乳桿菌相對(duì)豐度逐漸升高,說明菊芋渣不僅能為發(fā)酵體系提供豐富的營(yíng)養(yǎng)物質(zhì),還能引入關(guān)鍵的有益發(fā)酵乳酸菌并為其提供良好生長(zhǎng)環(huán)境。發(fā)酵30 d時(shí)M3組中乳桿菌豐度升至86.87%,M4組~M7組的乳桿菌豐度分別為44.47%、41.22%、73.44%、85.21%;當(dāng)發(fā)酵時(shí)間延至60 d時(shí),6個(gè)混合發(fā)酵處理組的乳桿菌豐度仍處于優(yōu)勢(shì)地位,相對(duì)豐度維持在70.06%~99.44%范圍。這與Tohno等[33]報(bào)道的青貯有關(guān)乳酸菌屬主要有乳桿菌、片球菌()、明串珠菌()和腸球菌相一致。另外,混合發(fā)酵期間還有少量芽孢桿菌、志賀氏菌、不動(dòng)桿菌等細(xì)菌屬(豐度均低于10%),這些腐敗細(xì)菌不僅會(huì)消耗蛋白質(zhì)等營(yíng)養(yǎng)物質(zhì),還會(huì)通過氧化還原反應(yīng)使青貯料腐敗變質(zhì)[25]。正是由于發(fā)酵過程中有益乳酸菌群占據(jù)優(yōu)勢(shì)主導(dǎo)地位,生成一定量的乳酸從而使pH值快速下降,才使得上述腐敗菌被有效抑制,從而更好地保存發(fā)酵原料的營(yíng)養(yǎng)物質(zhì)。當(dāng)然,發(fā)酵生成的乙酸也具有較強(qiáng)的抑菌作用,這也是青貯腐敗菌群較少的重要因素[34]。此外,某些乳酸菌還能生產(chǎn)除乙酸之外的其他抗真菌化合物,這對(duì)提高青貯發(fā)酵品質(zhì)和改善青貯有氧穩(wěn)定性至關(guān)重要。
圖7 發(fā)酵過程中屬水平細(xì)菌群落組成變化
白酒糟與菊芋渣混合能通過水分和營(yíng)養(yǎng)組分調(diào)節(jié)、乳酸菌群互補(bǔ)等方式來(lái)優(yōu)化青貯發(fā)酵品質(zhì),二者在1.2:1和1:1.5比例條件下的木質(zhì)纖維組分含量較低,能有效保存可溶性碳水化合物、蛋白質(zhì)和淀粉等營(yíng)養(yǎng)物質(zhì),實(shí)現(xiàn)有機(jī)組分的優(yōu)化重組,進(jìn)而提高相對(duì)飼用價(jià)值和生物降解潛力。發(fā)酵過程中,以厚壁菌門、乳桿菌屬為主的微生物菌群對(duì)優(yōu)良發(fā)酵品質(zhì)和組分重組變化起到關(guān)鍵作用。建議在實(shí)際生產(chǎn)過程中,可以將干酒糟和菊芋渣以1.2:1比例混合青貯發(fā)酵30 d,既能及時(shí)、高效地保存和轉(zhuǎn)化利用糟渣類生物質(zhì)資源,又能獲得低木質(zhì)素、高含量碳水化合物、高含量乳酸、高生物降解性能的良好青貯品質(zhì),為農(nóng)產(chǎn)品加工副產(chǎn)物的循環(huán)利用奠定基礎(chǔ)。
[1] Sharma S K, Bansal S, Mangal M, et al. Utilization of food processing by-products as dietary, functional, and novel fiber: A review[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(10): 1647-1661.
[2] Ranathunga S D, Kalscheur K F, Garcia P A D, et al. Fermentation characteristics and feeding value of ensiled wet corn distillers grains in combination with wet beet pulp for lactating dairy cows[J]. The Professional Animal Scientist, 2018, 34(4): 346-355.
[3] Joo Y H, Kim D H, Paradhipta D H V, et al. Effect of microbial inoculants on fermentation quality and aerobic stability of sweet potato vine silage[J]. Asian-Australasian Journal of Animal Sciences,2018, 31(12): 1897-1902.
[4] Bernardes A P, Tremblay G F, Bélanger G, et al. Bagasse silage from sweet pearl millet and sweet sorghum as influenced by harvest dates and delays between biomass chopping and pressing[J]. Bioenergy Research, 2016, 9(1): 88-97.
[5] 賈春旺,原現(xiàn)軍,李君風(fēng),等. 青稞酒糟對(duì)紫花苜蓿和多年生黑麥草混合青貯發(fā)酵品質(zhì)的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,39(2):275-280.
Jia Chunwang, Yuan Xianjun, Li Junfeng, et al. Effect of adding wet hulless barley distillers' grains on fermentation quality of mixed ensilage of alfalfa and perennial ryegrass[J]. Journal of Nanjing Agricultural University, 2016, 39(2): 275-280. (in Chinese with English abstract)
[6] 王鳴剛,李夢(mèng)玉,任海偉,等. 纖維素酶對(duì)鮮酒糟青貯飼料營(yíng)養(yǎng)價(jià)值的影響[J]. 釀酒科技,2017(8):116-120,123.
Wang Minggang, Li Mengyu, Ren Haiwei, et al. Effects of cellulase on the nutritive value of silage produced by fresh distillers grains[J]. Liquor-Making Science & Technology, 2017(8):116-120, 123. (in Chinese with English abstract)
[7] 任海偉,邢軍梅,劉曉風(fēng),等. 菊芋渣的組分分析及其酶解糖化條件研究[J]. 食品工業(yè)科技,2016,37(21):139-143.
Ren Haiwei, Xing Junmei, Liu Xiaofeng, et al. Composition analysis and enzymatic hydrolysis saccharification of Jerusalem artichoke residues[J]. Science and Technology of Food Industry, 2016, 37(21): 139-143. (in Chinese with English abstract)
[8] He G Q, Liu T J, Sadiq F A, et al. Insights into the microbial diversity and community dynamics of Chinese traditional fermented foods from using high-throughput sequencing approaches[J].Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2017, 18(4): 289-302.
[9] 曹榮,劉淇,趙玲,等. 基于高通量測(cè)序的牡蠣冷藏過程中微生物群落分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):275-280.
Cao Rong, Liu Qi, Zhao Ling, et al. Microbial flora analysis of oyster during refrigerated storage by high throughput sequencing technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 275-280. (in Chinese with English abstract)
[10] Wang X H, Zhang Y L, Ren H Y, et al. Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing[J]. LWT-Food Science and Technology, 2018, 90: 108-115.
[11] 陶蓮,刁其玉. 青貯發(fā)酵對(duì)玉米秸稈品質(zhì)及菌群構(gòu)成的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(1):198-207.
Tao Lian, Diao Qiyu. Effects of ensiling on quality and bacteria composition of corn stalk[J]. Chinese Journal of Animal Nutrition, 2016, 28(1): 198-207. (in Chinese with English abstract)
[12] 李源,游永亮,趙海明,等. 種植密度對(duì)高丹草農(nóng)藝性狀及飼用品質(zhì)的影響[J]. 草業(yè)科學(xué),2017,34(8):1686-1693.
Li Yuan, You Yongliang, Zhao Haiming, et al. Effects of plant density on agronomic traits and forage quality for×[J]. Pratacultural Science, 2017, 34(8): 1686-1693. (in Chinese with English abstract)
[13] Liu Q H, Shao T, Bai Y F. The effect of fibrolytic enzyme,and two food antioxidants on the fermentation quality, alpha tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures[J]. Animal Feed Science and Technology, 2016, 221: 1-11.
[14] Elnaz M, Fakhri S, Seyed A M. 16S ribosomal DNA analysis and characterization of lactic acid bacteria associated[J]. Journal of Food Processing and Preservation, 2017, 41(4): 1-8.
[15] Ni K K, Wang F, Zhu B, et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage[J]. Bioresource Technology, 2017, 238: 706-715.
[16] Panks S, Jeong H Y, Kim H S, et al. Enhanced production ofendoinulinase inby using the SUC2-deletion mutation[J]. Enzyme and Microbial Technology, 2001, 29(2): 107-110.
[17] 申瑞瑞,孫曉玉,劉博,等. 不同復(fù)合微生物制劑對(duì)薯渣與大豆秸稈混貯發(fā)酵品質(zhì)、營(yíng)養(yǎng)成分及瘤胃降解率的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2019,31(7):3319-3329.
Shen Ruirui, Sun Xiaoyu, Liu Bo, et al. Effects of different compound microorganism preparations on fermentation quality, nutritional components and rumen degradation rate of mixed silage of potato pulp and soybean straw[J]. Chinese Journal of Animal Nutrition, 2019, 31(7): 3319-3329. (in Chinese with English abstract)
[18] 許能祥,董臣飛,顧洪如,等.-淀粉酶對(duì)不同NSC含量稻草青貯品質(zhì)的影響[J]. 草業(yè)學(xué)報(bào),2015,24(11):146-154.
Xu Nengxiang, Dong Chenfei, Gu Hongru, et al. Effect-amylase on fermentation of rice () straw[J]. Acta Prataculturae Sinica, 2015, 24(11): 146-154. (in Chinese with English abstract)
[19] 陰法庭,張鳳華. 飼料油菜與玉米秸稈混合青貯營(yíng)養(yǎng)品質(zhì)[J]. 草業(yè)科學(xué),2018,35(7):1790-1796.
Yin Fating, Zhang Fenghua. Nutritional quality of silage made with different ratios of forage rape and corn stalks[J]. Pratacultural Science, 2018, 35(7): 1790-1796. (in Chinese with English abstract)
[20] 趙金鵬,趙杰,李君風(fēng),等. 不同添加劑對(duì)水稻秸稈青貯發(fā)酵品質(zhì)和結(jié)構(gòu)性碳水化合物組分的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,42(1):152-159.
Zhao Jinpeng, Zhao Jie, Li Junfeng, et al. Effect of different additives on fermentation quality and structural carbohydrates compositions of rice straw silage[J]. Journal of Nanjing Agricultural University, 2019, 42(1): 152-159. (in Chinese with English abstract)
[21] 張亞格,字學(xué)娟,李茂,等. 有機(jī)酸對(duì)柱花草青貯品質(zhì)和營(yíng)養(yǎng)成分的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(5):1609-1614.
Zhang Yage, Zi Xuejuan, Li Mao, et al. Effects of organic acids on quality and nutrient composition ofSilage[J]. Chinese Journal of Animal Nutrition, 2016, 28(5): 1609-1614. (in Chinese with English abstract)
[22] 劉晶晶,高麗娟,師建芳,等. 乳酸菌復(fù)合系和植物乳桿菌提高柳枝稷青貯效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):295-302.
Liu Jingjing, Gao Lijuan, Shi Jianfang, et al. Lactic acid bacteria community andimproving silaging effect of switchgrass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 295-302. (in Chinese with English abstract)
[23] 王旭哲,張凡凡,馬春暉,等. 壓實(shí)度對(duì)玉米青貯開窖后營(yíng)養(yǎng)品質(zhì)及有氧穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):300-306.
Wang Xuzhe, Zhang Fanfan, Ma Chunhui, et al. Effect of compaction on nutritional quality and aerobic stability of silage corn after opening silos[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 300-306. (in Chinese with English abstract)
[24] Desta S T, Yuan X J, Li J F, et al. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of apier grass ensiled with additives[J]. Bioresource Technology, 2016, 221: 447-454.
[25] 姜富貴,成海建,劉棟,等. 不同收獲期對(duì)全株玉米青貯營(yíng)養(yǎng)價(jià)值、發(fā)酵品質(zhì)和瘤胃降解率的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2019,31(6):2807-2815.
Jiang Fugui, Cheng Haijian, Liu Dong, et al. Effects of different harvest stages on nutritional value, fermentation quality and rumen degradability of whole corn silage[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2807-2815. (in Chinese with English abstract)
[26] McDonald P, Henderson A R, Heron S J E. The Biochemistry of Silage (Second Edition) [M]. England: Chalcombe Publications, 1991.
[27] 王旭哲,張凡凡,馬春暉,等. 同/異型乳酸菌對(duì)青貯玉米開窖后品質(zhì)及微生物的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):296-304.
Wang Xuzhe, Zhang Fanfan, Ma Chunhui, et al. Corn silage fermentation quality and microbial populations as influenced by adding homo- and hetero-fermentative bacteria after silos opened[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 296-304. (in Chinese with English abstract)
[28] He Liwen, Wang Cheng, Xing Yaqi, et al. Dynamics of proteolysis, protease activity and bacterial community ofleaves silage and the effects of formic acid and Lactobacillus farciminis[J]. Bioresource Technology, 2019, 294.
[29] Ranathunga S D, Kalscheur K F, Garcia A D, et al. Fermentation characteristics and feeding value of ensiled wet corn distillers grains in combination with wet beet pulp for lactating dairy cows[J]. The Professional Animal Scientist, 2018, 34(4): 346-355.
[30] Mjoun K, Kalscheur F K, Garcia A D. Fermentation characteristics and aerobic stability of wet corn distillers grains with solubles ensiled in combination with whole plant corn[J]. Journal of the Science of Food and Agriculture, 2011, 91(7): 1336-1340.
[31] Yuan X, Dong Z, Desta S T, et al. Inclusion of wet hulless-barley distillers'grains in mixed silage enhances fermentation and in vitro degradability in Tibet[J]. Grassland Science, 2016, 62(4): 248-256.
[32] 喬江濤,郭榮波,袁憲正,等. 玉米秸稈厭氧降解復(fù)合菌系的微生物群落結(jié)構(gòu)[J]. 環(huán)境科學(xué),2013,34(4):1531-1539.
Qiao Jiangtao, Guo Rongbo, Yuan Xianzheng, et al. Phylogenetic analysis of methanogenic corn stalk degrading microbial communities[J]. Environmental Science, 2013, 34(4): 1531-1539. (in Chinese with English abstract)
[33] Tohno M, Kitahara M, Irisawa T, et al.. Isolated from orchardgrass silage[J]. International Journal of Systematic & Evolutionary Microbiology, 2013, 63(12): 4613-4618.
[34] Dunière L, Sindou J, Chaucheyras-Durand F, et al. Silage processing and strategies to prevent persistence of undesirable microorganisms[J]. Animal Feed Science and Technology, 2013, 182(1/2/3/4): 1-15.
Ensiling co-fermentation quality and microbial community diversity of grain stiller and inulin processing residue from
Ren Haiwei1,3,4,Wang Li1, Zhu Zhaohua1, Sun Anqi1, Wang Zhiye2, Li Jinping1,3,4, Li Zhizhong1※
(1.730050; 2.730050; 3.730050; 4.730050,)
Large amount of processing waste produced by the food industry is increasing every year, as the rising demands for crop production by growing human population. Currently, most of the waste is usually discarded, only part of which can be utilized to produce value-added products to some extent. The dispose of food processing waste has posed serious management problems on environmental protection. Alternatively, many of these residues with the nutritional value have the great potential to be reused into other production systems, in order to reduce a great loss of valuable materials, from the economic and environmental point of view. Specifically, most food wastes are rich in protein, starch, cellulose, and monosaccharides, mainly fructose and glucose. However, the high moisture content has been identi?ed as a major obstacle to the management of biodegradable food processing waste. It is necessary to develop an upstream storage, and thereby to meet the requirement for a constant supply of utilization for bioenergy and ruminant feed. Ensiling can be an efficient way to preserve biomass with very low fermentation loss, particularly for the cyclic utilization of food processing waste. Using the silage theory, the present study aims to perform the co-ensiling of grain stillage and inulin processing residue from, and thereby to prepare the fermented forage with well-quality. Two by-products were co-fermented with eight mixing ratios of 1:0, 4:1, 2:1, 1.2:1, 1:1.5, 1:2.7, 1:7 and 0:1. The dynamic changes of nutritional components, lignocellulosic components and fermentation characteristics were investigated at 10, 30 and 60 days, respectively. A high throughput sequencing technique was used to analyze the microbial community diversity during ensiling. The results showed that the contents of neutral detergent fiber, acid detergent fiber and acid detergent lignin in silages at the ratio of grain stillage and inulin processing residue for 1.2:1 (M5) and 1:1.5 (M6) were significantly lower than that of other silages (<0.05), accompanied by the higher content of soluble carbohydrates, resulting in the relative superior feed value and biodegradation potential at 60 days. The fermentation characteristics, including pH, the content of ammonium nitrogen and lactic acid in all silages, were in the range of excellent fermentation quality, indicating the excellent-score scores (≥88). During the sole fermentation of grain stillage or inulin processing residue, the dominant bacteria at phylum level wereandThere was a remarkable change of bacterial community after co-ensiling fermentation.phylum and acid-tolerance lactic acid bacteriadominated in the co-silages of grain stillage and inulin processing residue, respectively. Ensiling fermentation can be considered as a competition process between lactic acid bacteria and undesirable microorganisms, whose result can largely determine the silage quality at the different mixing ratios. The fermentation quality at the ratio of 1.2:1 and 1:1.5 for silages at 60 days were excellent, indicating that the grain stillage and inulin processing residue can achieve the high-quality ensiling by the synergistic effect in terms of biochemical characteristics. Considering the utilization and efficiency of biomass, it is suggested that the co-ensiling fermentation of grain stillage and inulin processing residue was performed at the mixed ratio of 1.2:1 for 30 days in the actual production. It infers that the co-ensiling fermentationis an effective approach for food processing waste. The finding can offer new promising possibilities for the solution of environmental pollution that induced by processing waste in food industry.
wastes; fermentation; microbial community; grain stillage;residue
10.11975/j.issn.1002-6819.2020.15.029
TS209
A
1002-6819(2020)-15-0235-10
任海偉,王莉,朱朝華,等. 白酒糟與菊芋渣混合青貯發(fā)酵品質(zhì)及微生物菌群多樣性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):235-244.doi:10.11975/j.issn.1002-6819.2020.15.029 http://www.tcsae.org
Ren Haiwei,Wang Li, Zhu Zhaohua, et al.Ensiling co-fermentation quality and microbial community diversity of grain stiller and inulin processing residue from[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 235-244. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.029 http://www.tcsae.org
2020-04-07
2020-06-16
國(guó)家自然科學(xué)基金(51666010,51366009);中國(guó)博士后科學(xué)基金(2018M631217,2019T120961);甘肅省自然科學(xué)基金(18JR3RA150);蘭州理工大學(xué)紅柳杰出青年人才支持計(jì)劃(JQ2020)和一流學(xué)科計(jì)劃(0807J1)
任海偉,博士,副教授,研究方向:食品加工副產(chǎn)物利用。Email:rhw52571119@163.com
李志忠,教授,研究方向?yàn)槭称飞锘瘜W(xué)。Email:zzli2004@lut.cn
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:會(huì)員號(hào)(E041200735S)