• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有吸毒年齡和治療年齡的海洛因模型的全局穩(wěn)定性

    2020-09-05 06:58:08劉俊利
    關(guān)鍵詞:理學(xué)院海洛因全局

    劉俊利

    (西安工程大學(xué)理學(xué)院,西安 710048)

    1 Introduction

    Illicit opioid use can cause significant public health problems, which have been identified in many countries across the globe[1]. Dependent heroin or other opioid users continue to use opioids despite the significant social and health problems. Research in Europe and the United States indicates that dependent heroin users, who seek treatment, may continue to use heroin for decades[2-4]. After completing a given episode of drug treatment, the majority of drug users will relapse to heroin use[5]. Heroin had long been the primary drug of abuse in China since the reemergence of the drug problem in the country in early 1980s[6]. In addition to their deleterious somatic and psychological effects, heroin abuse and dependence may result in the transmission of human immunodeficiency virus (HIV) and hepatitis C virus (HCV)[7,8]. Treatment of heroin/morphine users and users of other drugs such as cocaine is a costly procedure and is a major burden on the health system of any country. Mathematical models are important tools for studying the spread and control of infectious disease, and as such, could hopefully becomes a useful technique to aid specialists in devising treatment strategies. Although much have been done in terms of modeling and analysis of disease transmission, little has been done to apply these techniques to the emerging heroin epidemics.

    In fact, the spread of heroin habituation and addiction can be well modeled by epidemic-type models as “transmission” occurs in the form of peer pressure where established users recruit susceptible individuals into trying and using the drug. Recently,White and Comiskey[9]proposed a standard model, comprised of three state variables corresponding to susceptibles, heroin users, and heroin users in treatment. The basic reproduction number R0is proposed, sensitivity analysis is performed on R0, the stability of the system is investigated in terms of R0. Mulone and Straughan[10]further discussed the stability of the positive equilibrium of the White and Comiskey[9]model for heroin epidemics. Motivated by the works of White and Comiskey[9]and Mulone and Straughan[10], several heroin models have been developed based on the principles of mathematical epidemiology. Wang et al[11]proposed a system of ordinary differential equations(ODEs)to model the spread of heroin,and studied the global stability of the disease-free equilibrium and the positive equilibrium by using the second compound matrix. Liu and Zhang[12]considered the delay effect in those returning to untreated drug taking from a treatment programme,they assumed that the time needed to return to untreated drug varies according to drug users’ different temporal, social, and physical contexts, they proposed a delay differential equation, where distributed delay was introduced in the relapse term. The global dynamics of [12] was also investigated in[13]by constructing appropriate Lyapunov functional. Fang et al[14]presented a heroin epidemic model with two distributed delays, one is the progression-to-use time delay to describe the time needed for a susceptible individual to become an infectious heroin user. The other is the relapse delay to describe the time needed for a treated drug user to return to untreated drug user. The global asymptotic stability of the heroin epidemic model was obtained by the method of Lyapunov functional. To investigate seasonal variations in heroin epidemic,Samanta[15]considered a nonautonomous heroin epidemic model, using the method of Lyapunov functional, some sufficient conditions are derived for the global asymptotic stability of the system.

    Age structure is also an important characteristic in the modeling of some infectious diseases. In general, there are two different age structures in disease models: biological age and infection age[16]. Two types of age-related models exist in the literature; that is, age-structured models[17,18]and age-of-infection models[19-21].

    Age-related models are normally has the form of partial differential equations(PDEs) or integro-differential equations, therefore, their dynamical analyses are more difficult than those of the ordinary differential equations models. To investigate the influence of the age on the spread of the heroin epidemic, Fang et al[22]presented a heroin epidemic model with age-dependent susceptibility, the global dynamics was obtained by using a suitable Volterra type Lyapunov function. Fang et al[23]studied the influence of the treat-age for the heroin users during the treatment, the global dynamics was investigated by constructing a class of global Lyapunov functional. Infectivity experiments have suggest that the importance of variable infectivity in the spread of infectious diseases[24], hence it is important in modeling heroin to track the infection age of drug users.

    In this paper, we will develop a heroin model with both the infection age of drug users not in treatment and the treat age of drug users in treatment. Our model is different from the one proposed in[22], which incorporates the biological age of susceptile individuals in modeling heroin. For our heroin model, the basic reproduction number R0is defined. R0was proved to be a threshold determining whether or not the disease dies out. Specifically, if R0< 1, there exists only the disease-free steady state which is globally asymptotically stable by applying the fluctuation lemma; and if R0> 1,then there is a unique endemic steady state that is globally asymptotically stable by constructing suitable Lyapunov functional and the disease persists at the endemic level.The Lyapunov functional we used is of the same type as those in [16,20,25–28].

    This paper is organized as follows. In the next section, we give the underlying assumptions and formulate the PDE heroin model. In section 3,we study the existence of steady states,calculate the basic reproduction number,and analyze the local stability of steady states. In the following section, we establish the threshold dynamics of the model in terms of the basic reproduction number. We conclude in section 5 with a discussion.

    2 Model formulation

    Let S(t) denote the number of susceptible individuals at time t ≥0, we call the time from becoming drug users to present the infection age and denote it by a, then U1(t,a) denote the number of drug users not in treatment at time t with infection age a, and U2(t,c) denote the number of drug users in treatment at time t, c ≥0 denotes the treat age of the heroin drug users undergoing treatment at time t. Consider a PDE heroin model as follows

    with boundary conditions

    and initial conditions

    The meanings of all parameters in (1) are as follows:

    Λ: The constant recruitment entering the susceptible population;

    μ: The natural death rate of the general population;

    δ1(a): A removal rate with infection age a that includes drug-related deaths of users not in treatment and a spontaneous recovery rate; individuals not in treatment who stop using drugs but are no longer susceptible;

    δ2(c): A removal rate with treat age c that includes drug-related deaths of users in treatment and a rate of successful“care”that corresponds to recovery to a drug free life and immunity to drug addiction for the duration of the modeling time period;

    β(a): The probability of becoming a drug user at infection age a;

    p(a): The probability of drug users with infection age a who enter treatment;

    k(c): The probability of a drug user in treatment with treat age c relapsing to untreated use.

    For system (1), we make the following hypotheses about the parameters.

    (H1): Λ, μ>0.

    (H2): k, p, β ∈CBU(R+,R+), where CBU(R+,R+) is the set of all bounded and uniformly continuous functions from R+to R+.

    (H4): For any a > 0, there exists aβ, ap> a such that β is positive in a neighbourhood of aβand p is positive in a neighbourhood of ap.

    then (1) is well-posed.

    The norm has the biological interpretation of giving the total population size.

    For a, c ≥0, let

    It follows from (H1), (H3) and (H4) that θ1>0 and is finite, 0<θ2<1, 0 ≤θ3<1.

    We follow [17] and integrate the equations for U1and U2in (1) along the characteristic line t ?a=constant and t ?c=constant, respectively, we obtain

    Using standard methods we can verify the existence, uniqueness, non-negativity of solutions to model (1) with the boundary conditions (2) and initial conditions (3) (see[17,29]). Furthermore, system(1)defines a continuous solution semiflow Φ:R+×X →X by

    Let

    Then by (1), (2), (5) and (6), we have

    Denote

    We know ? is a positively invariant and attractive set for system (1).

    Then if we consider the limit behaviour of (1), we only need to consider solutions of (1) with initial conditions in ?.

    3 Steady states and their local stability

    Thus, R0is the basic reproduction number[31,32], and acts as a threshold as is shown in section 5.

    with boundary conditions

    Then from the second equation of (7), we have

    By using the third equation of (7), the second equation of (8) and (9), we get

    Substituting (9) into the first equation of (7), we obtain

    Substituting (9)–(11) into the first equation of (8) gives

    S(t)=x0eλt, U1(t,a)=y0(a)eλt, U2(t,c)=z0(c)eλt,

    then substituting them into (12), we get

    Then the solution of (13) satisfies the characteristic equation

    Theorem 2The following statements are valid:

    Proof1) By (14), the characteristic equation at E0is

    where

    Clearly, ?μ is a root of (15), and the other roots of (15) is determined by f(λ) = 1.Note that f(λ) is a continuously differential function and

    then f(λ)=1 has a unique real root λ?. Since

    then λ?<0 if R0<1, and λ?>0 if R0>1. Hence the disease-free steady state E0is unstable if R0>1.

    If R0<1, let λ=x+iy with x,y ∈R be a root of f(λ)=1. Then we have

    1=|f(λ)|=|f(x+iy)|≤f(x),

    which means that λ?≥x, thus all roots of f(λ) = 1 must have negative real parts.Therefore, E0is locally asymptotically stable if R0<1.

    2) By (14), the characteristic equation at E?is

    where

    The modulus of the right-hand side of (17) satisfies

    the last inequality follows from the fact that

    which is a contradiction to (17). This means that all roots of (16) have negative real parts. Therefore, E?is locally asymptotically stable if R0>1.

    4 Global asymptotic stability of the steady states

    In this section, we study the global stability of the steady states. First we prove the global stability of the disease-free steady state by applying the fluctuation lemma.

    Lemma 1[33]Let h:R+→R be a bounded and continuously differential function.Then there exists sequences {sn} and {tn} such that sn→∞, tn→∞, h(sn) →h∞, h(tn)→h∞, h′(sn)→0 and h′(tn)→0 as n →∞.

    The following theorem states that the disease dies out eventually if the basic reproduction number is less than unity.

    ProofBy Theorem 2,we only need to show that E0is globally attractive. Recall that

    we then get

    and

    It follows that

    Hence, (18) and (19) together yields

    By (5), we get

    which implies that

    similarly, we have

    We now prove the global stability of the endemic steady state by constructing suitable Lyapunov functional. The following result shows that if R0> 1, the disease persists at the unique endemic steady state level.

    ProofAgain by Theorem 2, it suffices to show that E?is globally attractive.Define

    Construct a Lyapunov functional V =V1+V2+V3with

    where nonnegative functions α(a) and γ(c) are given by

    Using the steady state equations (7), differentiating V1along the solutions of (1)gives

    Similar proof as those in [16], we have the following results

    It follows from (21) and (22) that

    α′(a)=ξ1(a)α(a)?(β(a)S?+γ(0)p(a)), γ′(c)=ξ2(c)γ(c)?k(c).

    Also notice that γ(0)=θ3and α(0)=θ1S?+θ2θ3=1, hence, we have

    Hence, adding (23)–(25) together yields

    Here, we have used the equality

    Notice that

    and

    Adding (26)–(28) together yields

    Since 1 ?x+ln x ≤0 for x > 0 with equality holding if and only if x = 1. Hence,V′≤0, and V′=0 implies that S =S?and

    It can be verified that the largest invariant set where V′= 0 is the singleton {E?}.Therefore,the endemic steady state E?is globally asymptotically stable in ?0if R0>1.This completes the proof.

    5 Discussions

    In this article,a PDE heroin model(1)is proposed here to incorporate the infectionage of drug users not in treatment and the treat-age of drug users in treatment. We have shown that the global dynamics of (1) is determined completely by the basic reproduction number R0. The disease dies out if R0< 1 and the disease persists if R0> 1. Fluctuation lemma is used to show the global stability of the disease-free steady state. Following the construction of Lyapunov functionals used in [16], one Lyapunov functional is constructed to show the global stability of the endemic steady state.

    For a given set of parameters, a sensitivity analysis of R0could be used to guide disease control strategies. The aim of our model is to identify parameters of interest for study in the drug-using career, our results can be used to inform and assist policymakers in targeting prevention and treatment resources for maximum effectiveness.

    Suppose β(a) = β, δ1(a) = δ1, δ2(a) = δ2and p(a) = p for some β, δ1, δ2, p > 0.Let

    represents the total number of drug users not in treatment at time t, then system (1)becomes

    with boundary condition

    for t ≥0. This model is a special case of our model (1), it was proposed in [23], the global behaviour of system (29) was resolved in [23]. Our global stability results also provide the global dynamics for (29).

    猜你喜歡
    理學(xué)院海洛因全局
    昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
    昆明理工大學(xué)理學(xué)院簡(jiǎn)介
    Cahn-Hilliard-Brinkman系統(tǒng)的全局吸引子
    量子Navier-Stokes方程弱解的全局存在性
    落子山東,意在全局
    金橋(2018年4期)2018-09-26 02:24:54
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    海洛因依賴患者慢性嚴(yán)重疼痛對(duì)睡眠質(zhì)量的影響
    短期戒斷的海洛因成癮者大腦白質(zhì)完整性的DTI研究
    磁共振成像(2015年2期)2015-12-23 08:52:21
    呼和浩特地區(qū)部分土制海洛因的分析
    新思路:牽一發(fā)動(dòng)全局
    日本猛色少妇xxxxx猛交久久| 国产成人freesex在线| 久久精品夜夜夜夜夜久久蜜豆| 97超碰精品成人国产| 国产v大片淫在线免费观看| 少妇人妻精品综合一区二区| 成人无遮挡网站| 国产一区二区在线av高清观看| 身体一侧抽搐| 禁无遮挡网站| 九九久久精品国产亚洲av麻豆| 日韩av在线免费看完整版不卡| 寂寞人妻少妇视频99o| 国内精品一区二区在线观看| 中文字幕久久专区| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦啦在线视频资源| 精品久久久久久久末码| 在线免费观看的www视频| 我的女老师完整版在线观看| 国产高清不卡午夜福利| 欧美97在线视频| 免费av观看视频| 午夜免费男女啪啪视频观看| 国产精品不卡视频一区二区| 99久久精品一区二区三区| 99热这里只有是精品50| 老师上课跳d突然被开到最大视频| 国产精品久久电影中文字幕| 老司机福利观看| 午夜激情欧美在线| 干丝袜人妻中文字幕| 热99re8久久精品国产| 亚洲人与动物交配视频| 三级国产精品片| 麻豆乱淫一区二区| 欧美性猛交╳xxx乱大交人| a级毛片免费高清观看在线播放| 久久婷婷人人爽人人干人人爱| 欧美日韩一区二区视频在线观看视频在线 | 特级一级黄色大片| 国产精品永久免费网站| 国产综合懂色| 在线播放国产精品三级| 99热这里只有精品一区| 热99re8久久精品国产| 麻豆精品久久久久久蜜桃| videos熟女内射| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久v下载方式| 国产在线男女| kizo精华| 色综合色国产| 欧美激情国产日韩精品一区| 日韩国内少妇激情av| 国产伦在线观看视频一区| 伦理电影大哥的女人| 日本-黄色视频高清免费观看| 国产高清不卡午夜福利| 国内精品美女久久久久久| 亚洲av二区三区四区| 国产精品野战在线观看| 久久久久久久亚洲中文字幕| 美女高潮的动态| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又刺激的免费视频.| 美女被艹到高潮喷水动态| 欧美日本视频| 日韩国内少妇激情av| 国产真实乱freesex| 久久久久久大精品| .国产精品久久| 精品久久久久久久久久久久久| 国产精品嫩草影院av在线观看| 日韩成人av中文字幕在线观看| 亚洲欧美清纯卡通| 国产精品一区www在线观看| 特大巨黑吊av在线直播| 日本一本二区三区精品| 欧美日韩国产亚洲二区| 精品酒店卫生间| 亚洲成人av在线免费| 欧美一区二区精品小视频在线| 九九久久精品国产亚洲av麻豆| 国国产精品蜜臀av免费| 嫩草影院入口| 老司机影院成人| 免费看av在线观看网站| 99久久成人亚洲精品观看| 午夜久久久久精精品| 波多野结衣巨乳人妻| 欧美人与善性xxx| 亚洲中文字幕日韩| 美女脱内裤让男人舔精品视频| h日本视频在线播放| 亚洲第一区二区三区不卡| 日本与韩国留学比较| 日本猛色少妇xxxxx猛交久久| 精品久久久久久久末码| 久久久久性生活片| 一卡2卡三卡四卡精品乱码亚洲| 日韩一区二区视频免费看| 国产成人一区二区在线| 精品不卡国产一区二区三区| 三级国产精品欧美在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品综合久久久久久久免费| 少妇被粗大猛烈的视频| 亚洲av福利一区| 深爱激情五月婷婷| 国产亚洲精品久久久com| 久久精品国产99精品国产亚洲性色| 亚洲美女搞黄在线观看| 赤兔流量卡办理| h日本视频在线播放| 蜜臀久久99精品久久宅男| 久久久久精品久久久久真实原创| 精品一区二区免费观看| 久久久久久久午夜电影| 18禁在线播放成人免费| 成人性生交大片免费视频hd| 免费黄色在线免费观看| 日本三级黄在线观看| 秋霞伦理黄片| 三级男女做爰猛烈吃奶摸视频| 22中文网久久字幕| 欧美日本亚洲视频在线播放| 久久久久久久久久黄片| 亚洲av一区综合| 日韩av在线大香蕉| 欧美一区二区亚洲| 国语对白做爰xxxⅹ性视频网站| 亚洲一区高清亚洲精品| 最近最新中文字幕大全电影3| 亚洲av中文字字幕乱码综合| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 少妇的逼好多水| 日韩av在线大香蕉| 久久人人爽人人片av| 欧美一级a爱片免费观看看| 国产精品乱码一区二三区的特点| 人人妻人人澡人人爽人人夜夜 | 国产一区有黄有色的免费视频 | 最近最新中文字幕大全电影3| 亚洲国产精品合色在线| 男人舔奶头视频| 国产精品一区二区三区四区免费观看| 亚洲国产高清在线一区二区三| 91久久精品电影网| 亚洲av男天堂| 日本免费a在线| 99久国产av精品国产电影| 色尼玛亚洲综合影院| 国产成人a区在线观看| 99久久九九国产精品国产免费| 2022亚洲国产成人精品| av免费在线看不卡| 一级二级三级毛片免费看| 国产成人aa在线观看| 国产精品电影一区二区三区| www.av在线官网国产| 日韩欧美在线乱码| 久久鲁丝午夜福利片| 久久欧美精品欧美久久欧美| 国产成人免费观看mmmm| 嫩草影院精品99| 国产成人aa在线观看| 国产成人a区在线观看| 在线a可以看的网站| 日韩精品有码人妻一区| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲网站| 天堂影院成人在线观看| 色综合色国产| av免费观看日本| 最近视频中文字幕2019在线8| 麻豆av噜噜一区二区三区| 伊人久久精品亚洲午夜| 男人舔奶头视频| 青春草亚洲视频在线观看| 一二三四中文在线观看免费高清| 午夜老司机福利剧场| 别揉我奶头 嗯啊视频| 国产午夜精品一二区理论片| 麻豆久久精品国产亚洲av| 99久久精品热视频| 久久精品久久精品一区二区三区| 久久精品国产99精品国产亚洲性色| 久久久久免费精品人妻一区二区| 欧美日韩综合久久久久久| 91午夜精品亚洲一区二区三区| 99在线人妻在线中文字幕| 男人和女人高潮做爰伦理| 亚洲精品一区蜜桃| 成年版毛片免费区| 久久精品久久久久久噜噜老黄 | 国产免费又黄又爽又色| 在线天堂最新版资源| 久久精品国产自在天天线| 18禁在线播放成人免费| 欧美成人免费av一区二区三区| 国产午夜精品论理片| 日韩欧美 国产精品| 又粗又硬又长又爽又黄的视频| 亚洲在久久综合| 国产精品久久久久久久电影| 午夜免费男女啪啪视频观看| 2021天堂中文幕一二区在线观| 99九九线精品视频在线观看视频| 精品人妻熟女av久视频| 99热精品在线国产| 国产免费福利视频在线观看| 七月丁香在线播放| 一个人免费在线观看电影| 丰满少妇做爰视频| 亚洲av不卡在线观看| 18+在线观看网站| 日韩av不卡免费在线播放| 97在线视频观看| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 国产午夜福利久久久久久| 精品一区二区免费观看| 18禁在线播放成人免费| 99热全是精品| 国产亚洲精品av在线| 精品一区二区三区人妻视频| 日日撸夜夜添| 禁无遮挡网站| 联通29元200g的流量卡| 国产熟女欧美一区二区| 美女国产视频在线观看| 免费搜索国产男女视频| 特大巨黑吊av在线直播| 日本熟妇午夜| 国产午夜精品久久久久久一区二区三区| 舔av片在线| 最近2019中文字幕mv第一页| 亚洲丝袜综合中文字幕| 我的老师免费观看完整版| 村上凉子中文字幕在线| 噜噜噜噜噜久久久久久91| АⅤ资源中文在线天堂| 大香蕉97超碰在线| 久久精品国产鲁丝片午夜精品| 麻豆成人av视频| 男人舔女人下体高潮全视频| 嫩草影院新地址| 中文字幕制服av| 成年版毛片免费区| 我的女老师完整版在线观看| 国产精品久久久久久精品电影小说 | 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩东京热| 亚洲精品成人久久久久久| 狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| 日韩,欧美,国产一区二区三区 | 国产视频内射| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 一级毛片电影观看 | 午夜视频国产福利| 午夜日本视频在线| 99在线人妻在线中文字幕| 能在线免费观看的黄片| kizo精华| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 亚洲伊人久久精品综合 | 一区二区三区四区激情视频| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 熟女电影av网| av国产免费在线观看| 一个人观看的视频www高清免费观看| 少妇熟女欧美另类| 联通29元200g的流量卡| 午夜福利网站1000一区二区三区| 国产精品日韩av在线免费观看| 99热全是精品| 99久久九九国产精品国产免费| 久久久久久久久大av| 久久久色成人| 小蜜桃在线观看免费完整版高清| 人人妻人人澡欧美一区二区| 亚洲国产精品成人综合色| 蜜桃久久精品国产亚洲av| 在线观看66精品国产| 亚洲综合色惰| 日本欧美国产在线视频| 国产又色又爽无遮挡免| 国产午夜精品久久久久久一区二区三区| 综合色丁香网| 成人二区视频| 亚洲在久久综合| 免费观看a级毛片全部| 丝袜美腿在线中文| 十八禁国产超污无遮挡网站| 久久精品人妻少妇| 国产黄色小视频在线观看| 国产精品一区www在线观看| 看片在线看免费视频| 亚洲精品自拍成人| 搡女人真爽免费视频火全软件| 亚洲综合精品二区| 国产伦精品一区二区三区四那| 亚洲真实伦在线观看| 欧美激情在线99| 国产成人a区在线观看| 亚洲av中文av极速乱| 超碰av人人做人人爽久久| 18禁动态无遮挡网站| 内射极品少妇av片p| 国产成人免费观看mmmm| 一边摸一边抽搐一进一小说| 男女那种视频在线观看| 男的添女的下面高潮视频| 一个人免费在线观看电影| 国产综合懂色| 又粗又爽又猛毛片免费看| 国产黄色小视频在线观看| 国产精品麻豆人妻色哟哟久久 | 日日啪夜夜撸| 偷拍熟女少妇极品色| 欧美成人精品欧美一级黄| 成年女人看的毛片在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品456在线播放app| 国产伦理片在线播放av一区| 少妇被粗大猛烈的视频| 国产亚洲av嫩草精品影院| 一级爰片在线观看| 国内少妇人妻偷人精品xxx网站| 成人午夜高清在线视频| 亚洲在线观看片| 国产精品国产三级专区第一集| 国产高清有码在线观看视频| 99热这里只有是精品50| 亚洲乱码一区二区免费版| 一夜夜www| 丝袜喷水一区| 少妇人妻一区二区三区视频| 春色校园在线视频观看| 中文资源天堂在线| 日韩精品有码人妻一区| 精品欧美国产一区二区三| 欧美变态另类bdsm刘玥| av免费观看日本| 麻豆成人午夜福利视频| 伦理电影大哥的女人| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 国产亚洲av片在线观看秒播厂 | 欧美高清成人免费视频www| 日韩精品有码人妻一区| 禁无遮挡网站| 国产伦在线观看视频一区| 99久久精品热视频| 亚洲成人久久爱视频| 精品酒店卫生间| 国产一区亚洲一区在线观看| 中文字幕精品亚洲无线码一区| 久久久久久大精品| 国产乱来视频区| 亚洲国产精品合色在线| 国产一区亚洲一区在线观看| 麻豆精品久久久久久蜜桃| 人体艺术视频欧美日本| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 欧美日韩综合久久久久久| 国产精品三级大全| 久久草成人影院| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 青春草视频在线免费观看| 亚洲欧美精品专区久久| 一级毛片我不卡| 国产亚洲精品av在线| 爱豆传媒免费全集在线观看| 成人二区视频| 1000部很黄的大片| 日本爱情动作片www.在线观看| 一级爰片在线观看| 五月伊人婷婷丁香| 国产在视频线精品| 国产伦精品一区二区三区四那| 草草在线视频免费看| 色视频www国产| 国产高清不卡午夜福利| 国产精品女同一区二区软件| 国产成人a区在线观看| 亚洲精品成人久久久久久| 精品一区二区三区视频在线| 亚洲成av人片在线播放无| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人人爽人人片av| 我要看日韩黄色一级片| 国产极品精品免费视频能看的| 久久精品影院6| 久久精品国产亚洲网站| 网址你懂的国产日韩在线| 麻豆国产97在线/欧美| 中文字幕精品亚洲无线码一区| 熟女电影av网| 国产精品爽爽va在线观看网站| 亚洲国产精品久久男人天堂| 1000部很黄的大片| 国产黄色小视频在线观看| 99久久精品一区二区三区| 搡女人真爽免费视频火全软件| 99热这里只有是精品在线观看| 黄色日韩在线| 亚洲国产欧洲综合997久久,| 欧美丝袜亚洲另类| 免费人成在线观看视频色| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 精品不卡国产一区二区三区| 深爱激情五月婷婷| 大又大粗又爽又黄少妇毛片口| 午夜a级毛片| 亚洲成人久久爱视频| 全区人妻精品视频| 我要搜黄色片| av专区在线播放| 国产精品国产三级国产av玫瑰| a级毛色黄片| 久久久亚洲精品成人影院| 亚洲欧美成人综合另类久久久 | 又粗又硬又长又爽又黄的视频| 内地一区二区视频在线| 22中文网久久字幕| 一个人免费在线观看电影| 中文字幕久久专区| 久久这里只有精品中国| 能在线免费看毛片的网站| 国产伦精品一区二区三区四那| 九九热线精品视视频播放| 97超视频在线观看视频| 日本黄色片子视频| 我的老师免费观看完整版| 一区二区三区四区激情视频| 亚洲在线观看片| 国产亚洲5aaaaa淫片| 少妇猛男粗大的猛烈进出视频 | 校园人妻丝袜中文字幕| 成人一区二区视频在线观看| 哪个播放器可以免费观看大片| 老司机影院成人| 人妻制服诱惑在线中文字幕| 色综合站精品国产| 九九爱精品视频在线观看| 又粗又爽又猛毛片免费看| av在线播放精品| 老师上课跳d突然被开到最大视频| 国产免费一级a男人的天堂| 欧美成人a在线观看| 麻豆一二三区av精品| 日日撸夜夜添| 最近的中文字幕免费完整| 国产黄片美女视频| 亚洲精品国产成人久久av| 欧美一级a爱片免费观看看| 亚洲欧洲国产日韩| 色视频www国产| 国内精品美女久久久久久| 性插视频无遮挡在线免费观看| 欧美变态另类bdsm刘玥| 亚洲18禁久久av| 亚洲国产精品久久男人天堂| 日韩欧美精品v在线| 美女cb高潮喷水在线观看| 精品酒店卫生间| 视频中文字幕在线观看| 欧美97在线视频| 久久精品久久久久久噜噜老黄 | 久久99蜜桃精品久久| 国产片特级美女逼逼视频| 少妇高潮的动态图| 国产精品日韩av在线免费观看| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩av片在线观看| 中文乱码字字幕精品一区二区三区 | 男插女下体视频免费在线播放| 精品少妇黑人巨大在线播放 | 欧美潮喷喷水| 九九久久精品国产亚洲av麻豆| 建设人人有责人人尽责人人享有的 | 99久久人妻综合| 一区二区三区高清视频在线| 国产免费视频播放在线视频 | 看免费成人av毛片| 亚洲精品日韩av片在线观看| 三级毛片av免费| 午夜福利高清视频| 午夜老司机福利剧场| 岛国毛片在线播放| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 免费大片18禁| 成人综合一区亚洲| 亚洲精品色激情综合| 久久久久久久久久久丰满| 欧美日本亚洲视频在线播放| 久久久久网色| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 可以在线观看毛片的网站| 在线免费观看的www视频| 又爽又黄a免费视频| 久久婷婷人人爽人人干人人爱| 亚洲人成网站在线播| 网址你懂的国产日韩在线| 噜噜噜噜噜久久久久久91| 久久人妻av系列| 自拍偷自拍亚洲精品老妇| 久久精品夜色国产| 1000部很黄的大片| 99久国产av精品国产电影| 欧美不卡视频在线免费观看| 18禁在线播放成人免费| 国产午夜精品一二区理论片| 亚洲av福利一区| 99热这里只有是精品50| 久久久久久久久大av| 国产在视频线在精品| 免费av毛片视频| 高清毛片免费看| 精品国产三级普通话版| 欧美成人精品欧美一级黄| 亚洲精品亚洲一区二区| 能在线免费观看的黄片| 边亲边吃奶的免费视频| 1024手机看黄色片| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 少妇高潮的动态图| 国产黄色小视频在线观看| 欧美+日韩+精品| 嫩草影院新地址| 九草在线视频观看| 嫩草影院新地址| 国产精品.久久久| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲成人久久爱视频| 国产精品久久久久久久电影| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 日本一二三区视频观看| 国内精品美女久久久久久| 成人av在线播放网站| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 精品国产露脸久久av麻豆 | 亚洲国产欧洲综合997久久,| 国产综合懂色| 国产男人的电影天堂91| 中文字幕久久专区| 久久久久久国产a免费观看| 免费观看精品视频网站| 国产私拍福利视频在线观看| 男人狂女人下面高潮的视频| 日韩精品有码人妻一区| 中文字幕人妻熟人妻熟丝袜美| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 成人特级av手机在线观看| 国产伦理片在线播放av一区| 日本av手机在线免费观看| 免费无遮挡裸体视频| 男女国产视频网站| 亚洲成av人片在线播放无| 青青草视频在线视频观看| 国产探花极品一区二区| 成年女人永久免费观看视频| 中文字幕av在线有码专区| 国产高清视频在线观看网站| 天堂网av新在线| 中文精品一卡2卡3卡4更新| 99热精品在线国产| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 综合色丁香网| 成年版毛片免费区| 六月丁香七月| 欧美日韩一区二区视频在线观看视频在线 | 日韩高清综合在线| 亚洲人成网站在线观看播放| 噜噜噜噜噜久久久久久91| 天天一区二区日本电影三级| 国产精品久久久久久av不卡| 你懂的网址亚洲精品在线观看 | 身体一侧抽搐| 51国产日韩欧美| 免费看a级黄色片| 蜜桃久久精品国产亚洲av| 久久久久精品久久久久真实原创| 99热这里只有精品一区| 99热网站在线观看| 久久人妻av系列|