• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Local Deviation Constraint Based Non-Rigid Structure From Motion Approach

    2020-09-02 03:59:44XiaChenZhanLiSunMemberIEEEKinManLamSeniorMemberIEEEandZhigangZengFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2020年5期

    Xia Chen, Zhan-Li Sun, Member, IEEE, Kin-Man Lam, Senior Member, IEEE, and Zhigang Zeng, Fellow, IEEE

    Abstract—In many traditional non-rigid structure from motion(NRSFM) approaches, the estimation results of part feature points may significantly deviate from their true values because only the overall estimation error is considered in their models.Aimed at solving this issue, a local deviation-constrained-based column-space-fitting approach is proposed in this paper to alleviate estimation deviation. In our work, an effective model is first constructed with two terms: the overall estimation error,which is computed by a linear subspace representation, and a constraint term, which is based on the variance of the reconstruction error for each frame. Furthermore, an augmented Lagrange multipliers (ALM) iterative algorithm is presented to optimize the proposed model. Moreover, a convergence analysis is performed with three steps for the optimization process. As both the overall estimation error and the local deviation are utilized,the proposed method can achieve a good estimation performance and a relatively uniform estimation error distribution for different feature points. Experimental results on several widely used synthetic sequences and real sequences demonstrate the effectiveness and feasibility of the proposed algorithm.

    I. Introduction

    NOWADAYS, recovering 3D object shapes from 2D images has become a valuable approach to enhance tasks in computer vision, such as object detection [1]–[3], humancomputer interaction [4], image annotation [5]–[7], etc. As a fundamental method of 3D reconstruction [8], [9], non-rigid structure from motion (NRSFM) provides an approach to jointly estimate 3D object shapes and relative camera motions from corresponding 2D points in a sequence of images[10]–[12]. Because of the lack of prior information about the 3D shape deformation, NRSFM is still a very complex and illposed problem.

    In order to alleviate uncertainty, the prior information and constraints have been gradually proposed for 3D reconstruction models. Remarkably, a matrix factorization method was proposed in [13] to represent the unknown 3D shapes as linear combinations of a small number of 3D shape bases. In the matrix factorization method, the decomposed motion factor and shape basis are constrained to be of a lowrank 3K matrix. Subsequently, many works have been proposed based on the low rank shape model. In [14], a closed form solution was presented by combining a rotation constraint and a low rank constraint. In [15], a Gaussian prior was assumed for the shape coefficients, and the optimization is solved using the expectation-maximization (EM) algorithm.Considering the approximate symmetry of facial feature points, an effective depth estimation model was proposed in[16] based on the constraint independent component analysis.A multilinear factorization based algorithm was proposed in[17] to deal with the NRSFM problem under orthographic cameras by combining the low-rank prior and a latentsmoothness prior.

    In [18], a non-rigid structure from motion factorization model was proposed by solving a very small semi-definite programming and a nuclear-norm minimization problem. The same overall cost function and nuclear-norm used in [18] was also adopted in [11], [19] to deal with the dense NRSFM problem under orthographic cameras based on Grassmann manifold. A reconstruction-based metric learning method was presented in [20] to learn a discriminative distance metric for unconstrained face verification. A sequential non-rigid structure from the motion model was proposed in [21] by utilizing the physical priors of an object’s surface. When a non-rigid object has degenerate deformations, the extra degree of freedom yields spurious shape deformations due to nonnegligible noise in real applications. To deal with this problem, a low-rank shape deformation model was proposed in [12] to represent 3D structures of degenerate deformations by considering both the rank-deficient nature and the low-rank property. In [22], a dense NRSFM model was proposed that incorporates the physical, discontinuity-preserving deformation prior. Instead of a single object, multiple objects are considered in [23], [24] when they are assumed to be clustered a priori.

    In order to decrease the number of unknown parameters, the 3D point trajectories were compactly modeled as the discrete cosine transform (DCT) basis under a smoothing constraint[25], [26]. Nevertheless, due to the limitation of rank 3K, the high-frequency deformation can not be well modeled for the trajectory representation. In [27], a smoothly deforming 3D shape was modeled as a single point moving along a smooth time-trajectory within a linear shape space. This representation provides a better reconstruction of highfrequency deformation without relaxing the rank-3K constraint. A column-space-fitting (CSF) method was developed to obtain the optimized solution [28]. Simulations on multiple sequences have demonstrated that the CSF algorithm can achieve a very good estimation performance for deformable objects.

    In most traditional orthographic camera based NRSFM models [26]–[30], the 3D shape is generally estimated by minimizing the overall error of feature points. Because only the overall estimation error is considered, the estimation results of part feature points may deviate from their true values significantly. As a result, the constructed 3D shape may be deformed in a local area. Taking one frame of the sequence walking as an example, Fig.1 shows a comparison of the original 3D shape and the reconstructed 3D shape of CSF when the estimated results of a part of the feature points deviate from their true values significantly. Compared to the original 3D shape, we can see that the part marked with the rectangle has an obvious deformation in the reconstructed 3D shape. Therefore, it is necessary to make estimation errors to be uniform for different feature points.

    Fig.1. A comparison of the original 3D shape and the reconstructed 3D shape of CSF when the estimated results of a part of feature points deviate from their true values significantly.

    In order to solve this problem, a local deviation-constrainedbased column-space-fitting approach is presented in this paper to decrease the estimation deviation. In the proposed method,an effective model is constructed by considering both the overall estimation error and the variance of the reconstruction errors for each frame. Moreover, an augmented Lagrange multipliers (ALM) iterative algorithm is developed to optimize the local deviation-constrained-based estimation model. In addition, a convergence analysis is carried out in detail for the model optimization.

    The remainder of the paper is organized as follows. A detailed description of the proposed method is presented in Section II. Experimental results are given in Section III.Finally, conclusions are made in Section IV.

    II. Methodology

    reconstruction errors for N feature points can be computed as

    and

    respectively. Furthermore, for the tth frame, the standard deviations σtxand σtyof re-projection errors can be computed as

    and

    For different feature points, we can see from (10) and (11)that the estimation results are closer to the true values as a whole when σtxand σtyare smaller. Thus, σtxand σtycan be used as the indices to constrain the local deviation extent of the estimation results.

    In terms of (2), the local deviation-constraint-based columnspace-fitting (LDS-CSF) model can be formulated as

    where W?=MS. In the proposed model (12), other forms,e.g., inequality constraint, can also be adopted as the local deviation constrain. The goal of the constraint in (12) is to

    B. Optimization Scheme of the LDS-CSF Model

    For convenience, we first define some simplified notations before solving the model (12). Let wj∈R2T×1and sj∈R3K×1denote the jth column of the 2D observation matrix W and the jth point in the 3D shape basis S, respectively. The 2D reprojection error rjof the jth column of W?W?can be defined as

    where M?denotes the pseudo inverse of M [28]. The symbols wjand rjare the 2D trajectory and the 2D re-projection error of the jth point, respectively. Referring to [28], furthermore,denote

    where (·)Tdenote the transpose of a matrix, and

    Then, the LDS-CSF model (12) can be rewritten as

    As done in [28], the rotation matrix D is computed via a Euclidean upgrade method [25].

    It can be seen from (2) that ?dis a predefined DCT basis matrix. Once the factor X is given, the factor M can be determined. Given M, the jth point sjof the shape basis S can be estimated by

    This indicates that X is the only parameter to be optimized.

    With the ALM iterative algorithm [31]–[33], the LDS-CSF model (16) can be reformulated as

    where ρ>0 and λ are the weights of the penalty term and Lagrange multiplier, respectively.

    According to the Gauss-Newton method, the one order partial derivative of L with respect to X can be given by

    Furthermore, the second order partial derivative of L with respect to X can be computed as

    According to (14), we can obtain the one order partial derivative and the second order partial derivative of f1, i.e.,

    In terms of (15), we can obtain the one-order partial derivative and the second order partial derivative of f2, i.e.,

    Noted that the second order term ?2rjis neglected in (22)and (24). Define

    Equation (13) can be rewritten as

    III. Experimental Results

    A. Experimental Data and Set-Up

    The performance of the proposed method is evaluated on twelve widely used motion sequences. Among these data,there are eight synthetic image sequences (jaws, walking,face2, face1, stretch, pickup, yoga, and drink) and four realimage sequences (dance, cubes, matrix, and dinosaur). For these sequences, the corresponding number of frames ( T) and the number of points tracked ( N) are listed in Table I. Note that these sequences are publicly available from [18], [27],[28], [35]. Figs. 2 and 3 show one frame of the eight synthetic image sequences and the four real-image sequences,respectively. All the simulations were conducted in the MATLAB environment, on a personal computer with an Intel i5-2320 CPU and 4GB RAM.

    TABLE I The Numbers of Frames (T) and the Numbers of Point Tracks (N) For Twelve Motion Capture Sequences

    Fig.2. One frame of the eight synthetic image sequences.

    Fig.3. One frame of the four real-image sequences.

    where

    B. Comparisons to Recently Reported Results

    In order to evaluate the effectiveness of the proposed method (LDS-CSF), we compare it with several existing NRSFM algorithms, including the well-known block matrix method (denoted as BMM) [18], the consensus of non-rigid reconstructions (denoted as CNR) [36], the kernel shape trajectory approach (denoted as KSTA) [37], the rotation invariant kernel (denoted as RIK) [35], the column-spacefitting method (denoted as CSF) [27], and the CSF2 method[28].

    Except for CNR, the low rank parameter K has a significant influence on the final estimation performance. For a fair comparison, the parameter K is successively set as 1, 2, ..., 13,for six methods. The parameter value corresponding to the smallest estimation error is selected as the approximate optimum parameter value of K, as shown in Table II.

    Table III shows the mean and standard deviation of 3D reconstruction errors of the seven methods for twelve sequences, respectively. In Table III, the best result and the second-best result for each sequence are highlighted in red and blue, respectively. Compared to other methods, we can see from Table III that the reconstruction errors of LDS-CSF are the smallest or the second-smallest for most sequences.Thus, as a whole, LDS-CSF has a better performance than other methods. Moreover, the reconstruction errors of LDSCSF are mostly lower than that of CSF and CSF2. Thus, the local deviation constraint can effectively decrease the reconstruction errors of the column-space-fitting approach.

    TABLE II The Approximate Optimal Values of K of Twelve Sequences for Six Methods

    In addition, from Table III, we can see that the standard deviations of LDS-CSF are generally lower than those of other approaches for most sequences. Thus, the local deviation constraint can make the estimation errors to be uniform for different feature points. Taking one frame from yoga as an example, Fig.4 shows the comparisons of the z-coordinate reconstruction error εzof one feature point between LDS-CSF and other methods, i.e.,

    TABLE III The Mean Values and the Standard Deviations (μ±σ) of the 3D Reconstruction Error ε of Twelve Sequences for Seven Methods

    Fig.4. The comparisons of z -coordinate reconstruction error εz of the feature points for one frame of the sequence yoga between LDS-CSF and other methods.

    reconstructed z-coordinate of the jth 3D point observed on the tth image, respectively. For the methods CNR, BMM, RIK,CSF, KSTA, and CSF2, we can see that the reconstruction errors of one section of feature points are smaller, but the reconstruction errors of the other section of feature points are larger. This indicates that the estimation results of a part of the feature points deviates from their true values significantly.Nevertheless, from Fig.4, it can be seen that reconstruction errors of the LDS-CSF model are more evenly distributed than that of other methods for different feature points. This means

    that the proposed method can effectively decrease the local deviations.

    Fig.5. The comparisons of the reconstructed results for one frame of the sequence cubes between LDS-CSF and other methods. The symbols “ ?” and “+”r epresent the observed ground truth and the reconstructed points, respectively.

    TABLE IV The Mean Values and the Standard Deviations (μ±σ) of the 3D Reconstruction Error ε of Twelve Sequences With Noise for Seven Methods

    As an example, Fig.5 shows the comparisons of the reconstructed results for one frame of the sequence cubes between LDS-CSF and the other methods. Compared to other methods, it can be seen from Fig.5 that the reconstruction results of LDS-CSF are closer to the true feature points.

    In order to investigate the robustness to noise, we perform the experiments by adding the Gaussian noise on the original sequences. The parameter α is varied from 0.1 to 0.2 to control the noise rates. Table IV tabulates the mean and standard deviation (μ±σ) of 3D reconstruction errors when α is set as 0.1. The reconstruction errors of LDS-CSF is obviously lower than that of other methods for most sequences. Moreover, taking the sequence yoga as an example, Fig.6 shows the 3D reconstruction errors ε for the seven methods when α is set as different values. The reconstruction errors of LDS-CSF are mostly lower than that of other methods when α is set as different values.

    Fig.6. The 3D reconstruction errors ε of the sequence yoga for the seven m ethods when α is set as different values.

    IV. Conclusion

    A local deviation-constrained-based column-space-fitting approach is presented in this paper to alleviate the estimation deviation. The proposed method is demonstrated to be able to achieve a better and more even estimation performance as a whole compared to CSF. Moreover, the local deviation constraint is verified to be effective to enhance the estimation stability of different feature points. The experimental results based on the widely used synthetic image sequences and the real image sequences have demonstrated the effectiveness and feasibility of the proposed algorithm.

    黑人巨大精品欧美一区二区蜜桃 | 久久人妻熟女aⅴ| 性色avwww在线观看| 观看美女的网站| 一本—道久久a久久精品蜜桃钙片| 精品熟女少妇av免费看| 久久久久久久亚洲中文字幕| 婷婷色综合www| 国产成人免费观看mmmm| 成人综合一区亚洲| 国产精品免费大片| 免费看不卡的av| 18禁在线播放成人免费| kizo精华| 久久青草综合色| 久久精品人人爽人人爽视色| 精品卡一卡二卡四卡免费| 色网站视频免费| 成人无遮挡网站| 亚洲av日韩在线播放| 老司机影院成人| 亚洲精品视频女| 在线观看www视频免费| 日本色播在线视频| 亚洲精品乱码久久久v下载方式| 美女国产视频在线观看| 少妇精品久久久久久久| 777米奇影视久久| 九色亚洲精品在线播放| 看十八女毛片水多多多| 国产精品久久久久久av不卡| 久久久久久久久久人人人人人人| 丰满少妇做爰视频| 国产成人精品久久久久久| 欧美日韩av久久| 国产精品国产三级专区第一集| 欧美3d第一页| 久久青草综合色| 黑人高潮一二区| 亚洲精品,欧美精品| 波野结衣二区三区在线| 亚洲第一av免费看| 欧美日韩av久久| 熟女电影av网| 久久人人爽av亚洲精品天堂| 免费少妇av软件| 国产亚洲最大av| 亚洲精品美女久久av网站| 能在线免费看毛片的网站| 国产女主播在线喷水免费视频网站| 亚洲精品成人av观看孕妇| videossex国产| 99九九线精品视频在线观看视频| 国产精品女同一区二区软件| 大码成人一级视频| 91aial.com中文字幕在线观看| 夫妻性生交免费视频一级片| 久久久欧美国产精品| 欧美一级a爱片免费观看看| 91在线精品国自产拍蜜月| 亚洲av日韩在线播放| 亚洲精品456在线播放app| 大码成人一级视频| 99国产精品免费福利视频| 一本大道久久a久久精品| 亚洲精品,欧美精品| 下体分泌物呈黄色| 亚洲色图 男人天堂 中文字幕 | 极品人妻少妇av视频| 午夜免费观看性视频| 国产av国产精品国产| 高清黄色对白视频在线免费看| 国产69精品久久久久777片| 十分钟在线观看高清视频www| 亚洲精华国产精华液的使用体验| 热re99久久国产66热| 母亲3免费完整高清在线观看 | 婷婷成人精品国产| 成人国产av品久久久| 欧美日韩亚洲高清精品| 免费不卡的大黄色大毛片视频在线观看| 另类亚洲欧美激情| 亚洲成人手机| 男女啪啪激烈高潮av片| 男女免费视频国产| 国产欧美亚洲国产| 在线播放无遮挡| 国产日韩欧美在线精品| 狠狠精品人妻久久久久久综合| 91久久精品国产一区二区三区| 国产高清不卡午夜福利| 超碰97精品在线观看| 少妇的逼好多水| 人人妻人人澡人人爽人人夜夜| a级毛色黄片| 国产精品免费大片| 久久国产精品大桥未久av| 天堂俺去俺来也www色官网| 97在线人人人人妻| 丝袜喷水一区| videosex国产| 亚洲精品久久久久久婷婷小说| 美女国产视频在线观看| 久久午夜综合久久蜜桃| 亚洲国产色片| 中文字幕免费在线视频6| 午夜免费男女啪啪视频观看| 大陆偷拍与自拍| 欧美人与性动交α欧美精品济南到 | 男人操女人黄网站| 成人国语在线视频| 卡戴珊不雅视频在线播放| 少妇熟女欧美另类| 99久久精品一区二区三区| 伦理电影大哥的女人| 男的添女的下面高潮视频| 男女边摸边吃奶| 亚洲av.av天堂| 国产精品免费大片| 国产精品三级大全| 精品国产国语对白av| 国产精品久久久久久久久免| 精品一区二区三卡| 精品国产露脸久久av麻豆| 看非洲黑人一级黄片| 久久人人爽av亚洲精品天堂| 女性被躁到高潮视频| 国产精品麻豆人妻色哟哟久久| 不卡视频在线观看欧美| 国产精品国产三级专区第一集| 国产精品人妻久久久影院| 激情五月婷婷亚洲| 国产精品久久久久久av不卡| 国产在视频线精品| 建设人人有责人人尽责人人享有的| 乱人伦中国视频| 一个人看视频在线观看www免费| 天堂中文最新版在线下载| 男女边摸边吃奶| 一本—道久久a久久精品蜜桃钙片| 欧美日韩视频高清一区二区三区二| 久久久久网色| 午夜精品国产一区二区电影| 日韩成人伦理影院| 欧美日韩成人在线一区二区| 亚洲欧洲日产国产| 亚洲精品av麻豆狂野| 一级黄片播放器| videos熟女内射| 免费av不卡在线播放| 美女主播在线视频| 人人澡人人妻人| 久久久精品区二区三区| 国产成人一区二区在线| 22中文网久久字幕| 又粗又硬又长又爽又黄的视频| 日韩中文字幕视频在线看片| a级毛片免费高清观看在线播放| 成人漫画全彩无遮挡| 亚洲欧美日韩卡通动漫| 久久国产亚洲av麻豆专区| 亚洲婷婷狠狠爱综合网| 精品一区二区三区视频在线| 亚洲精品456在线播放app| 另类亚洲欧美激情| 满18在线观看网站| 只有这里有精品99| 国产精品免费大片| 九色亚洲精品在线播放| 欧美变态另类bdsm刘玥| 亚洲精品自拍成人| 丰满乱子伦码专区| 国产精品99久久99久久久不卡 | 国产在线免费精品| 亚洲伊人久久精品综合| 亚洲精品av麻豆狂野| 欧美 日韩 精品 国产| 大香蕉久久网| 看非洲黑人一级黄片| 久久国产亚洲av麻豆专区| 老熟女久久久| 国产成人精品在线电影| 黄片无遮挡物在线观看| 啦啦啦在线观看免费高清www| 好男人视频免费观看在线| 自线自在国产av| 十八禁网站网址无遮挡| 欧美日韩在线观看h| 国产综合精华液| 午夜激情福利司机影院| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 99久久中文字幕三级久久日本| 亚洲精品av麻豆狂野| 国产精品久久久久久精品古装| 人妻 亚洲 视频| 日本-黄色视频高清免费观看| 九九久久精品国产亚洲av麻豆| 一二三四中文在线观看免费高清| 欧美3d第一页| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| 69精品国产乱码久久久| 亚洲av免费高清在线观看| 伦精品一区二区三区| 亚洲精品乱久久久久久| 成年av动漫网址| 精品人妻偷拍中文字幕| 99九九在线精品视频| 国产成人午夜福利电影在线观看| 国产一区二区在线观看av| 少妇 在线观看| 老司机影院毛片| 伦理电影免费视频| 久久久a久久爽久久v久久| av播播在线观看一区| 欧美少妇被猛烈插入视频| 婷婷成人精品国产| 寂寞人妻少妇视频99o| 国产黄片视频在线免费观看| 亚洲人成网站在线观看播放| 国产一区二区在线观看av| 亚洲欧美日韩另类电影网站| 国产高清不卡午夜福利| 亚洲,一卡二卡三卡| 日韩电影二区| 成人国语在线视频| 九九爱精品视频在线观看| 国产精品 国内视频| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 亚洲av男天堂| 亚洲人成网站在线播| 亚洲精品自拍成人| 亚洲国产色片| 久久人妻熟女aⅴ| 一区二区三区四区激情视频| 久久av网站| 精品午夜福利在线看| 晚上一个人看的免费电影| av网站免费在线观看视频| 日本av手机在线免费观看| 大又大粗又爽又黄少妇毛片口| 最黄视频免费看| 狂野欧美白嫩少妇大欣赏| 九九在线视频观看精品| 毛片一级片免费看久久久久| 午夜福利,免费看| xxx大片免费视频| 中文字幕制服av| 久久久亚洲精品成人影院| videossex国产| 亚洲,欧美,日韩| 欧美精品国产亚洲| 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| 日韩一区二区三区影片| 日本免费在线观看一区| 18禁在线无遮挡免费观看视频| 亚洲无线观看免费| 又粗又硬又长又爽又黄的视频| 九九爱精品视频在线观看| av在线观看视频网站免费| 久久国内精品自在自线图片| 老司机影院毛片| 日本av手机在线免费观看| 一区二区日韩欧美中文字幕 | 中国三级夫妇交换| 特大巨黑吊av在线直播| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 91精品三级在线观看| 97在线视频观看| 午夜福利视频在线观看免费| 国产极品粉嫩免费观看在线 | 满18在线观看网站| 能在线免费看毛片的网站| 亚洲精品美女久久av网站| 男女国产视频网站| 99久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲av不卡在线观看| 视频在线观看一区二区三区| 简卡轻食公司| 中文天堂在线官网| 国产精品久久久久久精品电影小说| 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| 欧美+日韩+精品| 免费av中文字幕在线| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 亚洲精品国产av蜜桃| 在线观看免费日韩欧美大片 | 69精品国产乱码久久久| 国产精品久久久久久精品古装| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频| 久久亚洲国产成人精品v| 午夜久久久在线观看| av在线老鸭窝| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡 | 亚洲婷婷狠狠爱综合网| 亚洲成色77777| 国产高清有码在线观看视频| 91精品三级在线观看| 国产精品一区二区在线不卡| 热99久久久久精品小说推荐| 国产精品三级大全| 人妻 亚洲 视频| 欧美精品国产亚洲| 国产淫语在线视频| 亚洲av福利一区| av在线老鸭窝| 亚洲av福利一区| 国产一区有黄有色的免费视频| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 婷婷色综合大香蕉| 999精品在线视频| 汤姆久久久久久久影院中文字幕| 在线免费观看不下载黄p国产| 寂寞人妻少妇视频99o| 人妻人人澡人人爽人人| av.在线天堂| av电影中文网址| 大陆偷拍与自拍| 18禁在线无遮挡免费观看视频| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 国产成人freesex在线| 丰满迷人的少妇在线观看| 少妇的逼水好多| 国产精品免费大片| 考比视频在线观看| 伦理电影免费视频| 国产伦理片在线播放av一区| 国产亚洲最大av| 91成人精品电影| 国产精品无大码| 精品久久久精品久久久| 欧美老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 国产精品99久久99久久久不卡 | 91午夜精品亚洲一区二区三区| 久久久久久久精品精品| 久久久久久久久久久丰满| 22中文网久久字幕| 人人妻人人添人人爽欧美一区卜| 涩涩av久久男人的天堂| 久久99蜜桃精品久久| 我要看黄色一级片免费的| 97超碰精品成人国产| 日韩精品有码人妻一区| 免费日韩欧美在线观看| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频 | 欧美人与性动交α欧美精品济南到 | 高清毛片免费看| 日韩人妻高清精品专区| 99久久综合免费| 另类亚洲欧美激情| 七月丁香在线播放| 亚洲精品中文字幕在线视频| 国产成人精品无人区| 91精品伊人久久大香线蕉| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 另类精品久久| 日本-黄色视频高清免费观看| 91在线精品国自产拍蜜月| 亚洲av成人精品一区久久| 街头女战士在线观看网站| 日韩亚洲欧美综合| 久久久久国产网址| 日本wwww免费看| 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 极品人妻少妇av视频| 久久精品久久久久久久性| 天天操日日干夜夜撸| 王馨瑶露胸无遮挡在线观看| 久久av网站| 久久久国产一区二区| 亚洲精品乱码久久久v下载方式| 午夜日本视频在线| 免费观看的影片在线观看| 国产成人一区二区在线| 黑人高潮一二区| 999精品在线视频| 成人毛片60女人毛片免费| a级毛片免费高清观看在线播放| 国产精品蜜桃在线观看| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 午夜免费男女啪啪视频观看| 女人精品久久久久毛片| 99热6这里只有精品| 你懂的网址亚洲精品在线观看| 青春草亚洲视频在线观看| 美女中出高潮动态图| 亚洲欧洲国产日韩| 婷婷色av中文字幕| 人成视频在线观看免费观看| 久久韩国三级中文字幕| 日日摸夜夜添夜夜添av毛片| 日本vs欧美在线观看视频| 99热全是精品| 在线天堂最新版资源| 久久影院123| 国产乱人偷精品视频| 男女边摸边吃奶| 婷婷色综合www| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| 日韩欧美精品免费久久| 国产毛片在线视频| 亚洲精品乱久久久久久| 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久成人av| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 亚洲av成人精品一区久久| 3wmmmm亚洲av在线观看| 少妇熟女欧美另类| 天堂中文最新版在线下载| 热re99久久国产66热| 亚洲久久久国产精品| 久久久国产一区二区| videos熟女内射| 99热国产这里只有精品6| a级毛色黄片| 午夜福利在线观看免费完整高清在| 又粗又硬又长又爽又黄的视频| 国产精品蜜桃在线观看| 2022亚洲国产成人精品| 简卡轻食公司| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 少妇的逼水好多| 18禁在线播放成人免费| 国产在线免费精品| xxxhd国产人妻xxx| 人人妻人人爽人人添夜夜欢视频| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 最近的中文字幕免费完整| 国产精品无大码| 99久久人妻综合| 爱豆传媒免费全集在线观看| 国产精品人妻久久久久久| av在线播放精品| 最近中文字幕2019免费版| 中文乱码字字幕精品一区二区三区| 亚洲性久久影院| 日韩强制内射视频| 精品酒店卫生间| 亚洲综合精品二区| 日韩av不卡免费在线播放| 999精品在线视频| 少妇人妻久久综合中文| 日韩一区二区视频免费看| 青青草视频在线视频观看| 久久精品人人爽人人爽视色| 国产片特级美女逼逼视频| 欧美亚洲 丝袜 人妻 在线| 飞空精品影院首页| 亚洲精品色激情综合| 国产成人午夜福利电影在线观看| 国产成人免费无遮挡视频| 免费观看av网站的网址| 99热全是精品| 日韩制服骚丝袜av| av专区在线播放| 亚洲精品久久午夜乱码| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| 看非洲黑人一级黄片| 亚洲av成人精品一区久久| 久久午夜综合久久蜜桃| 波野结衣二区三区在线| 亚洲人与动物交配视频| 26uuu在线亚洲综合色| 亚洲第一av免费看| 国产成人av激情在线播放 | 国产成人免费观看mmmm| 久久久欧美国产精品| 91精品国产国语对白视频| 肉色欧美久久久久久久蜜桃| 人妻系列 视频| 草草在线视频免费看| 夜夜爽夜夜爽视频| 日本av手机在线免费观看| 熟女电影av网| a级毛色黄片| 亚洲伊人久久精品综合| 亚洲人成网站在线观看播放| 91精品伊人久久大香线蕉| 永久免费av网站大全| 成人二区视频| 久久久久视频综合| 人人妻人人爽人人添夜夜欢视频| 午夜福利影视在线免费观看| 欧美日韩成人在线一区二区| 精品人妻一区二区三区麻豆| 成人影院久久| 欧美日韩综合久久久久久| 黄色视频在线播放观看不卡| 26uuu在线亚洲综合色| 成人综合一区亚洲| 免费观看性生交大片5| 久久人妻熟女aⅴ| 久久久精品区二区三区| 色吧在线观看| 日日摸夜夜添夜夜添av毛片| 人妻人人澡人人爽人人| 国产极品天堂在线| 乱码一卡2卡4卡精品| 国产高清国产精品国产三级| 大陆偷拍与自拍| 99热全是精品| av免费在线看不卡| 人妻一区二区av| 夜夜骑夜夜射夜夜干| 国产精品国产三级专区第一集| 亚洲国产精品国产精品| av天堂久久9| 大陆偷拍与自拍| 少妇熟女欧美另类| 亚洲av.av天堂| 熟女av电影| 能在线免费看毛片的网站| 最新的欧美精品一区二区| 久久精品国产鲁丝片午夜精品| 伦理电影免费视频| 精品国产一区二区三区久久久樱花| 久久人人爽人人片av| 亚洲综合色惰| 色5月婷婷丁香| 高清欧美精品videossex| 91aial.com中文字幕在线观看| av在线老鸭窝| 国产黄片视频在线免费观看| 两个人的视频大全免费| 纯流量卡能插随身wifi吗| 国产精品三级大全| .国产精品久久| 一边摸一边做爽爽视频免费| 国产成人91sexporn| 中国美白少妇内射xxxbb| 亚洲精品国产av成人精品| 国产精品无大码| 国产色婷婷99| 亚洲精品av麻豆狂野| 国产永久视频网站| 免费黄网站久久成人精品| a级毛片免费高清观看在线播放| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 一边亲一边摸免费视频| 久久精品人人爽人人爽视色| 麻豆乱淫一区二区| 爱豆传媒免费全集在线观看| 亚洲国产日韩一区二区| 国产精品99久久99久久久不卡 | 精品一品国产午夜福利视频| av卡一久久| 蜜臀久久99精品久久宅男| 亚洲人成网站在线播| xxx大片免费视频| 熟女av电影| 日日爽夜夜爽网站| 99视频精品全部免费 在线| 在线 av 中文字幕| 欧美日韩成人在线一区二区| 欧美精品高潮呻吟av久久| 国产av国产精品国产| 日韩av不卡免费在线播放| videos熟女内射| 久久99热这里只频精品6学生| 国产女主播在线喷水免费视频网站| 久久久久久久国产电影| 搡老乐熟女国产| 欧美三级亚洲精品| 久久久久久久国产电影| 国产精品一区二区在线不卡| 欧美xxⅹ黑人| 熟妇人妻不卡中文字幕| 成人漫画全彩无遮挡| 满18在线观看网站| 99久久人妻综合| 国产成人av激情在线播放 | 久久 成人 亚洲| 2022亚洲国产成人精品| 国产日韩欧美在线精品| 男男h啪啪无遮挡| 蜜臀久久99精品久久宅男| 夜夜爽夜夜爽视频| 久久午夜福利片| 日本av免费视频播放| 成年女人在线观看亚洲视频| 丰满少妇做爰视频| 一区在线观看完整版| 少妇被粗大的猛进出69影院 | 欧美精品亚洲一区二区| av免费在线看不卡| 黄色一级大片看看| 青春草国产在线视频|