• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input

    2020-09-02 04:04:32LongChenLinqingWangZhongyangHanMemberIEEEJunZhaoSeniorMemberIEEEandWeiWangSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2020年5期

    Long Chen, Linqing Wang, Zhongyang Han, Member, IEEE, Jun Zhao, Senior Member, IEEE, and Wei Wang, Senior Member, IEEE

    Abstract—Prediction intervals (PIs) for industrial time series can provide useful guidance for workers. Given that the failure of industrial sensors may cause the missing point in inputs, the existing kernel dynamic Bayesian networks (KDBN), serving as an effective method for PIs construction, suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference, which avoids the timeconsuming stochastic sampling. The proposed algorithm contains two stages. The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices. To verify the effectiveness of the proposed method, a synthetic dataset and a practical dataset of generation flow of blast furnace gas (BFG) are employed with different ratios of missing inputs. The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.

    I. Introduction

    IN industrial production process, e.g., iron and steel making process, there are lots of process variables which need to be monitored or predicted in order to guarantee the production reliability, safety and low economic cost [1]. Through the commonly implemented supervisory control and data acquisition (SCADA) system, industrial time series data of these process variables are collected, based on which one can build a prediction model [2], [3]. However, the high level noise and the missing data often corrupt the obtained industrial data,which makes it difficult for high prediction accuracy, while the workers on-site not only focus on the point estimate of the variables, but the reliability of the prediction as well [4].

    As for the industrial time series prediction, lots of data-based methods are developed [5]–[7]. The most commonly used methods are those based on the artificial neural networks(ANNs) [8], the Gaussian processes [9], and the least square support vector machines (LSSVM) [10], etc. In [11], an effective noise estimation-based LSSVM model was reported to perform online prediction of the byproduct gas flow in steel industry. Besides, a Gaussian process based echo state networks(ESN) model was reported in [12] for prediction of the flow of coke oven gas and gasholder level in steel industry. However,these mentioned methods are all focused on the pointwise estimates, which failed to provide the reliability of prediction,and cannot deal with the situation of missing inputs.

    A class of PIs based approaches can not only produce the predictive mean but also provide an interval with some confidence level, in which the bootstrap method, the Bayesian method, the mean-variance estimates (MVEs), and the delta method are usually combined with ANNs for such a task [13]–[15]. In addition, the PIs can also be constructed by using the fuzzy sets theory [16]. The delta method was first presented in[17], which was based on an assumption condition that the variance of all the samples was identical. However, such an assumption was rather difficult to be satisfied when facing with real world problems. The Bayesian theory-based PIs construction usually relied on the prior distribution of the samples, especially when the sample amount was relatively small [18]. The MVE method assumed that the network could accurately estimate the target with the least computational load[19]. However, due to the uncertainties in practice, the generalization capability of the NN is insufficient. Besides, in[20], an ensemble model containing a number of reservoir computing networks was employed by using the bootstrap techniques, which was applied to the prediction of practical industrial data. However, the aforementioned methodologies are only formulated for the complete inputs, and when encountering the incomplete inputs one has to perform a data imputation procedure for the missing inputs before prediction.

    Fig.3. KDBN structure for noisy Mackey-Glass time series prediction.

    III. Experiments

    To verify the effectiveness of the proposed inference method for the KDBN (KDBN-VI), a synthetic dataset and a practical industrial dataset are considered here.

    A. A Synthetic Dataset

    In this section, we employ the synthetic Mackey-Glass data.The Mackey-Glass equation is a differential equation with time delay, as formulated by

    Here, the parameters a, b, and τ in (19) are set to be 0.2, 0.1,and 17, respectively. A time series of Mackey-Glass is generated from (19) by a numerical method. The length of this sequence is 600. For the purpose of verifying the performance of the proposed method when facing with the noisy data, we add a Gaussian white noise with the variance 0.001 into this generated time series.

    In this experiment, th(e kernel fun)ction is Gaussian kernel function, K(x,xi)=exp||x?xi||/2b2. The 8-fold cross validation is used to determine the optimal value of b and the order of the KDBN. Finally, the order of the trained KDBN is set to be 30, and the kernel parameter b is set to be 1.673. Fig.3 shows the trained KDBN for the noisy Mackey-Glass data,where the parameters of the nodes after the 31st time slices share those of the 31st node. Besides, the experimental environment is the WindowsTMoperating system configured on a 3.4 GHz Intel Core i7-3770 chipset and 4 GB of RAM.The programming was completed in MATLABTM2014.

    To quantify the performance of the construction of PIs, two indicators including the root mean square error (RMSE) and the coverage width-based criterion (CWC) are adopted here.

    where n is the number of predicted points, Yiis the observed value and Fiis the predicted mean value. The RMSE aims to indicate the mean errors of the prediction. Besides, as for the interval performance, one can employ the CWC [7], which is a kind of combined index based on the PI coverage probability(PICP) and the mean PI width (MPIW).

    and

    where η and μ are two hyper-parameters, R denotes the range of the data, and ciequals 1 when the corresponding target is covered by the predicted coverage; otherwise, it equals 0. Uiand Liare, respectively, the upper and the lower bounds. PICP is measured by counting the number of target values covered by the constructed PIs. And NMPIW is the normalized MPIW showing the average width of PIs. The smaller it is, the better the performance, and the smaller the PICP is, the better the performance of PIs is.

    To verify the performance of the proposed method, this study compares the experimental results of several other methods of PIs construction, including the KDBN with weighted likelihood inference (KDBN-WL) [25], the Bayesian multiple layer perceptron (Bayesian MLP) [13], and the bootstrap-based echo state networks (Bootstrap ESN) [20].The Bayesian MLP and the bootstrap ESN are the NNs based PIs construction methods. In the KDBN-WL, the number of samples in the WL algorithm is set to be 500. In the Bayesian MLP, the number of hidden nodes is set to be 30, and in the Bootstrap ESN, the number of the ESNs is 20. In these experiments, the hyper-parameters defined in (21) are set to be 10 and 0.95, respectively. The nearest neighbor imputation method is firstly conducted for imputing the incomplete inputs before performing inference with the Bayesian MLP and the Bootstrap ESN. Table I lists the statistical results of these aforementioned methods for the noisy Mackey-Glass data with different missing input ratios (20 independent experiments are performed). This table shows that the PIs performances (CWC, PICP, and NMPIW) of the KDBN-VI and the KDBN-WL are very similar, but the inference time of the KDBN-VI is much smaller than that of the KDBN-WL.Besides, the KDBN based methods produce better prediction performance than the other two NNs based methods.

    TABLE I Comparison of the Prediction Results for Different Methods Under Different Missing Percentage of Inputs for the Noisy Mackey-Glass Data

    Fig.4. Illustration of the generation of BFG.

    Fig.5. Illustration of missing points. (a) A segment of the generation flow of BFG with missing points; (b) An example of missing points in an input vector [25].

    B. A Practical Industrial Dataset

    In steel industry, the BFG produced by blast furnace, can serve as the secondary energy. Therefore, it is significant to schedule the BFG which is generated from blast furnaces, and part of it is consumed by a number of hot-blast stoves before transporting into the pipeline network, as illustrated in Fig.4.These hot-blast stoves are often switched on or off, which makes large fluctuation of the BFG flow and the instability of the pressure of the gas in the pipeline network. Thereby, it is important to predict the generation flow of the BFG for the energy scheduling.

    Fig.6. A KDBN for the flow of the BFG.

    Through the SCADA system, the BFG data will be obtained in real-time, however, complex industrial environment may cause the failure of the sensors, which will lead to missing points in the input vector for a trained prediction model.Fig.5(a) presents a time series of the generation flow of BFG with missing points, where the locations marked by circles denote the missing points, and Fig.5(b) illustrates an example of missing points in input vector, where the circles in the solid line box denote the input vector of the model, and the hollow ones denote the value-missed variables in input vector.

    A period of the generation flow of BFG, coming from the SGADA system of a steel plant in China in July 2016, serves as the experimental data in this study. The sampling period of these data is one minute. This study conducts the experiments under different missing ratios of inputs. The number of the sequences in the training set is 500, of which the length of each sequence is 80. The kernel function is the Gaussian kernel function. The order of the trained KDBN is set to be 45, and the kernel parameter b is set to be 834.45 by using the 10-fold cross validation. Fig.6 shows the trained KDBN for the generation flow of the BFG, where the parameters of the nodes after the 46th time slice share the 45th node.

    Fig.7 presents the experimental results of the proposed KDBN-VI with different missing input ratios including 5%,10%, 30%, and 50%, where 95% confidence level are shown.As shown in Fig.7, with the increase of the missing ratios, the KDBN-VI can exhibit a decline in the prediction quality,while even when the missing ratio of input is very large (e.g.,50%) the proposed KDBN-VI still shows a good performance for PIs construction. This means that the KDBN-VI has a high stability for the flow of the BFG with different levels of missing proportions. Besides, the inference time of this method is generally less than one second, which is very fast in the perspective of the industrial demands of real time prediction.

    Similarly, to further verify the performance of the proposed method for the BFG data, this study compares the experimental results of several other methods of PIs construction, including the KDBN-WL [25], the Bayesian MLP [13], and the bootstrap ESN [20]. Table II lists the statistical results of these aforementioned methods for the generation flow of the BFG (50 independent experiments are performed). From this table, one can see that the KDBN based methods (the KDBN-VI and the KDBN-WL) exhibit relatively lower prediction error than the other two methods(the Bayesian MLP and the bootstrap ESN), refer to the values of the indicator RMSE. The prediction performances of the KDBN-VI and the KDBN-WL are similar, while the proposed KDBN-VI is much faster than the KDBN-WL. That is, the proposed one is more suitable for the industrial demand on real time inference than the KDBN-WL.

    Fig.7. Experimental results of the KDBN-VI for the generation flow of the BFG with different missing ratios: (a) missing 5%; (b) missing 10%; (c)missing 30%; (d) missing 50%.

    TABLE II Comparison of the Prediction Results for Different Methods under Different Missing Percentage of Inputs for the BFG Data

    IV. Conclusions

    This study addresses the problem of inference of the kernelbased DBN by using a variational inference based method with two stages. The first stage involves the computation of the analytical posterior distributions over the nodes of missing values approximately by using a local linearization based variational inference, and the second stage makes a Gaussian approximation for the posteriors over the predictive nodes in the future time slices. The proposed inference method avoids the time-consuming stochastic sampling scheme as employed in the original WL algorithm. The experimental results indicate that the proposed method is much faster than the WL algorithm, and it can produce reliable PIs for industrial demands.

    This study only considers the input uncertainty in the conditional mean value (see (1)). Therefore, the future work will aim to tackle the inference problem with the input uncertainty both in the mean and variance by using variational inference, which is more complex since the approximation cannot be done by the first order Taylor expansion when considering the input uncertainty in variance.

    Appendix Computations of Expectations In Variational Inference

    The details of the computation of expectations in (12) and(13) are given as follows. The missing input vector exists in the kernel function of the nonlinear mean function. Therefore,these expectations involve the integration of the kernel and the posterior over the missing input vector xqu. Assume that the variational posterior distributions over xquare expressed as a Gaussian form, i.e., q(xqu)=N(xqu|μqu,Σqu) with mean vector μquand covariance matrix Σqu, the integration is given by

    where K(xqu,xj) is the kernel function of the xqu, and L denotes the diagonal length scale parameters.

    久久精品影院6| 国产日韩一区二区三区精品不卡| 国产精品久久电影中文字幕| 亚洲男人的天堂狠狠| 中文字幕最新亚洲高清| 久久久久久久久免费视频了| 欧洲精品卡2卡3卡4卡5卡区| 国产av一区在线观看免费| 级片在线观看| 成人18禁高潮啪啪吃奶动态图| 久久国产精品人妻蜜桃| 色播在线永久视频| 久热爱精品视频在线9| 亚洲 国产 在线| 精品国产美女av久久久久小说| 欧美成人性av电影在线观看| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲欧美在线一区二区| 制服诱惑二区| 中文字幕av电影在线播放| 国产一区二区三区视频了| 午夜a级毛片| 狠狠狠狠99中文字幕| 成人国语在线视频| 国产精品电影一区二区三区| 午夜视频精品福利| 视频区欧美日本亚洲| 欧美人与性动交α欧美精品济南到| 国产在线精品亚洲第一网站| 久久精品亚洲熟妇少妇任你| 亚洲成人久久性| 在线免费观看的www视频| 国产成人精品久久二区二区91| 日本 欧美在线| 女警被强在线播放| 中文字幕最新亚洲高清| 亚洲自偷自拍图片 自拍| 日本五十路高清| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 麻豆一二三区av精品| 国产午夜福利久久久久久| 国产私拍福利视频在线观看| 青草久久国产| 日韩大尺度精品在线看网址 | 国产熟女午夜一区二区三区| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 欧美日本中文国产一区发布| 午夜精品久久久久久毛片777| 亚洲情色 制服丝袜| 精品不卡国产一区二区三区| 美女高潮喷水抽搐中文字幕| 别揉我奶头~嗯~啊~动态视频| 久久热在线av| 黄色 视频免费看| 国产精品二区激情视频| 国产极品粉嫩免费观看在线| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| 亚洲精品国产精品久久久不卡| 精品欧美国产一区二区三| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 香蕉久久夜色| 免费少妇av软件| 性色av乱码一区二区三区2| 桃色一区二区三区在线观看| 99久久99久久久精品蜜桃| 国产精品影院久久| 日本a在线网址| 女人精品久久久久毛片| 国产精品国产高清国产av| 久久狼人影院| 日韩高清综合在线| 国产av又大| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 久久久久久大精品| 久久精品国产99精品国产亚洲性色 | 91字幕亚洲| 国产一区二区激情短视频| 亚洲人成电影免费在线| 国产亚洲精品av在线| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av高清一级| 成人国语在线视频| 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 久久热在线av| 国产精品影院久久| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 999精品在线视频| 国产欧美日韩精品亚洲av| 一级作爱视频免费观看| 99精品在免费线老司机午夜| 久久欧美精品欧美久久欧美| av视频在线观看入口| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 国产熟女xx| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清 | 大陆偷拍与自拍| 性少妇av在线| 欧美乱码精品一区二区三区| 一区二区日韩欧美中文字幕| 亚洲五月婷婷丁香| 久久久久久久久中文| 亚洲精品在线观看二区| 亚洲aⅴ乱码一区二区在线播放 | 国产成人啪精品午夜网站| 97人妻天天添夜夜摸| av视频免费观看在线观看| 午夜免费激情av| 日韩大尺度精品在线看网址 | 校园春色视频在线观看| 动漫黄色视频在线观看| 久久久久久大精品| 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 欧美国产日韩亚洲一区| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 高清在线国产一区| 国产高清视频在线播放一区| 18禁美女被吸乳视频| 法律面前人人平等表现在哪些方面| 麻豆成人av在线观看| 在线免费观看的www视频| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 午夜a级毛片| 一本久久中文字幕| 啦啦啦韩国在线观看视频| 韩国精品一区二区三区| 啪啪无遮挡十八禁网站| 中文字幕av电影在线播放| 最好的美女福利视频网| 国产精华一区二区三区| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 亚洲av熟女| 日本三级黄在线观看| 成人特级黄色片久久久久久久| 99国产精品免费福利视频| 无人区码免费观看不卡| 亚洲一区中文字幕在线| 宅男免费午夜| 非洲黑人性xxxx精品又粗又长| 老司机深夜福利视频在线观看| 精品人妻在线不人妻| 香蕉国产在线看| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 一区在线观看完整版| 亚洲国产日韩欧美精品在线观看 | 欧美在线一区亚洲| 日日摸夜夜添夜夜添小说| 久久人人精品亚洲av| 男女下面插进去视频免费观看| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区| 麻豆久久精品国产亚洲av| 精品久久久久久久毛片微露脸| 美女扒开内裤让男人捅视频| 麻豆久久精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 亚洲在线自拍视频| 巨乳人妻的诱惑在线观看| 国产亚洲av嫩草精品影院| 亚洲av成人一区二区三| 久久中文看片网| 亚洲欧美激情综合另类| 一边摸一边做爽爽视频免费| 久久久久久大精品| 9色porny在线观看| 日本五十路高清| 18美女黄网站色大片免费观看| 亚洲欧美日韩高清在线视频| av欧美777| 欧美色视频一区免费| 国产亚洲精品av在线| 久久精品aⅴ一区二区三区四区| 欧美色视频一区免费| 9191精品国产免费久久| 岛国视频午夜一区免费看| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 免费高清视频大片| 欧美另类亚洲清纯唯美| 久久久久亚洲av毛片大全| 亚洲aⅴ乱码一区二区在线播放 | 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| 午夜精品在线福利| 欧美日韩瑟瑟在线播放| 视频区欧美日本亚洲| 国产激情久久老熟女| 亚洲精品中文字幕在线视频| 亚洲aⅴ乱码一区二区在线播放 | 人人澡人人妻人| 午夜免费成人在线视频| 男人的好看免费观看在线视频 | 一级毛片精品| 日本 av在线| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 国产精品爽爽va在线观看网站 | 久久人人爽av亚洲精品天堂| 啦啦啦免费观看视频1| 男人操女人黄网站| 变态另类成人亚洲欧美熟女 | 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 亚洲男人的天堂狠狠| 91字幕亚洲| 母亲3免费完整高清在线观看| 一级毛片女人18水好多| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 午夜免费鲁丝| 在线视频色国产色| bbb黄色大片| 亚洲一区中文字幕在线| 亚洲狠狠婷婷综合久久图片| 久久热在线av| 男女做爰动态图高潮gif福利片 | 精品电影一区二区在线| 成人手机av| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 如日韩欧美国产精品一区二区三区| 国产成+人综合+亚洲专区| 国产成年人精品一区二区| 亚洲欧美精品综合久久99| 国产精品综合久久久久久久免费 | 一本综合久久免费| 黄色视频不卡| 9色porny在线观看| 国产精品久久久人人做人人爽| 国产成人一区二区三区免费视频网站| 亚洲国产欧美日韩在线播放| 又大又爽又粗| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影院精品99| 日韩欧美国产在线观看| 国产又爽黄色视频| 国产区一区二久久| 国产精品综合久久久久久久免费 | 国产熟女xx| 免费在线观看完整版高清| 国产单亲对白刺激| 国产av在哪里看| 久久性视频一级片| 女同久久另类99精品国产91| 久久久久久久精品吃奶| 欧美国产精品va在线观看不卡| 免费高清视频大片| 人人澡人人妻人| av在线播放免费不卡| 18禁黄网站禁片午夜丰满| 午夜两性在线视频| 亚洲五月天丁香| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲| 亚洲精品av麻豆狂野| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色 | 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 亚洲av五月六月丁香网| av视频在线观看入口| 午夜日韩欧美国产| 亚洲无线在线观看| 欧美最黄视频在线播放免费| 人人妻人人爽人人添夜夜欢视频| 亚洲天堂国产精品一区在线| 久久亚洲精品不卡| 校园春色视频在线观看| 国产一区在线观看成人免费| 桃色一区二区三区在线观看| 亚洲精品在线观看二区| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 色播亚洲综合网| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 欧美大码av| 在线观看一区二区三区| 婷婷丁香在线五月| 一级a爱片免费观看的视频| 精品国产一区二区久久| 成人av一区二区三区在线看| 麻豆国产av国片精品| 精品不卡国产一区二区三区| av网站免费在线观看视频| 欧美乱色亚洲激情| 亚洲九九香蕉| 成人永久免费在线观看视频| 久久久久久大精品| 国产成人精品久久二区二区免费| 国产午夜精品久久久久久| 国产人伦9x9x在线观看| 亚洲视频免费观看视频| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 欧美成狂野欧美在线观看| 久久国产亚洲av麻豆专区| 国产高清激情床上av| 老司机午夜福利在线观看视频| 黄色 视频免费看| 国产成人影院久久av| 淫妇啪啪啪对白视频| 国产野战对白在线观看| 欧美色欧美亚洲另类二区 | 一夜夜www| 亚洲国产日韩欧美精品在线观看 | 久久这里只有精品19| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美一区二区综合| 欧美不卡视频在线免费观看 | 女生性感内裤真人,穿戴方法视频| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 高清在线国产一区| 久久天堂一区二区三区四区| 久久久久精品国产欧美久久久| 一区福利在线观看| www.精华液| 国产又色又爽无遮挡免费看| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 成年女人毛片免费观看观看9| 亚洲少妇的诱惑av| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区 | 在线观看一区二区三区| 午夜久久久在线观看| 国产在线观看jvid| 亚洲精品国产一区二区精华液| 91成人精品电影| 操美女的视频在线观看| 免费看a级黄色片| 亚洲人成伊人成综合网2020| 女人高潮潮喷娇喘18禁视频| 日韩一卡2卡3卡4卡2021年| 少妇粗大呻吟视频| 国产麻豆成人av免费视频| 日本免费一区二区三区高清不卡 | 午夜免费成人在线视频| aaaaa片日本免费| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 涩涩av久久男人的天堂| 成年女人毛片免费观看观看9| 欧美亚洲日本最大视频资源| 极品教师在线免费播放| 在线播放国产精品三级| 91成人精品电影| 好男人在线观看高清免费视频 | 亚洲成人国产一区在线观看| 日韩欧美国产在线观看| 免费在线观看完整版高清| xxx96com| 亚洲av成人av| 亚洲中文日韩欧美视频| 久久人妻福利社区极品人妻图片| 国产精品乱码一区二三区的特点 | 亚洲国产高清在线一区二区三 | 欧美日韩一级在线毛片| 好男人电影高清在线观看| 久久久精品国产亚洲av高清涩受| 免费看a级黄色片| 女人精品久久久久毛片| 免费少妇av软件| 婷婷丁香在线五月| 国产精品香港三级国产av潘金莲| 在线播放国产精品三级| 宅男免费午夜| 国产99久久九九免费精品| 国产三级黄色录像| 99国产精品99久久久久| 俄罗斯特黄特色一大片| 天天一区二区日本电影三级 | 亚洲精品在线美女| 香蕉国产在线看| 12—13女人毛片做爰片一| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 国内精品久久久久久久电影| 亚洲成人精品中文字幕电影| 成人亚洲精品av一区二区| 欧美在线黄色| 成人18禁在线播放| 欧美激情 高清一区二区三区| 午夜免费鲁丝| av有码第一页| 亚洲国产日韩欧美精品在线观看 | 性欧美人与动物交配| 波多野结衣av一区二区av| 99久久综合精品五月天人人| 国产蜜桃级精品一区二区三区| www.熟女人妻精品国产| 免费高清视频大片| 亚洲国产欧美网| 黄频高清免费视频| 黄色成人免费大全| 给我免费播放毛片高清在线观看| 不卡一级毛片| 美女 人体艺术 gogo| 男女午夜视频在线观看| 午夜久久久在线观看| 男女做爰动态图高潮gif福利片 | 国产蜜桃级精品一区二区三区| 丁香六月欧美| 久久婷婷人人爽人人干人人爱 | 欧美日本中文国产一区发布| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免费看| 狂野欧美激情性xxxx| 午夜精品国产一区二区电影| 久久性视频一级片| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 国产激情欧美一区二区| www.999成人在线观看| 亚洲天堂国产精品一区在线| 亚洲国产看品久久| 校园春色视频在线观看| 精品乱码久久久久久99久播| 黄色毛片三级朝国网站| 制服丝袜大香蕉在线| 亚洲av五月六月丁香网| 黄片大片在线免费观看| 大型黄色视频在线免费观看| 国产亚洲欧美98| av在线播放免费不卡| 久久影院123| 国产精品二区激情视频| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 欧美+亚洲+日韩+国产| 女人被狂操c到高潮| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 亚洲中文av在线| 韩国av一区二区三区四区| 99国产精品一区二区蜜桃av| 日韩中文字幕欧美一区二区| 久久这里只有精品19| 亚洲第一av免费看| 黑人欧美特级aaaaaa片| 国产一区二区在线av高清观看| 成人永久免费在线观看视频| 这个男人来自地球电影免费观看| 日韩免费av在线播放| 最新在线观看一区二区三区| 国产欧美日韩一区二区三| 50天的宝宝边吃奶边哭怎么回事| 成在线人永久免费视频| 免费无遮挡裸体视频| 亚洲精品久久国产高清桃花| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 1024香蕉在线观看| 亚洲中文日韩欧美视频| 亚洲av熟女| 欧美日韩黄片免| 国产成人av教育| 亚洲第一av免费看| 国产精品一区二区免费欧美| or卡值多少钱| 免费无遮挡裸体视频| 制服诱惑二区| 精品久久久久久,| 高清在线国产一区| 久久久久久国产a免费观看| 91在线观看av| 夜夜爽天天搞| 亚洲全国av大片| 狂野欧美激情性xxxx| 国产精品,欧美在线| 亚洲天堂国产精品一区在线| 亚洲人成77777在线视频| 欧美不卡视频在线免费观看 | 色精品久久人妻99蜜桃| 国产欧美日韩一区二区三区在线| 大码成人一级视频| 国产精品一区二区三区四区久久 | 午夜激情av网站| 成人手机av| 波多野结衣高清无吗| www.精华液| 亚洲熟妇熟女久久| 亚洲一区中文字幕在线| 99在线视频只有这里精品首页| 亚洲成人精品中文字幕电影| 最近最新中文字幕大全电影3 | 国产精品av久久久久免费| 手机成人av网站| 久久午夜亚洲精品久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻av系列| 大陆偷拍与自拍| 国产视频一区二区在线看| 国产成人av教育| 国产又色又爽无遮挡免费看| 精品国内亚洲2022精品成人| 51午夜福利影视在线观看| 欧美日韩黄片免| 欧美中文日本在线观看视频| 国产精品二区激情视频| 老司机深夜福利视频在线观看| 给我免费播放毛片高清在线观看| 村上凉子中文字幕在线| 久久国产精品人妻蜜桃| 丝袜美腿诱惑在线| 国产99白浆流出| 国产单亲对白刺激| 亚洲av成人av| 少妇熟女aⅴ在线视频| 欧美成狂野欧美在线观看| 亚洲自拍偷在线| xxx96com| 亚洲精品中文字幕一二三四区| 欧美日韩黄片免| 亚洲欧美精品综合久久99| 一二三四社区在线视频社区8| 亚洲专区字幕在线| 国产色视频综合| 97人妻精品一区二区三区麻豆 | 看黄色毛片网站| 最近最新免费中文字幕在线| 日韩精品青青久久久久久| 日韩欧美在线二视频| 亚洲无线在线观看| 又紧又爽又黄一区二区| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区视频在线观看| 精品卡一卡二卡四卡免费| 国产精品久久视频播放| av天堂在线播放| 最新美女视频免费是黄的| 极品教师在线免费播放| 久久精品91蜜桃| 欧美一级毛片孕妇| 亚洲中文av在线| av免费在线观看网站| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久精品电影 | 国产成人系列免费观看| 看免费av毛片| 久久亚洲真实| 嫩草影视91久久| 日韩欧美国产在线观看| 欧美日韩乱码在线| 999精品在线视频| 此物有八面人人有两片| av片东京热男人的天堂| 美女午夜性视频免费| 久久人人爽av亚洲精品天堂| 露出奶头的视频| 久久精品国产综合久久久| 国产高清有码在线观看视频 | 黄片播放在线免费| 国产伦人伦偷精品视频| 亚洲精品中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看| videosex国产| 亚洲一区中文字幕在线| 三级毛片av免费| 黄片小视频在线播放| 搞女人的毛片| 一进一出抽搐动态| 久久婷婷人人爽人人干人人爱 | 18美女黄网站色大片免费观看| 亚洲精品一区av在线观看| 精品第一国产精品| 欧美成人性av电影在线观看| 成人国产一区最新在线观看| 久久国产精品人妻蜜桃| 91av网站免费观看| 纯流量卡能插随身wifi吗| 免费久久久久久久精品成人欧美视频| 欧美在线黄色| 免费久久久久久久精品成人欧美视频| 色综合亚洲欧美另类图片| 波多野结衣巨乳人妻| 99国产精品一区二区蜜桃av| 悠悠久久av| 首页视频小说图片口味搜索| 欧美激情 高清一区二区三区| 看黄色毛片网站| 啪啪无遮挡十八禁网站|