• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input

    2020-09-02 04:04:32LongChenLinqingWangZhongyangHanMemberIEEEJunZhaoSeniorMemberIEEEandWeiWangSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2020年5期

    Long Chen, Linqing Wang, Zhongyang Han, Member, IEEE, Jun Zhao, Senior Member, IEEE, and Wei Wang, Senior Member, IEEE

    Abstract—Prediction intervals (PIs) for industrial time series can provide useful guidance for workers. Given that the failure of industrial sensors may cause the missing point in inputs, the existing kernel dynamic Bayesian networks (KDBN), serving as an effective method for PIs construction, suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference, which avoids the timeconsuming stochastic sampling. The proposed algorithm contains two stages. The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices. To verify the effectiveness of the proposed method, a synthetic dataset and a practical dataset of generation flow of blast furnace gas (BFG) are employed with different ratios of missing inputs. The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.

    I. Introduction

    IN industrial production process, e.g., iron and steel making process, there are lots of process variables which need to be monitored or predicted in order to guarantee the production reliability, safety and low economic cost [1]. Through the commonly implemented supervisory control and data acquisition (SCADA) system, industrial time series data of these process variables are collected, based on which one can build a prediction model [2], [3]. However, the high level noise and the missing data often corrupt the obtained industrial data,which makes it difficult for high prediction accuracy, while the workers on-site not only focus on the point estimate of the variables, but the reliability of the prediction as well [4].

    As for the industrial time series prediction, lots of data-based methods are developed [5]–[7]. The most commonly used methods are those based on the artificial neural networks(ANNs) [8], the Gaussian processes [9], and the least square support vector machines (LSSVM) [10], etc. In [11], an effective noise estimation-based LSSVM model was reported to perform online prediction of the byproduct gas flow in steel industry. Besides, a Gaussian process based echo state networks(ESN) model was reported in [12] for prediction of the flow of coke oven gas and gasholder level in steel industry. However,these mentioned methods are all focused on the pointwise estimates, which failed to provide the reliability of prediction,and cannot deal with the situation of missing inputs.

    A class of PIs based approaches can not only produce the predictive mean but also provide an interval with some confidence level, in which the bootstrap method, the Bayesian method, the mean-variance estimates (MVEs), and the delta method are usually combined with ANNs for such a task [13]–[15]. In addition, the PIs can also be constructed by using the fuzzy sets theory [16]. The delta method was first presented in[17], which was based on an assumption condition that the variance of all the samples was identical. However, such an assumption was rather difficult to be satisfied when facing with real world problems. The Bayesian theory-based PIs construction usually relied on the prior distribution of the samples, especially when the sample amount was relatively small [18]. The MVE method assumed that the network could accurately estimate the target with the least computational load[19]. However, due to the uncertainties in practice, the generalization capability of the NN is insufficient. Besides, in[20], an ensemble model containing a number of reservoir computing networks was employed by using the bootstrap techniques, which was applied to the prediction of practical industrial data. However, the aforementioned methodologies are only formulated for the complete inputs, and when encountering the incomplete inputs one has to perform a data imputation procedure for the missing inputs before prediction.

    Fig.3. KDBN structure for noisy Mackey-Glass time series prediction.

    III. Experiments

    To verify the effectiveness of the proposed inference method for the KDBN (KDBN-VI), a synthetic dataset and a practical industrial dataset are considered here.

    A. A Synthetic Dataset

    In this section, we employ the synthetic Mackey-Glass data.The Mackey-Glass equation is a differential equation with time delay, as formulated by

    Here, the parameters a, b, and τ in (19) are set to be 0.2, 0.1,and 17, respectively. A time series of Mackey-Glass is generated from (19) by a numerical method. The length of this sequence is 600. For the purpose of verifying the performance of the proposed method when facing with the noisy data, we add a Gaussian white noise with the variance 0.001 into this generated time series.

    In this experiment, th(e kernel fun)ction is Gaussian kernel function, K(x,xi)=exp||x?xi||/2b2. The 8-fold cross validation is used to determine the optimal value of b and the order of the KDBN. Finally, the order of the trained KDBN is set to be 30, and the kernel parameter b is set to be 1.673. Fig.3 shows the trained KDBN for the noisy Mackey-Glass data,where the parameters of the nodes after the 31st time slices share those of the 31st node. Besides, the experimental environment is the WindowsTMoperating system configured on a 3.4 GHz Intel Core i7-3770 chipset and 4 GB of RAM.The programming was completed in MATLABTM2014.

    To quantify the performance of the construction of PIs, two indicators including the root mean square error (RMSE) and the coverage width-based criterion (CWC) are adopted here.

    where n is the number of predicted points, Yiis the observed value and Fiis the predicted mean value. The RMSE aims to indicate the mean errors of the prediction. Besides, as for the interval performance, one can employ the CWC [7], which is a kind of combined index based on the PI coverage probability(PICP) and the mean PI width (MPIW).

    and

    where η and μ are two hyper-parameters, R denotes the range of the data, and ciequals 1 when the corresponding target is covered by the predicted coverage; otherwise, it equals 0. Uiand Liare, respectively, the upper and the lower bounds. PICP is measured by counting the number of target values covered by the constructed PIs. And NMPIW is the normalized MPIW showing the average width of PIs. The smaller it is, the better the performance, and the smaller the PICP is, the better the performance of PIs is.

    To verify the performance of the proposed method, this study compares the experimental results of several other methods of PIs construction, including the KDBN with weighted likelihood inference (KDBN-WL) [25], the Bayesian multiple layer perceptron (Bayesian MLP) [13], and the bootstrap-based echo state networks (Bootstrap ESN) [20].The Bayesian MLP and the bootstrap ESN are the NNs based PIs construction methods. In the KDBN-WL, the number of samples in the WL algorithm is set to be 500. In the Bayesian MLP, the number of hidden nodes is set to be 30, and in the Bootstrap ESN, the number of the ESNs is 20. In these experiments, the hyper-parameters defined in (21) are set to be 10 and 0.95, respectively. The nearest neighbor imputation method is firstly conducted for imputing the incomplete inputs before performing inference with the Bayesian MLP and the Bootstrap ESN. Table I lists the statistical results of these aforementioned methods for the noisy Mackey-Glass data with different missing input ratios (20 independent experiments are performed). This table shows that the PIs performances (CWC, PICP, and NMPIW) of the KDBN-VI and the KDBN-WL are very similar, but the inference time of the KDBN-VI is much smaller than that of the KDBN-WL.Besides, the KDBN based methods produce better prediction performance than the other two NNs based methods.

    TABLE I Comparison of the Prediction Results for Different Methods Under Different Missing Percentage of Inputs for the Noisy Mackey-Glass Data

    Fig.4. Illustration of the generation of BFG.

    Fig.5. Illustration of missing points. (a) A segment of the generation flow of BFG with missing points; (b) An example of missing points in an input vector [25].

    B. A Practical Industrial Dataset

    In steel industry, the BFG produced by blast furnace, can serve as the secondary energy. Therefore, it is significant to schedule the BFG which is generated from blast furnaces, and part of it is consumed by a number of hot-blast stoves before transporting into the pipeline network, as illustrated in Fig.4.These hot-blast stoves are often switched on or off, which makes large fluctuation of the BFG flow and the instability of the pressure of the gas in the pipeline network. Thereby, it is important to predict the generation flow of the BFG for the energy scheduling.

    Fig.6. A KDBN for the flow of the BFG.

    Through the SCADA system, the BFG data will be obtained in real-time, however, complex industrial environment may cause the failure of the sensors, which will lead to missing points in the input vector for a trained prediction model.Fig.5(a) presents a time series of the generation flow of BFG with missing points, where the locations marked by circles denote the missing points, and Fig.5(b) illustrates an example of missing points in input vector, where the circles in the solid line box denote the input vector of the model, and the hollow ones denote the value-missed variables in input vector.

    A period of the generation flow of BFG, coming from the SGADA system of a steel plant in China in July 2016, serves as the experimental data in this study. The sampling period of these data is one minute. This study conducts the experiments under different missing ratios of inputs. The number of the sequences in the training set is 500, of which the length of each sequence is 80. The kernel function is the Gaussian kernel function. The order of the trained KDBN is set to be 45, and the kernel parameter b is set to be 834.45 by using the 10-fold cross validation. Fig.6 shows the trained KDBN for the generation flow of the BFG, where the parameters of the nodes after the 46th time slice share the 45th node.

    Fig.7 presents the experimental results of the proposed KDBN-VI with different missing input ratios including 5%,10%, 30%, and 50%, where 95% confidence level are shown.As shown in Fig.7, with the increase of the missing ratios, the KDBN-VI can exhibit a decline in the prediction quality,while even when the missing ratio of input is very large (e.g.,50%) the proposed KDBN-VI still shows a good performance for PIs construction. This means that the KDBN-VI has a high stability for the flow of the BFG with different levels of missing proportions. Besides, the inference time of this method is generally less than one second, which is very fast in the perspective of the industrial demands of real time prediction.

    Similarly, to further verify the performance of the proposed method for the BFG data, this study compares the experimental results of several other methods of PIs construction, including the KDBN-WL [25], the Bayesian MLP [13], and the bootstrap ESN [20]. Table II lists the statistical results of these aforementioned methods for the generation flow of the BFG (50 independent experiments are performed). From this table, one can see that the KDBN based methods (the KDBN-VI and the KDBN-WL) exhibit relatively lower prediction error than the other two methods(the Bayesian MLP and the bootstrap ESN), refer to the values of the indicator RMSE. The prediction performances of the KDBN-VI and the KDBN-WL are similar, while the proposed KDBN-VI is much faster than the KDBN-WL. That is, the proposed one is more suitable for the industrial demand on real time inference than the KDBN-WL.

    Fig.7. Experimental results of the KDBN-VI for the generation flow of the BFG with different missing ratios: (a) missing 5%; (b) missing 10%; (c)missing 30%; (d) missing 50%.

    TABLE II Comparison of the Prediction Results for Different Methods under Different Missing Percentage of Inputs for the BFG Data

    IV. Conclusions

    This study addresses the problem of inference of the kernelbased DBN by using a variational inference based method with two stages. The first stage involves the computation of the analytical posterior distributions over the nodes of missing values approximately by using a local linearization based variational inference, and the second stage makes a Gaussian approximation for the posteriors over the predictive nodes in the future time slices. The proposed inference method avoids the time-consuming stochastic sampling scheme as employed in the original WL algorithm. The experimental results indicate that the proposed method is much faster than the WL algorithm, and it can produce reliable PIs for industrial demands.

    This study only considers the input uncertainty in the conditional mean value (see (1)). Therefore, the future work will aim to tackle the inference problem with the input uncertainty both in the mean and variance by using variational inference, which is more complex since the approximation cannot be done by the first order Taylor expansion when considering the input uncertainty in variance.

    Appendix Computations of Expectations In Variational Inference

    The details of the computation of expectations in (12) and(13) are given as follows. The missing input vector exists in the kernel function of the nonlinear mean function. Therefore,these expectations involve the integration of the kernel and the posterior over the missing input vector xqu. Assume that the variational posterior distributions over xquare expressed as a Gaussian form, i.e., q(xqu)=N(xqu|μqu,Σqu) with mean vector μquand covariance matrix Σqu, the integration is given by

    where K(xqu,xj) is the kernel function of the xqu, and L denotes the diagonal length scale parameters.

    国产欧美另类精品又又久久亚洲欧美| 赤兔流量卡办理| 国产午夜精品一二区理论片| av视频免费观看在线观看| 久久av网站| 91狼人影院| 99re6热这里在线精品视频| 免费av不卡在线播放| 日韩一本色道免费dvd| 一本色道久久久久久精品综合| 日日摸夜夜添夜夜爱| 免费看av在线观看网站| 国产成人freesex在线| 蜜臀久久99精品久久宅男| 多毛熟女@视频| 亚洲精品国产av成人精品| 久久精品国产亚洲av天美| 内射极品少妇av片p| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 狂野欧美白嫩少妇大欣赏| 日韩电影二区| 日韩av不卡免费在线播放| 国产亚洲91精品色在线| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 少妇裸体淫交视频免费看高清| 麻豆乱淫一区二区| 一个人看视频在线观看www免费| 永久免费av网站大全| 国产一区亚洲一区在线观看| 国产人妻一区二区三区在| 中文字幕人妻熟人妻熟丝袜美| 人妻制服诱惑在线中文字幕| 视频区图区小说| 国产高清有码在线观看视频| 亚洲图色成人| 久久人妻熟女aⅴ| 最近最新中文字幕免费大全7| 欧美成人一区二区免费高清观看| 久久久a久久爽久久v久久| av天堂中文字幕网| 国产男人的电影天堂91| 99久国产av精品国产电影| 观看免费一级毛片| 精品熟女少妇av免费看| 有码 亚洲区| 在线免费十八禁| 成人综合一区亚洲| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 欧美3d第一页| h日本视频在线播放| 在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品国产精品| 黑丝袜美女国产一区| 亚洲av成人精品一二三区| 久久国产亚洲av麻豆专区| 国产精品蜜桃在线观看| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 能在线免费看毛片的网站| av黄色大香蕉| 亚洲欧美一区二区三区黑人 | 日本午夜av视频| 日韩成人av中文字幕在线观看| 啦啦啦啦在线视频资源| 久久国产精品大桥未久av | 最后的刺客免费高清国语| 亚洲国产精品国产精品| 精品国产一区二区三区久久久樱花 | 在线天堂最新版资源| 久久久久久伊人网av| 成人无遮挡网站| 国产日韩欧美亚洲二区| 免费观看在线日韩| 亚洲精品国产成人久久av| 少妇人妻精品综合一区二区| 成人高潮视频无遮挡免费网站| 3wmmmm亚洲av在线观看| 99久国产av精品国产电影| 日韩电影二区| 一区二区三区精品91| 视频中文字幕在线观看| av在线app专区| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 99热这里只有是精品在线观看| 欧美日本视频| 草草在线视频免费看| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 国产亚洲最大av| 天堂俺去俺来也www色官网| 亚洲在久久综合| 免费播放大片免费观看视频在线观看| 在现免费观看毛片| 小蜜桃在线观看免费完整版高清| 亚洲真实伦在线观看| 日本爱情动作片www.在线观看| 在线亚洲精品国产二区图片欧美 | 欧美老熟妇乱子伦牲交| 欧美日韩视频精品一区| 亚洲va在线va天堂va国产| 中文字幕久久专区| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 国产91av在线免费观看| 日本黄大片高清| 色哟哟·www| 日韩亚洲欧美综合| 国产亚洲av片在线观看秒播厂| 久久久精品免费免费高清| 国产精品一区二区三区四区免费观看| 午夜福利网站1000一区二区三区| 日本vs欧美在线观看视频 | 国产成人a∨麻豆精品| 国产精品国产三级国产专区5o| 日韩视频在线欧美| 欧美区成人在线视频| 久久久久精品久久久久真实原创| 一级毛片久久久久久久久女| 国产精品99久久99久久久不卡 | 国产黄频视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲四区av| 亚洲人成网站高清观看| 精品国产露脸久久av麻豆| 我的女老师完整版在线观看| 80岁老熟妇乱子伦牲交| 午夜福利高清视频| 亚洲国产欧美人成| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 卡戴珊不雅视频在线播放| 中文字幕免费在线视频6| 久久鲁丝午夜福利片| 日本色播在线视频| 多毛熟女@视频| 水蜜桃什么品种好| 最近最新中文字幕大全电影3| 欧美另类一区| 97热精品久久久久久| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 纯流量卡能插随身wifi吗| 一级爰片在线观看| 亚洲成人av在线免费| 99热国产这里只有精品6| 天堂8中文在线网| 高清欧美精品videossex| 国产精品国产三级国产专区5o| 国产淫语在线视频| 一级毛片黄色毛片免费观看视频| 亚洲美女视频黄频| 综合色丁香网| 免费在线观看成人毛片| 精品视频人人做人人爽| 免费观看在线日韩| 久久久久久久久大av| 日日摸夜夜添夜夜爱| 极品教师在线视频| 国产毛片在线视频| 男的添女的下面高潮视频| 一级a做视频免费观看| 国产美女午夜福利| 国产精品一区二区在线观看99| 国产亚洲91精品色在线| 久久久久久人妻| 高清黄色对白视频在线免费看 | 亚洲欧美一区二区三区国产| 最近中文字幕2019免费版| 夫妻午夜视频| 老师上课跳d突然被开到最大视频| 国产高潮美女av| 天堂8中文在线网| 在线观看人妻少妇| 国产 一区精品| 免费观看的影片在线观看| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 韩国高清视频一区二区三区| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 联通29元200g的流量卡| 精品国产三级普通话版| 国产乱来视频区| 国产av精品麻豆| 精品一区在线观看国产| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久久末码| 国产精品99久久久久久久久| 少妇的逼好多水| 中文字幕亚洲精品专区| 午夜福利在线在线| 中文乱码字字幕精品一区二区三区| 亚洲性久久影院| 中国三级夫妇交换| 国产精品伦人一区二区| 永久网站在线| 国产成人a∨麻豆精品| 秋霞伦理黄片| 十分钟在线观看高清视频www | 亚洲国产精品国产精品| 日本av免费视频播放| 高清欧美精品videossex| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲网站| 寂寞人妻少妇视频99o| 久久人人爽av亚洲精品天堂 | 日韩强制内射视频| 日本欧美视频一区| 菩萨蛮人人尽说江南好唐韦庄| 少妇 在线观看| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 伊人久久国产一区二区| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 91久久精品国产一区二区三区| 亚洲av在线观看美女高潮| 男女啪啪激烈高潮av片| 国产精品熟女久久久久浪| 国产在线视频一区二区| 亚洲av电影在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 久久99蜜桃精品久久| 亚洲四区av| 九草在线视频观看| 一本色道久久久久久精品综合| 免费看日本二区| 成人毛片60女人毛片免费| 女人十人毛片免费观看3o分钟| 小蜜桃在线观看免费完整版高清| 大片电影免费在线观看免费| 国产高清三级在线| 精品一区二区免费观看| 亚洲av不卡在线观看| av网站免费在线观看视频| 美女内射精品一级片tv| 精品久久久噜噜| 亚洲av国产av综合av卡| a级毛片免费高清观看在线播放| 免费大片18禁| a级毛色黄片| 中文资源天堂在线| 国产真实伦视频高清在线观看| 91久久精品国产一区二区成人| 尤物成人国产欧美一区二区三区| 黑丝袜美女国产一区| 国产精品人妻久久久影院| 国产黄色视频一区二区在线观看| 91精品一卡2卡3卡4卡| 亚洲天堂av无毛| 美女内射精品一级片tv| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| 在线观看国产h片| 欧美日韩亚洲高清精品| av天堂中文字幕网| 一级片'在线观看视频| 99热这里只有是精品在线观看| 精品酒店卫生间| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| 一个人看的www免费观看视频| 久久久国产一区二区| 妹子高潮喷水视频| 黄色欧美视频在线观看| 91精品一卡2卡3卡4卡| 丝瓜视频免费看黄片| 国产女主播在线喷水免费视频网站| 国产高清有码在线观看视频| 青春草视频在线免费观看| 亚洲精品视频女| 激情 狠狠 欧美| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 国产av国产精品国产| 在线观看一区二区三区激情| 国产精品偷伦视频观看了| 天堂8中文在线网| 亚洲国产精品国产精品| 岛国毛片在线播放| 少妇丰满av| 免费观看无遮挡的男女| 免费人成在线观看视频色| 日本av免费视频播放| 毛片一级片免费看久久久久| 精品亚洲成国产av| 午夜老司机福利剧场| 一级爰片在线观看| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 成人美女网站在线观看视频| 国产精品国产三级专区第一集| 少妇猛男粗大的猛烈进出视频| 联通29元200g的流量卡| 欧美bdsm另类| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 丰满人妻一区二区三区视频av| 狂野欧美白嫩少妇大欣赏| 国产成人精品福利久久| 在线观看三级黄色| 国产无遮挡羞羞视频在线观看| 国产黄片美女视频| 国产亚洲欧美精品永久| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 国产精品人妻久久久影院| 亚洲av综合色区一区| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| av.在线天堂| 久久午夜福利片| 女人久久www免费人成看片| 视频中文字幕在线观看| 日韩,欧美,国产一区二区三区| 国产精品精品国产色婷婷| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 国产精品国产av在线观看| 亚洲国产欧美人成| 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 日韩视频在线欧美| 有码 亚洲区| 精品视频人人做人人爽| 夫妻午夜视频| 蜜桃在线观看..| 97在线视频观看| 成人一区二区视频在线观看| 欧美少妇被猛烈插入视频| 精品一品国产午夜福利视频| 久久久精品94久久精品| 日韩在线高清观看一区二区三区| 国产精品一区二区在线不卡| 尾随美女入室| 在线观看美女被高潮喷水网站| 熟女av电影| 国产精品爽爽va在线观看网站| av视频免费观看在线观看| 亚洲国产欧美人成| 亚洲精品一二三| 国产亚洲午夜精品一区二区久久| 亚洲av中文字字幕乱码综合| 激情 狠狠 欧美| 亚洲精华国产精华液的使用体验| 偷拍熟女少妇极品色| 91精品一卡2卡3卡4卡| 久久久久人妻精品一区果冻| 人妻一区二区av| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| 国产亚洲最大av| 18+在线观看网站| 精品一区在线观看国产| 色5月婷婷丁香| 超碰av人人做人人爽久久| 亚洲精华国产精华液的使用体验| 少妇裸体淫交视频免费看高清| 久久久久久久久久成人| 日日摸夜夜添夜夜爱| 五月开心婷婷网| 国产成人a∨麻豆精品| 亚洲成色77777| videossex国产| 老司机影院毛片| 一级毛片我不卡| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 欧美精品一区二区大全| 国产美女午夜福利| 国产精品福利在线免费观看| 女的被弄到高潮叫床怎么办| 少妇人妻久久综合中文| 亚洲av成人精品一区久久| 爱豆传媒免费全集在线观看| 国产欧美日韩精品一区二区| 亚洲av电影在线观看一区二区三区| 国产成人一区二区在线| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 亚洲婷婷狠狠爱综合网| 亚洲无线观看免费| 亚洲内射少妇av| av黄色大香蕉| 久久精品久久久久久噜噜老黄| 精品久久久久久久末码| 小蜜桃在线观看免费完整版高清| 日本色播在线视频| 国产人妻一区二区三区在| av福利片在线观看| 日本爱情动作片www.在线观看| 国产毛片在线视频| 成人影院久久| 小蜜桃在线观看免费完整版高清| 多毛熟女@视频| 免费人成在线观看视频色| 日韩伦理黄色片| 国产 精品1| av网站免费在线观看视频| 97热精品久久久久久| 国产成人freesex在线| 少妇裸体淫交视频免费看高清| 尾随美女入室| 国产精品爽爽va在线观看网站| 久久久久久人妻| 亚洲精品乱码久久久久久按摩| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 日本猛色少妇xxxxx猛交久久| 日本欧美视频一区| 亚洲国产欧美在线一区| 国产精品麻豆人妻色哟哟久久| 狠狠精品人妻久久久久久综合| 成人一区二区视频在线观看| 亚洲天堂av无毛| 欧美xxxx性猛交bbbb| 精品国产一区二区三区久久久樱花 | 欧美 日韩 精品 国产| 成人毛片a级毛片在线播放| 欧美日韩国产mv在线观看视频 | av在线播放精品| 日韩电影二区| 我的女老师完整版在线观看| 99热这里只有精品一区| 午夜福利高清视频| 亚洲av免费高清在线观看| 国产精品.久久久| 免费大片18禁| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片| 99久久人妻综合| 国产一区亚洲一区在线观看| kizo精华| 少妇猛男粗大的猛烈进出视频| 一级毛片黄色毛片免费观看视频| 日韩 亚洲 欧美在线| 国产精品成人在线| 欧美高清性xxxxhd video| 亚洲一级一片aⅴ在线观看| 久久婷婷青草| 亚洲精品久久午夜乱码| 人体艺术视频欧美日本| 国产黄色视频一区二区在线观看| kizo精华| 啦啦啦视频在线资源免费观看| 国产成人一区二区在线| 我要看日韩黄色一级片| 久热久热在线精品观看| 欧美精品一区二区大全| 天美传媒精品一区二区| 亚洲人成网站高清观看| 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 我的女老师完整版在线观看| 九九爱精品视频在线观看| 精华霜和精华液先用哪个| 嘟嘟电影网在线观看| av播播在线观看一区| 国产亚洲一区二区精品| 国产一区二区三区av在线| 国产精品久久久久久精品电影小说 | av国产免费在线观看| 日本黄色片子视频| 久久热精品热| 2021少妇久久久久久久久久久| 国产精品.久久久| 黄色怎么调成土黄色| 亚洲精华国产精华液的使用体验| 一级片'在线观看视频| 又黄又爽又刺激的免费视频.| 久久久久久久久大av| 99久久人妻综合| 亚洲av成人精品一二三区| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 亚洲成人一二三区av| 亚洲欧美精品专区久久| 成年免费大片在线观看| 免费人妻精品一区二区三区视频| 最近的中文字幕免费完整| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品电影小说 | 亚洲av福利一区| 黄色欧美视频在线观看| 在线观看三级黄色| 欧美激情国产日韩精品一区| 亚洲综合精品二区| 一区二区三区精品91| 日日啪夜夜爽| 国产精品一区二区在线不卡| 久久久久久久久久人人人人人人| 97精品久久久久久久久久精品| 美女主播在线视频| 联通29元200g的流量卡| 久久97久久精品| 国产精品一区二区性色av| 亚洲av综合色区一区| 丰满人妻一区二区三区视频av| kizo精华| 18禁裸乳无遮挡免费网站照片| 亚洲av国产av综合av卡| 伊人久久国产一区二区| 久久久久人妻精品一区果冻| 精品国产一区二区三区久久久樱花 | 亚洲av中文字字幕乱码综合| 少妇猛男粗大的猛烈进出视频| 国产女主播在线喷水免费视频网站| 免费看日本二区| 大码成人一级视频| 99re6热这里在线精品视频| 国产精品久久久久成人av| 亚洲欧美精品专区久久| 久久久久久久亚洲中文字幕| 青青草视频在线视频观看| av.在线天堂| 干丝袜人妻中文字幕| 久久久久视频综合| 91狼人影院| 最近手机中文字幕大全| 日本av免费视频播放| 久久久久久久亚洲中文字幕| 久久久久久久精品精品| 两个人的视频大全免费| 纯流量卡能插随身wifi吗| 九色成人免费人妻av| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 精华霜和精华液先用哪个| 大又大粗又爽又黄少妇毛片口| 久久久久久久精品精品| 纵有疾风起免费观看全集完整版| 中文字幕免费在线视频6| 多毛熟女@视频| 久久女婷五月综合色啪小说| 免费在线观看成人毛片| 日韩大片免费观看网站| 欧美+日韩+精品| 日韩亚洲欧美综合| 少妇丰满av| 国产在线男女| 能在线免费看毛片的网站| 自拍偷自拍亚洲精品老妇| 亚洲国产毛片av蜜桃av| 国产高清有码在线观看视频| 久久热精品热| 精品人妻一区二区三区麻豆| 一级毛片久久久久久久久女| av在线蜜桃| 中文字幕制服av| 久久久精品94久久精品| 精品国产露脸久久av麻豆| 干丝袜人妻中文字幕| 欧美精品国产亚洲| 国产白丝娇喘喷水9色精品| 99热6这里只有精品| 亚洲欧美成人综合另类久久久| 国产色爽女视频免费观看| 激情五月婷婷亚洲| 久久鲁丝午夜福利片| 久久国内精品自在自线图片| 久久av网站| 亚洲欧美精品自产自拍| 午夜老司机福利剧场| 纵有疾风起免费观看全集完整版| 最近2019中文字幕mv第一页| 男女啪啪激烈高潮av片| 韩国高清视频一区二区三区| 亚洲熟女精品中文字幕| 亚洲精品一区蜜桃| 久久久久视频综合| 蜜桃在线观看..| 久久青草综合色| 色网站视频免费| 亚洲精品日本国产第一区| 亚洲精品视频女| 特大巨黑吊av在线直播| 成人国产av品久久久| 成年免费大片在线观看| 亚洲欧美成人综合另类久久久| 又黄又爽又刺激的免费视频.| 免费av中文字幕在线| 精品少妇黑人巨大在线播放| 丰满少妇做爰视频| 91久久精品电影网| 麻豆精品久久久久久蜜桃| 国产一区二区在线观看日韩| videos熟女内射| 男女国产视频网站| 五月开心婷婷网| 久久久色成人| 1000部很黄的大片| 欧美丝袜亚洲另类| 亚洲国产精品专区欧美| 成人美女网站在线观看视频| 亚洲精品国产色婷婷电影| 女人久久www免费人成看片| 男人爽女人下面视频在线观看| 深夜a级毛片| 精品亚洲成国产av| 午夜福利在线在线| 中文字幕精品免费在线观看视频 | 夜夜看夜夜爽夜夜摸|