• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Major Development Under Gaussian Filtering Since Unscented Kalman Filter

    2020-09-02 03:58:42AbhinoyKumarSinghMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2020年5期

    Abhinoy Kumar Singh, Member, IEEE

    Abstract—Filtering is a recursive estimation of hidden states of a dynamic system from noisy measurements. Such problems appear in several branches of science and technology, ranging from target tracking to biomedical monitoring. A commonly practiced approach of filtering with nonlinear systems is Gaussian filtering. The early Gaussian filters used a derivative-based implementation, and suffered from several drawbacks, such as the smoothness requirements of system models and poor stability.A derivative-free numerical approximation-based Gaussian filter,named the unscented Kalman filter (UKF), was introduced in the nineties, which offered several advantages over the derivativebased Gaussian filters. Since the proposition of UKF, derivativefree Gaussian filtering has been a highly active research area.This paper reviews significant developments made under Gaussian filtering since the proposition of UKF. The review is particularly focused on three categories of developments: i)advancing the numerical approximation methods; ii) modifying the conventional Gaussian approach to further improve the filtering performance; and iii) constrained filtering to address the problem of discrete-time formulation of process dynamics. This review highlights the computational aspect of recent developments in all three categories. The performance of various filters are analyzed by simulating them with real-life target tracking problems.

    I. Introduction

    THE modern era of science and technology has witnessed huge applications requiring state estimations from noisy measurements, e.g., target tracking, stochastic modeling,industrial diagnosis, and prognosis etc. [1]. Thanks to the filtering algorithms [1]–[5], which offer an efficient recursive state estimation tool. Filtering algorithms have helped in the modernization of several domains, such as space technology[1], medical [6], finance and economics [7], weather monitoring [8], etc.

    The Bayesian framework [9], [10] is a common choice among the practitioners dealing with real-life estimation and filtering problems. It gives a probabilistic estimate of states by formulating prior and posterior probability density functions(pdf) [9], [10]. An analytical simplification is perceived by analyzing these pdfs numerically, and the Gaussian filters [1],[10] are most popular in this practice because of their high estimation accuracy at low computational cost. The Gaussian filters approximate the pdfs (prior and posterior) as Gaussian,and characterize them with mean and covariance.

    Researchers and industrial practitioners engaged with estimation applications would be grateful to Rudolph E.Kalman, who developed an optimal state estimation and filtering technique [11] for linear systems with white Gaussian noises. In the filtering literature, this technique is popularly known as Kalman filter [1]–[4]. The Kalman filter can be implemented with several linearly approximated filtering problems in different domains, like in target tracking [12] and communication systems [13]. However, the linearity constraint restricts its application with many more practical problems, where the linear approximation gives a poor characterization of system dynamics. A nonlinear filter,named as extended Kalman filter (EKF) [1], [3], was developed in the latter half of the sixties. It introduced a derivative-based local linearization of system dynamics, and propagated the mean and covariance through the locally linearized system models. It was further modified to improve the filtering performance by introducing several variants[14]–[16]. However, the derivative-based local linearization introduces many disadvantages to the EKF and its variants,like the smoothness requirement for systems model, poor estimation accuracy, and low convergence rate [1]–[3].Despite all these drawbacks, the EKF and its variants were the only alternative for more than three decades.

    A derivative-free filtering method was introduced in the nineties, which is known as the unscented Kalman filter(UKF) [17]–[20]. The UKF approximates the desired pdfs as Gaussian, and characterizes them with mean and covariance.Although the Gaussian approximation of unknown pdfs encounters an error, it is more accurate compared to the EKF[17]–[20]. Furthermore, the mean and covariance are obtained from the first and second moments. The moment computation encounters an integral of the form “nonlinear function ×Gaussian distribution.” Such integrals are generally intractable, and approximated with numerical methods. These methods approximate the integrals up to a particular order of Taylor series expansion. Thus, the moment of higher-order terms is another source of approximation error or the estimation error. Full expression of mean in terms of higherorder moments is derived in Appendix A. Nevertheless, it finds other sources of errors, such as noise Gaussian approximation and discrete-time formulation of process models, which appear for the EKF as well.

    The UKF implements an unscented transformation-based numerical method of integral solving. Using the same numerical method, many variants of UKF [21]–[27] appear in the literature. The derivative-free filtering approach of UKF offers several advantages, such as better stability and improved estimation accuracy. Subsequently, the research continued further, and several derivative-free filtering methods were developed to further improve the performance.The aforementioned Gaussian filtering is a popular class of numerical approximation-based derivative-free filtering methods (particle filtering is another popular class of derivative-free filters; however, this review is particularly focused on the Gaussian filters).

    The Gaussian filtering literature after the development of UKF can be classified in three categories: i) advancing numerical approximation accuracy; ii) modifying the Gaussian filtering approach against several limitations; and iii)removing the constraints on conventional Bayesian framework. This paper reviews the computational aspects of significant developments in all three categories.

    In the first category, the numerical approximation accuracy of intractable integrals has been remarkably improved by updating the numerical approximation methods. The improved accuracy of numerical approximation of intractable integrals leads to accurate characterization of original pdfs, resulting in an enhanced estimation accuracy. The literature in this category can be further classified into two sub-categories:cubature rule-based filters and quadrature rule-based filters.Cubature rule-based filtering begins with cubature Kalman filter (CKF) [28], which is further modified with several variants [29]–[31]. Other important developments in this subcategory are cubature quadrature Kalman filter (CQKF) and its variants [32]–[34], high-degree CKF (HDCKF) [35] and high-degree CQKF (HDCQKF) [36]. The objective of sequentially developed filters is to improve the estimation accuracy. However, the computational burden is also increased with every development. Under the quadrature rulebased filtering, the literature begins with Gauss-Hermite filter(GHF) [37], [38] and its variants [39]–[41]. The estimation accuracy of GHF is better than the cubature rule-based filters.However, it failed to attract the practitioners due to its high computational burden. A series of further developments,namely the sparse-grid GHF (SGHF) [42]–[44], multiple GHF(MGHF) [45], [46], and adaptive SGHF (ASGHF) [47],appeared to reduce the computational burden. Another interesting development on improving the numerical approximation accuracy is transformed filtering [27], [34],[48], [49], where the sample points used for numerical approximation are orthogonally transformed. The transformed filtering could enhance the estimation accuracy without adding extra computational burden.

    The second category reformulates the Gaussian filtering approach in different aspects. The square-root filtering [22],[33], [39], [50]–[52], and the Gaussian-sum filtering [30],[53]–[55] are popular developments in this category. The objective of square-root filtering is to preclude the positivedefinite requirement of error covariance matrix (essentially required in traditional Gaussian filters). It does not impact the estimation accuracy, but extends the filter applicability to the systems where the positive-definiteness is not guaranteed. The Gaussian-sum filtering, on the other hand, improves the estimation accuracy by approximating the unknown pdfs with multiple Gaussian components instead of a single Gaussian.

    In the third category, our discussion is focused on removing the constraint of discrete-time formulation of process dynamics. Under this constraint, the process dynamics is approximated as discrete, though it generally comes from continuous physical laws. In many problems (especially, if the sampling interval is large), this approximation is significant enough to harm the estimation accuracy. A continuousdiscrete filtering technique [56]–[60] is developed to mitigate this approximation.

    The literature witnesses other review papers pertaining to the Gaussian filtering, such as [61] and [62]. However, the scope of this review is widely different from them, more extensive, and more recent. Reference [61] was published in 2012, while many of the filtering techniques discussed in this review were introduced after that. Reference [61] discusses the computational aspects of the UKF only (out of all the filtering techniques reviewed in this paper), though a very brief discussion about the idea of CKF and GHF is also provided. It provides no discussion about square-root filtering,Gaussian-sum filtering, continuous-discrete filtering, and filtering with transformed sample points. The survey in [62] is focused more on the EKF and its extensions, though it puts some highlight on the UKF and the Gaussian-sum filtering.

    The remaining part of this paper is organized as follows:Section II revisits the conventional Bayesian framework and the Gaussian filtering approach. A brief discussion about the UKF formulation is provided in Section III. Cubature rulebased filters are discussed in Section IV, followed by a brief discussion on quadrature rule-based filters in Section V.Section VI highlights the effect of orthogonal transformation over sample points. Sections VII and VIII describe squareroot filtering and Gaussian-sum filtering, respectively. Section IX introduces the continuous-discrete filtering method. In Section X, the Gaussian filters are implemented with real-life nonlinear filtering problems, and their performance is analyzed with simulation results. Finally, discussions and conclusions are drawn in Section XI. A moment-based derivation of estimates is provided in Appendix A, followed by a brief discussion on Gaussian sigma point Kalman filtering algorithm in Appendix B.

    II. Bayesian Framework of Filtering

    The dynamic state space model of a system is represented with state and measurement equations, as [1]

    where xk∈ Rnand yk∈ Rdare state and measurement variables at the kth instant; k ∈{0,1,...} , ?k:xk?1→xkand true and estimated trajectories concludes a successful tracking using the CD-UKF and CD-CKF. The mean of absolute relative error for the CD-UKF and CD-CKF obtained over 200 Monte-Carlo executions are shown in Table II. The relative error is not analyzed along the height (state 5 and 6) as a constant height motion is considered. Moreover, the RMSEs obtained from the CD-UKF and CD-CKF are compared with their discrete-time counterparts, UKF and CKF, in Fig.7. The figure concludes an arbitrarily large RMSE, such that divergence for the discretetime filters, the UKF, and CKF.

    The covariance matrices failed to satisfy the positivedefiniteness criteria during the implementation of the continuous-discrete filters. Subsequently, the traditional filtering approaches failed. However, a square-root extension could help in successful implementation, which validates the importance of square-root filtering.

    Fig.6. Problem 2: True and estimated plots of x-y position for continuousdiscrete filters.

    TABLE II Mean of Absolute Relative Error for Continuous-Discrete Filters

    Fig.7. Problem 2: RMSE plots for CD-UKF, CD-CKF, and their discretetime counterparts, UKF, and CKF.

    XI. Discussions and Conclusions

    The Bayesian framework of filtering has been a common choice among practitioners for several decades. It is a conceptual solution, and a commonly practiced analytical interpretation is Gaussian filtering, which offers high estimation accuracy at low computational cost. The early Gaussian filters, the EKF and its variants, suffered from several limitations due to derivative-based implementation. A derivative-free approach, named as UKF, was introduced in the nineties based on numerical approximation of intractable integrals. The UKF shows several advantages over the derivative-based filtering. Subsequently, the research continued further, leading to many derivative-free filters developed by advancing the numerical approximation techniques. This review classifies these developments in two categories: cubature rule-based filters and quadrature rulebased filters. The cubature rule-based filters decompose the intractable integrals into spherical and radial sub-parts. The spherical sub-part is approximated using the spherical-cubature rule, while the radial sub-part is approximated using the Gauss-Laguerre quadrature rule. Several developments appeared in this category by offering different order of approximation for the spherical and radial sub-parts. Some popular developments are CKF, CQKF, HDCKF, and HDCQKF. The quadrature rulebased filters, on the other side, implement a univariate Gauss-Hermite quadrature rule for the numerical approximation. An additional mathematical law is implemented for extending the univariate rule in multivariate domain. The filters in this category are known for high estimation accuracy, but often inapplicable due to high computational cost. The initial development was GHF, which is followed by several developments, like SGHF, ASGHF, and MGHF, to improve the computational efficiency.

    The quadrature rule-based filters are preferred over the cubataure rule-based filters if the estimation accuracy is crucial and a large computational budget is allotted. On the other hand, the practitioners may choose to cut the computational budget by using cubature rule-based filters if the estimation accuracy is not very crucial. Both the cubature rule-based filtering and quadrature rule-based filtering offer different choices (with varying estimation accuracy and computational budget) to reach a trade-off between the desired estimation accuracy and the available computational budget.

    The literature consists of some developments to modify the traditional Gaussian filtering approach and the Bayesian framework as well. Some popular modifications in the Gaussian filtering approach are square-root filtering and Gaussian-sum filtering. The square-root filtering aims to extend the filter applicability, while the Gaussian-sum filtering is motivated to improve the estimation accuracy. In the modification to the Bayesian framework, this paper reviews the continuous-discrete filtering methods.

    Appendix A Estimates in Terms of Moments

    The Gaussian filters implement a numerical approximation technique in the computation of estimates. The numerical approximation techniques are accurate only up to a particular order of Taylor series expansion. The higher-order terms contribute to the approximation error, which further contributes to estimation error. Subsequently, the representation of estimates in terms of moments helps in

    [2]R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering. New York, USA: Wiley, 1997.

    [3]B . D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, USA: Prentice Hall, 1979.

    [4]A . Gelb, Applied Optimal Estimation. Boston, USA: MIT Press, 1974.

    [5]D . Simon, Optimal State Estimation. New Jersey, USA: Wiley, 2006.

    [6]M . Abo, O. W. Marquez, J. McNames, R. Hornero, T. Trong, and B.Goldstein, “Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering,” IEEE Trans. Biomed.Eng., vol. 52, no. 8, pp. 1485–1489, Aug. 2005.

    [7]C . Wells, “The Kalman filter in finance,” Springer, vol. 32, 2013.

    [8]P . L. Houtekamer and H. L. Mitchell, “Data assimilation using an ensemble kalman filter technique,” Mon. Wea. Rev., vol. 126, no. 3,pp. 796–811, Mar. 1998.

    [9]S . S?rkk?, Bayesian Filtering and Smoothing. Cambridge, USA:Cambridge University Press, 2013.

    [10]A . H. Jazwinski, Stochastic Processes and Filtering Theory. New York,USA: Dover Publications, 2007.

    [11]R . E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

    [12]D . Godard, “Channel equalization using a Kalman filter for fast data transmission,” IBM J. Res. Dev., vol. 18, no. 3, pp. 267–273, May 1974.

    [13]R . A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst.,vol. AES-6, no. 4, pp. 473–483, Jul. 1970.

    [14]M . Athans, R. P. Wishner, and A. Bertolini, “Suboptimal state estimation for continuous-time nonlinear systems from discrete noisy measurements,” IEEE Trans. Autom. Control, vol. 13, no. 5,pp. 504–514, Oct. 1968.

    [15]S . K. Rao, “Modified gain extended Kalman filter with application to bearings-only passive manoeuvring target tracking,” IET Proc. Radar Sonar Navig., vol. 152, no. 4, pp. 239–244, Aug. 2005.

    [16]T . Song and J. Speyer, “A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements,” IEEE Trans. Autom. Control, vol. 30, no. 10,pp. 940–949, Oct. 1985.

    [17]S . J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems,” in Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, 1997.

    [18]S . Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for the nonlinear transformation of means and covariances in filters and estimators,” IEEE Trans. Autom. Control, vol. 45, no. 3, pp. 477–482,Mar. 2000.

    [19]S . J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

    [20]S . J. Julier and J. K. Uhlmann, “Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations,” in Proc.American Control Conf., Anchorage, USA,2002, pp. 887–892.

    [21]S . J. Julier, “The scaled unscented transformation,” in Proc. American Control Conf., Anchorage, USA, 2002, pp. 4555–4559.

    [22]R . van der Merwe and E. A. Wan, “The square-root unscented kalman filter for state and parameter-estimation,” in Proc. IEEE Int. Conf.Acoustics, Speech, and Signal Processing, Salt Lake City, USA, 2001,pp. 3461–3464.

    [23]R . van der Merwe and E. A. Wan, “Efficient derivative-free Kalman filters for online learning,” in Proc. European Symp. Artificial Neural Networks, Bruges, Belgium, 2001, pp. 205–210.

    [24]Y . X. Wu, D. W. Hu, M. P. Wu, and X. P. Hu, “Unscented Kalman filtering for additive noise case: Augmented versus nonaugmented,”IEEE Signal Process. Lett., vol. 12, no. 5, pp. 357–360, May 2005.

    [25]Y . Lei, D. Xia, K. Erazo, and S. Nagarajaiah, “A novel unscented Kalman filter for recursive state-input-system identification of nonlinear systems,” Mech. Sys. Sign. Proc., vol. 127, pp. 120–135, Jul. 2019.

    [26]Z . Jiang, Q. Song, Y. Q. He, and J. D. Han, “A novel adaptive unscented Kalman filter for nonlinear estimation,” in Proc. 46th IEEE Conf. Decision and Control, New Orleans, USA, 2007, pp. 4293–4298.

    [27]L . B. Chang, B. Q. Hu, A. Li, and F. J. Qin, “Transformed unscented Kalman filter,” IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 252–257,Jan. 2013.

    [28]I . Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans.Autom. Control, vol. 54, no. 6, pp. 1254–1269, Jun. 2009.

    [29]J . Mu and Y. L. Cai, “Iterated cubature Kalman filter and its application,” in Proc. IEEE Int. Conf. Cyber Tech. in Automation,Control, and Intelligent Systems, Kunming, China, 2011, pp. 33–37.

    [30]P . H. Leong, S. Arulampalam, T. H. Lamahewa, and T. D. Abhayapala,“A Gaussian-sum based cubature Kalman filter for bearings-only tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2,pp. 1161–1176, Apr. 2013.

    [31]S . Y. Wang, J. C. Feng, and C. K. Tse, “Spherical simplex-radial cubature Kalman filter,” IEEE Signal Process. Lett., vol. 21, no. 1,pp. 43–46, Jan. 2014.

    [32]S . Bhaumik and Swati, “Cubature quadrature Kalman filter,” IET Signal Process., vol. 7, no. 7, pp. 533–541, Sept. 2013.

    [33]S . Bhaumik and Swati, “Square-root cubature-quadrature Kalman filter,” Asian J. Control, vol. 16, no. 2, pp. 617–622, Mar. 2014.

    [34]A . K. Singh and S. Bhaumik, “Transformed cubature quadrature Kalman filter,” IET Sign. Process., vol. 11, no. 9, pp. 1095–1103, Jul.2017.

    [35]B . Jia, M. Xin, and Y. Cheng, “High-degree cubature Kalman filter,”Automatica, vol. 49, no. 2, pp. 510–518, Feb. 2013.

    [36]A . K. Singh and S. Bhaumik, “Higher degree cubature quadrature Kalman filter,” Int. J. Control Autom. Syst., vol. 13, no. 5,pp. 1097–1105, Oct. 2015.

    [37]K . Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,”IEEE Trans. Autom. Control, vol. 45, no. 5, pp. 910–927, May 2000.

    [38]I . Arasaratnam, S. Haykin, and R. J. Elliott, “Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature,” Proc. IEEE,vol. 95, no. 5, pp. 953–977, May 2007.

    [39]I . Arasaratnam and S. Haykin, “Square-root quadrature Kalman filtering,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2589–2593,Jun. 2008.

    [40]H . Singer, “Generalized gauss-hermite filtering,” AStA Adv. Stat. Anal.,vol. 92, no. 2, pp. 179–195, May 2008.

    [41]H . Singer, “Conditional Gauss-Hermite filtering with application to volatility estimation,” IEEE Trans. Autom. Contr., vol. 60, no. 9,pp. 2476–2481, Sept. 2015.

    [42]B . Jia, M. Xin, and Y. Cheng, “Sparse-grid quadrature nonlinear filtering,” Automatica, vol. 48, no. 2, pp. 327–341, Feb. 2012.

    [43]B . Jia, M. Xin, and Y. Cheng, “Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude estimation,” J. Guid. Control Dyn., vol. 34, no. 2, pp. 367–379, Mar-Apr. 2011.

    [44]B . Jia, M. Xin, and Y. Cheng, “Comparison of the sparse-grid quadrature rule and the cubature rule in nonlinear filtering,” in Proc.IEEE 51st IEEE Conf. Decision and Control, Maui, USA, 2012, pp.6022–6027.

    [45]P . Closas, C. Fernandez-Prades, and J. Vila-Valls, “Multiple quadrature Kalman filtering,” IEEE Trans. Signal Process., vol. 60, no. 12,pp. 6125–6137, Dec. 2012.

    [46]R . Radhakrishnan, A. K. Singh, S. Bhaumik, and N. K. Tomar,“Multiple sparse-grid Gauss-Hermite filtering,” Appl. Math. Model.,vol. 40, no. 7-8, pp. 4441–4450, Apr. 2016.

    [47]A . K. Singh, R. Radhakrishnan, S. Bhaumik, and P. Date, “Adaptive sparse-grid Gauss–Hermite filter,” J. Comput. Appl. Math., vol. 342,pp. 305–316, Nov. 2018.

    [48]A . K. Singh and S. Bhaumik, “Nonlinear estimation using transformed Gauss-Hermite quadrature points,” in Proc. IEEE Int. Conf. Signal Processing, Computing and Control, Solan, India, 2013, pp. 1–4.

    [49]A . K. Singh, S. Bhaumik, and R. Radhakrishnan, “Nonlinear estimation with transformed cubature quadrature points, ” in Proc. IEEE Int. Symp.Signal Processing and Information Technology, Noida, India, 2014, pp.428–432.

    [50]D . Potnuru, K. P. B. Chandra, I. Arasaratnam, D. W. Gu, K. A. Mary,and S. B. Ch, “Derivative-free square-root cubature Kalman filter for non-linear brushless DC motors,” IET Electric Power Appl., vol. 10,no. 5, pp. 419–429, Apr. 2016.

    [51]K . P. B. Chandra, D. W. Gu, and I. Postlethwaite, “Square root cubature information filter,” IEEE Sens. J., vol. 13, no. 2, pp. 750–758, Feb. 2013.

    [52]X. J. Tang, Z. B. Liu, and J. S. Zhang, “Square-root quaternion cubature Kalman filtering for spacecraft attitude estimation,” Acta Astronaut.,vol. 76, pp. 84–94, Jul-Aug. 2012.

    [53]D . Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE Trans. Autom. Control, vol. 17,no. 4, pp. 439–448, Aug. 1972.

    [54]P . H. Leong, S. Arulampalam, T. A. Lamahewa, and T. D. Abhayapala,“Gaussian-sum cubature Kalman filter with improved robustness for bearings-only tracking,” IEEE Signal Process. Lett., vol. 21, no. 5,pp. 513–517, May 2014.

    [55]G . Terejanu, P. Singla, T. Singh, and P. D. Scott, “Adaptive Gaussian sum filter for nonlinear Bayesian estimation,” IEEE Trans. Autom.Control, vol. 56, no. 9, pp. 2151–2156, Sept. 2011.

    [56]A . H. Jazwinski, Stochastic Processes and Filtering Theory. New York,USA: Academic, 1970.

    [57]J . B. Jorgensen, P. G. Thomsen, H. Madsen, and M. R. Kristensen, “A computationally efficient and robust implementation of the continuousdiscrete extended Kalman filter,” in Proc. American Control Conf.,New York, USA, 2007, pp. 3706–3712.

    [58]S . Sarkka, “On unscented Kalman filtering for state estimation of continuous-time nonlinear systems,” IEEE Trans. Autom. Control,vol. 52, no. 9, pp. 1631–1641, Sept. 2007.

    [59]I . Arasaratnam, S. Haykin, and T. R. Hurd, “Cubature Kalman filtering for continuous-discrete systems: theory and simulations,” IEEE Trans.Signal Process., vol. 58, no. 10, pp. 4977–4993, Oct. 2010.

    [60]G . Y. Kulikov and M. V. Kulikova, “Accurate numerical implementation of the continuous-discrete extended Kalman filter,”IEEE Trans. Auto. Cont., vol. 59, no. 1, pp. 273–279, Jan. 2014.

    [61]S . C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and S. L.Shah, “Nonlinear Bayesian state estimation: A review of recent developments,” Control Eng. Pract., vol. 20, no. 10, pp. 933–953, Oct.2012.

    [62]H . Z. Fang, N. Tian, Y. B. Wang, M. C. Zhou, and M. A. Haile,“Nonlinear Bayesian estimation: From Kalman filtering to a broader horizon,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 401–417, Mar.2018.

    [63]H . Kushner, “Approximations to optimal nonlinear filters,” IEEE Trans.Autom. Control, vol. 12, no. 5, pp. 546–556, Oct. 1967.

    [64]D . Reid, “An algorithm for tracking multiple targets,” IEEE Trans.Autom. Control, vol. 24, no. 6, pp. 843–854, Dec. 1979.

    [65]R . van der Merwe and E. Wan, “Sigma-point Kalman filters for probabilistic inference in dynamic state-space models,” in Proc.Workshop on Advances in Machine Learning. 2004.

    [66]C . S. Manohar and D. Roy, “Monte Carlo filters for identification of nonlinear structural dynamical systems,” Sadhana, vol. 31, no. 4,pp. 399–427, Aug. 2006.

    [67]V . K. Mishra, R. Radhakrishnan, A. K. Singh, and S. Bhaumik,“Bayesian filters for parameter identification of duffing oscillator,”IFAC-PapersOnLine, vol. 51, no. 1, pp. 425–430, Jan. 2018.

    [68]R . H. Zhan and J. W. Wan, “Iterated unscented Kalman filter for passive target tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 43,no. 3, pp. 1155–1163, Jul. 2007.

    [69]S . Jafarzadeh, C. Lascu, and M. S. Fadali, “State estimation of induction motor drives using the unscented Kalman filter,” IEEE Trans. Ind.Electron., vol. 59, no. 11, pp. 4207–4216, Nov. 2012.

    [70]P . H. Li, T. W. Zhang, and B. Ma, “Unscented Kalman filter for visual curve tracking,” Image Vision Comput., vol. 22, no. 2, pp. 157–164, Feb.2004.

    [71]M . Sepasi and F. Sassani, “On-line fault diagnosis of hydraulic systems using unscented Kalman filter,” Int. J. Control Autom. Syst., vol. 8,no. 1, pp. 149–156, Feb. 2010.

    [72]A . Genz, “Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces,” J. Comput. Appl. Math., vol. 157, no. 1,pp. 187–195, Aug. 2003.

    [73]A . H. Stroud, Approximate Calculation of Multiple Integrals.Englewood Cliffs, USA: Prentice-Hall, 1971.

    [74]V . I. Krylov, Approximate Calculation of Integrals. New York, USA:Dover, 2006.

    [75]F . B. Hildebrand, Introduction to Numerical Analysis. 2nd ed. New York, USA: McGraw Hill, 1973.

    [76]J . Zarei, E. Shokri, and H. R. Karimi, “Convergence analysis of cubature Kalman filter,” in Proc. European Control Conf., Strasbourg,France, 2014.

    [77]M . Havlicek, K. J. Friston, J. Jan, M. Brazdil, and V. D. Calhoun,“Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering,” NeuroImage, vol. 56, no. 4, pp. 2109–2128, Jun.2011.

    [78]W . L. Li and Y. M. Jia, “Location of mobile station with maneuvers using an IMM-based cubature Kalman filter,” IEEE Trans. Ind.Electron., vol. 59, no. 11, pp. 4338–4348, Nov. 2012.

    [79]Y . Wu, D. Hu, M. Wu, and X. Hu, “A numerical-integration perspective on Gaussian filters,” IEEE Trans. Signal Process., vol. 54, no. 8,pp. 2910–2921, Aug. 2006.

    [80]R . Cools and P. Rabinowitz, “Monomial cubature rules since “Stroud”:A compilation,” J. Comput. Appl. Math., vol. 48, no. 3, pp. 309–326,Nov. 1993.

    [81]F . B. Hildebrand, Introduction to Numerical Analysis. 2nd ed. St.Mineola, USA: Dover, 1987.

    [82]S . S. Bonan and D. S. Clark, “Estimates of the Hermite and the Freud polynomials,” J. Approx. Theory, vol. 63, no. 2, pp. 210–224, Nov. 1990.

    [83]Y . H. Ku and M. Drubin, “Network synthesis using legendre and Hermite polynomials,” J. Frank. Inst., vol. 273, no. 2, pp. 138–157, Feb.1962.

    [84]A . K. Singh, K. Kumar, Swati, and S. Bhaumik “Cubature and quadrature based continuous-discrete filters for maneuvering target tracking,” in Proc. 21st Int. Conf. Information Fusion, Cambridge,2018.

    [85]S . A. Smolyak, “Quadrature and interpolation formulas for tensor products of certain classes of functions,” Dokl. Akad. Nauk SSSR,vol. 148, no. 5, pp. 1042–1045, 1963.

    [86]T . Gerstner and M. Griebel, “Dimension-adaptive tensor-product quadrature,” Computing, vol. 71, no. 1, pp. 65–87, Aug. 2003.

    [87]M . S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration. Hoboken, USA: Wiley,2001.

    [88]K . J. Astrom, Introduction to Stochastic Control Theory. New York,USA: Dover, 1970.

    [89]G . Terejanu, P. Singla, T. Singh, and P. D. Scott, “Uncertainty propagation for nonlinear dynamic systems using Gaussian mixture models,” J. Guid. Control Dyn., vol. 31, no. 6, pp. 1623–1633, Nov.-Dec. 2008.

    [90]M . Kumar, S. Chakravorty, P. Singla, and J. L. Junkins, “The partition of unity finite element approach with hp-refinement for the stationary Fokker-Planck equation,” J. Sound Vibr., vol. 327, no. 1-2, Oct. 2009.

    [91]P . E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Berlin, Germany: Springer, 1991.

    乱码一卡2卡4卡精品| 色5月婷婷丁香| h日本视频在线播放| 日韩一本色道免费dvd| 久久精品国产自在天天线| 国产高清国产精品国产三级 | 欧美少妇被猛烈插入视频| 51国产日韩欧美| 免费大片18禁| 日韩中文字幕视频在线看片 | 狂野欧美激情性bbbbbb| 少妇人妻精品综合一区二区| 成人午夜精彩视频在线观看| 精品熟女少妇av免费看| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 水蜜桃什么品种好| 日韩一区二区视频免费看| 夜夜看夜夜爽夜夜摸| 亚洲美女黄色视频免费看| 国产精品人妻久久久影院| 99久久综合免费| 香蕉精品网在线| 中文资源天堂在线| 亚洲美女黄色视频免费看| 久久影院123| 下体分泌物呈黄色| 亚洲人成网站在线观看播放| 欧美xxⅹ黑人| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 99久久人妻综合| 国产精品一区二区三区四区免费观看| 永久网站在线| 成人美女网站在线观看视频| 夜夜看夜夜爽夜夜摸| 国产成人免费观看mmmm| 欧美成人一区二区免费高清观看| 亚洲av成人精品一区久久| 波野结衣二区三区在线| 国产成人免费观看mmmm| 中文乱码字字幕精品一区二区三区| 国产日韩欧美亚洲二区| 九九在线视频观看精品| 黑人高潮一二区| 性色avwww在线观看| 老熟女久久久| 人人妻人人澡人人爽人人夜夜| 街头女战士在线观看网站| 91久久精品国产一区二区三区| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 九九在线视频观看精品| 日本猛色少妇xxxxx猛交久久| 中文乱码字字幕精品一区二区三区| 亚洲第一av免费看| 久久久久久九九精品二区国产| 在线观看三级黄色| 国产亚洲精品久久久com| 国产日韩欧美亚洲二区| 国产熟女欧美一区二区| 一级片'在线观看视频| 毛片女人毛片| 免费人成在线观看视频色| 日本免费在线观看一区| 亚洲内射少妇av| 亚洲精品日本国产第一区| 99热这里只有是精品50| 中文字幕av成人在线电影| 国产精品免费大片| 日韩 亚洲 欧美在线| av专区在线播放| 在线观看av片永久免费下载| a级毛片免费高清观看在线播放| 黄色视频在线播放观看不卡| 18+在线观看网站| 亚洲精品日韩在线中文字幕| 久久青草综合色| 嘟嘟电影网在线观看| 亚洲久久久国产精品| 国产精品成人在线| 国产综合精华液| 美女高潮的动态| 人人妻人人爽人人添夜夜欢视频 | 欧美bdsm另类| 亚洲va在线va天堂va国产| 极品少妇高潮喷水抽搐| 1000部很黄的大片| 免费久久久久久久精品成人欧美视频 | 亚洲欧美中文字幕日韩二区| 国产淫语在线视频| 国产精品成人在线| av国产久精品久网站免费入址| 亚洲图色成人| 欧美日韩一区二区视频在线观看视频在线| 欧美国产精品一级二级三级 | 中国美白少妇内射xxxbb| 久久99精品国语久久久| 天堂8中文在线网| 婷婷色av中文字幕| 国产欧美亚洲国产| 大码成人一级视频| 麻豆精品久久久久久蜜桃| 麻豆成人av视频| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 蜜桃亚洲精品一区二区三区| 99视频精品全部免费 在线| 成人国产av品久久久| 啦啦啦在线观看免费高清www| 男人和女人高潮做爰伦理| 日韩视频在线欧美| 少妇人妻一区二区三区视频| 欧美xxxx黑人xx丫x性爽| 尤物成人国产欧美一区二区三区| 我的老师免费观看完整版| 亚洲内射少妇av| 亚洲精品第二区| 熟女av电影| 久久精品夜色国产| 亚洲精品456在线播放app| 国产色婷婷99| 国产精品伦人一区二区| 91精品国产九色| 日本欧美视频一区| 国产精品不卡视频一区二区| 日韩成人伦理影院| 九九在线视频观看精品| 只有这里有精品99| 精品午夜福利在线看| 国产高清有码在线观看视频| 免费观看的影片在线观看| 麻豆乱淫一区二区| 欧美成人午夜免费资源| 日日摸夜夜添夜夜添av毛片| av在线蜜桃| 亚洲国产欧美人成| 极品教师在线视频| 一个人看的www免费观看视频| 亚洲av.av天堂| 夜夜骑夜夜射夜夜干| 青春草视频在线免费观看| 亚洲精品乱码久久久久久按摩| 舔av片在线| 久热久热在线精品观看| 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 欧美3d第一页| 亚洲电影在线观看av| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 人妻系列 视频| 日韩国内少妇激情av| 视频区图区小说| 亚洲四区av| 亚洲人成网站在线观看播放| 亚洲国产av新网站| 国产中年淑女户外野战色| 亚洲在久久综合| 亚洲av成人精品一二三区| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 亚洲精品日韩av片在线观看| 精品一区二区三区视频在线| 黄色一级大片看看| 久久久久视频综合| 少妇熟女欧美另类| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 国产亚洲一区二区精品| 成年美女黄网站色视频大全免费 | 一本色道久久久久久精品综合| 少妇 在线观看| 国产在线视频一区二区| 啦啦啦在线观看免费高清www| 国产视频内射| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 欧美成人精品欧美一级黄| 亚洲成色77777| 国产精品免费大片| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| 免费观看av网站的网址| 激情 狠狠 欧美| 纯流量卡能插随身wifi吗| 一级毛片黄色毛片免费观看视频| 亚洲av电影在线观看一区二区三区| 欧美极品一区二区三区四区| 亚洲精品视频女| 男男h啪啪无遮挡| 大又大粗又爽又黄少妇毛片口| 国产黄频视频在线观看| 亚洲四区av| 国产成人一区二区在线| av又黄又爽大尺度在线免费看| 大话2 男鬼变身卡| 久久久久久久久大av| 在线 av 中文字幕| 国产精品.久久久| 国产国拍精品亚洲av在线观看| 韩国高清视频一区二区三区| 午夜福利网站1000一区二区三区| 大片免费播放器 马上看| 日韩欧美一区视频在线观看 | 久久综合国产亚洲精品| 国产淫语在线视频| 国产成人免费观看mmmm| 18禁动态无遮挡网站| 制服丝袜香蕉在线| 校园人妻丝袜中文字幕| 青春草视频在线免费观看| 欧美日韩视频精品一区| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 免费久久久久久久精品成人欧美视频 | 久久久欧美国产精品| 日韩精品有码人妻一区| 国产人妻一区二区三区在| 亚洲久久久国产精品| 日韩大片免费观看网站| 人妻系列 视频| 色网站视频免费| 夫妻午夜视频| 乱码一卡2卡4卡精品| 亚洲精品久久久久久婷婷小说| 美女内射精品一级片tv| 久久亚洲国产成人精品v| 高清日韩中文字幕在线| 欧美 日韩 精品 国产| 免费观看av网站的网址| 男男h啪啪无遮挡| 午夜免费观看性视频| 免费观看a级毛片全部| 亚洲四区av| 日本黄色日本黄色录像| 精品久久久久久久久av| 亚洲人成网站高清观看| 美女主播在线视频| 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单| 18禁在线播放成人免费| 久久久精品免费免费高清| 久久精品国产自在天天线| 精品一区二区三区视频在线| 国产熟女欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲av中文字字幕乱码综合| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有是精品在线观看| 国产有黄有色有爽视频| 欧美zozozo另类| 亚洲av中文字字幕乱码综合| 全区人妻精品视频| 国产午夜精品久久久久久一区二区三区| 亚洲欧美成人综合另类久久久| 久久久精品94久久精品| 亚洲,一卡二卡三卡| 99热全是精品| kizo精华| 免费人妻精品一区二区三区视频| 观看美女的网站| 18禁动态无遮挡网站| 人人妻人人澡人人爽人人夜夜| 日本wwww免费看| av卡一久久| 亚洲精品乱码久久久v下载方式| 久久国产精品大桥未久av | 国产精品免费大片| 国产精品久久久久久精品电影小说 | 自拍欧美九色日韩亚洲蝌蚪91 | 成人高潮视频无遮挡免费网站| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄片美女视频| 偷拍熟女少妇极品色| 夜夜爽夜夜爽视频| 亚洲av成人精品一二三区| 少妇熟女欧美另类| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 亚洲国产精品999| 中国三级夫妇交换| 国产爽快片一区二区三区| freevideosex欧美| 在线免费十八禁| 三级经典国产精品| 搡老乐熟女国产| 丝袜喷水一区| 一区二区av电影网| 国产欧美日韩一区二区三区在线 | 亚洲av二区三区四区| 中国国产av一级| 久久精品国产a三级三级三级| 亚洲精品视频女| 99久久精品国产国产毛片| 十八禁网站网址无遮挡 | 2021少妇久久久久久久久久久| 人妻一区二区av| 亚洲精品乱久久久久久| 亚洲精品乱码久久久v下载方式| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线| 六月丁香七月| 亚洲,欧美,日韩| 多毛熟女@视频| 最近最新中文字幕大全电影3| 精品国产三级普通话版| 国产亚洲一区二区精品| 久久99蜜桃精品久久| 下体分泌物呈黄色| 欧美区成人在线视频| 观看美女的网站| 蜜桃在线观看..| 精品午夜福利在线看| 久久久久久久久久久丰满| 免费观看a级毛片全部| 亚洲精品第二区| 亚洲av日韩在线播放| 卡戴珊不雅视频在线播放| 91狼人影院| 少妇的逼好多水| 高清在线视频一区二区三区| 亚洲av成人精品一二三区| 国产一级毛片在线| av免费观看日本| 久久久久性生活片| 国产乱人视频| 少妇人妻精品综合一区二区| 中文字幕av成人在线电影| 亚洲四区av| 在线天堂最新版资源| 男男h啪啪无遮挡| 久久精品国产亚洲av涩爱| 色哟哟·www| videos熟女内射| 亚洲伊人久久精品综合| 久久精品国产亚洲av天美| 中文欧美无线码| 熟女人妻精品中文字幕| av网站免费在线观看视频| 美女cb高潮喷水在线观看| 国产男女超爽视频在线观看| 91精品国产国语对白视频| 欧美激情国产日韩精品一区| 欧美日韩视频高清一区二区三区二| av视频免费观看在线观看| 亚洲国产欧美在线一区| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 中文字幕制服av| 日日啪夜夜撸| 最近的中文字幕免费完整| 国内少妇人妻偷人精品xxx网站| 亚洲四区av| 人体艺术视频欧美日本| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 国产高清有码在线观看视频| 女性生殖器流出的白浆| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 亚洲,一卡二卡三卡| 国产伦在线观看视频一区| 五月伊人婷婷丁香| 欧美高清性xxxxhd video| 最黄视频免费看| 国产一级毛片在线| 亚洲成人中文字幕在线播放| 国产91av在线免费观看| 亚洲欧洲国产日韩| 亚洲av在线观看美女高潮| 久久久久精品久久久久真实原创| 内地一区二区视频在线| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆| 成人国产av品久久久| 插阴视频在线观看视频| 大陆偷拍与自拍| 丰满少妇做爰视频| 国产成人精品久久久久久| 中文字幕精品免费在线观看视频 | 我要看黄色一级片免费的| 中文资源天堂在线| 视频中文字幕在线观看| 日韩国内少妇激情av| 综合色丁香网| 99国产精品免费福利视频| 狂野欧美激情性xxxx在线观看| 久久婷婷青草| 国产精品精品国产色婷婷| 国产伦在线观看视频一区| 久久人人爽av亚洲精品天堂 | 亚洲一级一片aⅴ在线观看| 久久人人爽人人片av| 两个人的视频大全免费| 久久久久精品性色| 两个人的视频大全免费| 国产黄色视频一区二区在线观看| 免费人妻精品一区二区三区视频| 亚洲av综合色区一区| 国产精品偷伦视频观看了| 国产亚洲一区二区精品| 亚洲国产欧美人成| 国产av一区二区精品久久 | 国产深夜福利视频在线观看| 十分钟在线观看高清视频www | 国产欧美日韩精品一区二区| 亚洲精品国产成人久久av| 日韩视频在线欧美| 久久99热这里只有精品18| 麻豆成人午夜福利视频| 精品久久久久久久末码| 亚洲最大成人中文| 亚洲欧洲国产日韩| 人妻系列 视频| 免费观看av网站的网址| 日韩成人av中文字幕在线观看| 老熟女久久久| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 国产成人精品一,二区| 亚洲天堂av无毛| 久久久久国产精品人妻一区二区| 精品酒店卫生间| 亚洲精品国产成人久久av| 国产一级毛片在线| 日韩一本色道免费dvd| 最后的刺客免费高清国语| 亚洲av中文字字幕乱码综合| 中国三级夫妇交换| 国产爽快片一区二区三区| 1000部很黄的大片| 久久国产亚洲av麻豆专区| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| a级毛色黄片| 永久免费av网站大全| 亚洲高清免费不卡视频| 91精品一卡2卡3卡4卡| 国产精品人妻久久久影院| 亚洲精品国产av蜜桃| 亚洲美女黄色视频免费看| 丝袜脚勾引网站| 最近中文字幕2019免费版| 免费观看性生交大片5| 国产午夜精品一二区理论片| 国产亚洲91精品色在线| 伊人久久国产一区二区| 亚洲欧美日韩无卡精品| 亚洲欧美中文字幕日韩二区| 日韩av在线免费看完整版不卡| 久久精品国产亚洲网站| 日韩中字成人| 一级爰片在线观看| 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 亚洲精品一区蜜桃| 日韩伦理黄色片| 亚洲国产精品国产精品| 国产精品人妻久久久影院| 亚洲人成网站在线观看播放| 亚洲精品久久午夜乱码| 国产av精品麻豆| 色婷婷久久久亚洲欧美| 久久久久久九九精品二区国产| 少妇熟女欧美另类| 国内揄拍国产精品人妻在线| 精品亚洲成国产av| 精品午夜福利在线看| 国产成人午夜福利电影在线观看| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 成人无遮挡网站| 成人免费观看视频高清| 亚洲,一卡二卡三卡| 在线观看免费视频网站a站| 搡女人真爽免费视频火全软件| 国产精品久久久久久精品电影小说 | 夜夜看夜夜爽夜夜摸| 熟女人妻精品中文字幕| 国产 一区精品| 高清毛片免费看| 国产一区亚洲一区在线观看| 日日摸夜夜添夜夜添av毛片| 欧美xxxx黑人xx丫x性爽| 成人毛片a级毛片在线播放| 少妇 在线观看| 黄片wwwwww| 99热这里只有是精品50| 偷拍熟女少妇极品色| av天堂中文字幕网| 亚洲人与动物交配视频| 视频区图区小说| 精品一区二区三卡| 日本av手机在线免费观看| 国产av码专区亚洲av| 51国产日韩欧美| 欧美bdsm另类| 亚洲第一av免费看| 视频中文字幕在线观看| av.在线天堂| 青春草国产在线视频| 免费播放大片免费观看视频在线观看| 国产成人a区在线观看| 18禁在线播放成人免费| 国产熟女欧美一区二区| 一级黄片播放器| 国产精品秋霞免费鲁丝片| 久久婷婷青草| 久久 成人 亚洲| 永久网站在线| 亚洲精品456在线播放app| 免费不卡的大黄色大毛片视频在线观看| 国产精品人妻久久久久久| 嫩草影院入口| av网站免费在线观看视频| 亚洲欧美日韩另类电影网站 | 最近2019中文字幕mv第一页| 日本色播在线视频| 国产色婷婷99| 啦啦啦中文免费视频观看日本| 久久人妻熟女aⅴ| 日本黄色片子视频| 日日撸夜夜添| 色5月婷婷丁香| 亚洲精品国产av成人精品| 只有这里有精品99| 精品亚洲成a人片在线观看 | 黄色一级大片看看| 亚洲欧美中文字幕日韩二区| 99热国产这里只有精品6| 日本欧美视频一区| 啦啦啦中文免费视频观看日本| 男女免费视频国产| 成人二区视频| 国产亚洲91精品色在线| 成人高潮视频无遮挡免费网站| 五月天丁香电影| 亚洲美女黄色视频免费看| 亚洲人成网站高清观看| 一级毛片久久久久久久久女| 制服丝袜香蕉在线| 欧美 日韩 精品 国产| 又粗又硬又长又爽又黄的视频| 91狼人影院| 2021少妇久久久久久久久久久| 亚洲精品,欧美精品| tube8黄色片| 午夜免费鲁丝| 午夜福利网站1000一区二区三区| 欧美极品一区二区三区四区| 久久久国产一区二区| 免费看光身美女| 男人爽女人下面视频在线观看| 国产极品天堂在线| 久久久久久久国产电影| 国产亚洲午夜精品一区二区久久| 黄色日韩在线| 国产淫片久久久久久久久| 最新中文字幕久久久久| 欧美变态另类bdsm刘玥| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 久久久a久久爽久久v久久| 偷拍熟女少妇极品色| 欧美xxⅹ黑人| 亚洲精品国产av蜜桃| 成人特级av手机在线观看| 99精国产麻豆久久婷婷| 啦啦啦啦在线视频资源| 国产精品人妻久久久影院| 黄色配什么色好看| 欧美精品亚洲一区二区| 国产精品秋霞免费鲁丝片| 91精品一卡2卡3卡4卡| 国产精品久久久久成人av| 精品久久久久久久久亚洲| 人妻 亚洲 视频| 一级毛片我不卡| 久久99精品国语久久久| 成人美女网站在线观看视频| 日日摸夜夜添夜夜爱| 国产黄色免费在线视频| 国产高清三级在线| 国精品久久久久久国模美| 男女边摸边吃奶| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区黑人 | 伊人久久精品亚洲午夜| 一区二区三区免费毛片| 边亲边吃奶的免费视频| 亚洲精品第二区| 中文字幕人妻熟人妻熟丝袜美| 成人黄色视频免费在线看| 免费黄网站久久成人精品| www.色视频.com| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 成人无遮挡网站| 日韩欧美 国产精品| 欧美3d第一页| 精品久久国产蜜桃| 最近最新中文字幕大全电影3| 日韩成人av中文字幕在线观看| 国产爱豆传媒在线观看| 欧美成人午夜免费资源| 美女xxoo啪啪120秒动态图| 国产高潮美女av|