• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisiting the Concentration Observations and Source Apportionment of Atmospheric Ammonia

    2020-08-19 08:56:46YuepengPANMengnaGUYuexinHEDianmingWUChunyanLIULinlinSONGShiliTIANXuemeiYangSUNTaoSONGWendellWALTERSXuejunLIUNicholasMARTINQianqianZHANG0YuntingFANGValerioFERRACCI2andYuesiWANG
    Advances in Atmospheric Sciences 2020年9期

    Yuepeng PAN, Mengna GU, Yuexin HE, Dianming WU, Chunyan LIU, Linlin SONG,Shili TIAN, Xuemei Lü, Yang SUN, Tao SONG, Wendell W. WALTERS, Xuejun LIU,Nicholas A. MARTIN, Qianqian ZHANG0, Yunting FANG,,Valerio FERRACCI2, and Yuesi WANG,3

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment,Chinese Academy of Sciences, Xiamen 361021, China

    4Key Laboratory of Geographic Information Sciences, Ministry of Education, School of Geographic Sciences,East China Normal University, Shanghai 200241, China

    5CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,Chinese Academy of Sciences, Shenyang 110016, China

    6Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA

    7Institute at Brown for Environment and Society, Brown University, Providence, RI 02912, USA

    8College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

    9National Physical Laboratory, Air Quality and Aerosol Metrology Group, Environment Department,Hampton Road, Teddington, Middlesex, TW11 0LW, UK

    10National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China

    11Key Laboratory of Stable Isotope Techniques and Applications, Shenyang 110016, China

    12Centre for Environmental and Agricultural Informatics, Cranfield University, College Road, MK43 0AL, UK

    While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on whether agricultural or non-agricultural emissions dominate the urban ammonia budget. Identifying the ammonia source by nitrogen isotope helps in designing a mitigation strategy for policymakers, but existing methods have not been well validated. Revisiting the concentration measurements and identifying source apportionment of atmospheric ammonia is thus an essential step towards reducing ammonia emissions.

    1. The need for ammonia monitoring in the atmosphere

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere. While NH3has a beneficial role in buffering acid rain (Wang et al., 2012), after deposition it can detrimentally affect Earth’s ecosystems through soil acidification, water eutrophication, and biodiversity loss (Liu et al., 2019). The overabundance of NH3in the lower atmosphere is suggested to promote the formation of secondary ammoniated aerosol particles (Wang et al., 2016), with significant impacts on visibility deterioration and human health (An et al., 2019). Recently, NH3and ammonium nitrate particles were also found in the upper troposphere during the Asian monsoon and play a hitherto neglected role in ice cloud formation and aerosol indirect radiative forcing (H?pfner et al., 2019). However, the severe lack of NH3measurements with sufficient spatial and temporal coverage is currently a barrier to understanding the vital role of NH3in air pollution, ecosystem protection, and climate change. It has resulted in unclear regulatory guidelines for mitigating these effects (Pan et al., 2020b).

    2. Current status of ammonia observations and limitations

    Anthropogenic emissions of NH3in China are more significant than the total emissions of the U.S. and the European Union (Liu et al., 2019). To date, there is still no national NH3concentration monitoring network operated by the Chinese government. Following the guidelines of the National Atmospheric Deposition Program in the U.S., the Institute of Atmospheric Physics, Chinese Academy of Sciences, established a Regional Atmospheric Deposition Observation Network in the North China Plain (READ-NCP). This network, including 10 sites covering different land-use types, started monitoring NH3concentrations in 2007, and has also obtained significant results with respect to the atmospheric deposition of nitrogen,carbon, sulfate, and metals. Based on the observations of READ-NCP from 2008 to 2010, NH3was found to be a significant contributor to nitrogen deposition in this region (Pan et al., 2012). Thus, clarification of NH3levels in China can aid policymakers in the protection of ecosystems from excess nitrogen deposition. Due to the lack of data, however, the whole picture of NH3distribution in China was poorly understood. In 2015, READ-NCP was extended to a spatially dense and costefficient network focusing on NH3observations in China (AMoN-China) (Pan et al., 2018). The system currently consists of approximately 100 sites, which is similar to that of the U.S. AMoN (Fig. 1). While the NH3concentration was relatively low in the U.S., there is an increasing importance of deposition of reduced nitrogen due to the significant reduction in oxidized nitrogen (Li et al., 2016).

    Besides AMoN in China (Pan et al., 2018) and the U.S. (http://nadp.slh.wisc.edu/AMoN), the monitoring of surface NH3is also conducted by other networks (Fig. 1), e.g., EANET (The Acid Deposition Monitoring Network in East Asia;https://www.eanet.asia), EMEP (the Co-operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants; http://ebas.nilu.no/Default.aspx) and the IDAF (IGAC-DEBITS-AFRICA) program for African ecosystems (Adon et al., 2010). Most of these networks employed a cost-effective approach by using passive samplers, including ALPHA, Analyst, Radiello, and Ogawa, which have advantages in characterizing the spatial distribution and long-term trends of NH3. However, the accuracy of these passive NH3sampling techniques is not well validated in the field, which represents one of the biggest challenges in NH3monitoring (Martin et al., 2019). For example, it is reported that the NH3concentrations collected by Radiello passive samplers are approximately 40% lower than the denuder-based reference method(Puchalski et al., 2011). The low NH3concentration bias in the passive collection samplers was suggested to be the result of inaccurate effective sampling rates due to incorrect mass transfer correction factors for the environmental conditions (Pan et al., 2020a). Thus, questions remain as to whether the NH3concentrations from different networks can be directly compared if they employed different passive samplers. Concurrent measurements of the passive samplers used in various networks are thus further needed, with a collocated reference method, e.g., annular denuders and continuous real-time instruments employing the wet chemistry technique (von Bobrutzki et al., 2010; Martin et al., 2019; Pan et al., 2020a).

    3. Debate on ammonia sources in the urban atmosphere

    The need for source apportionment has increased in recent years as atmospheric NH3concentrations and deposition fluxes have shown little change or even increased following more stringent air pollutant controls (Liu et al., 2018). Longterm satellite observation from the Atmospheric Infrared Sounder (AIRS) aboard NASA’s Aqua satellite also implied that NH3levels over agricultural regions had experienced significant increasing trends between 2002 and 2013, with an annual increase rate of 2.6%, 1.8% and 2.3% in the U.S., the European Union, and China, respectively (Warner et al., 2017). The increment of atmospheric NH3concentrations tended to continue between 2013 and 2017, as observed from space with the Cross-track Infrared Sounder (CrIS) (Shephard et al., 2020). While agricultural activities (fertilization and livestock volatilization) are known to dominate the emissions of NH3, accounting for over 60% and 80% of the global and Asian inventory(Bouwman et al., 1997; Huang et al., 2012), non-agricultural sources have been suggested as a major NH3source at the urban scale (Felix et al., 2014; Pan et al., 2016; Sun et al., 2017; Chang et al., 2019; Walters et al., 2020a).

    Ammonia emissions in developing cities are especially important because of their high emissions ratios to CO2and rapidly expanding vehicle fleets (Sun et al., 2017). For example, vehicular emissions were found to be a critical NH3source in urban Beijing (Ianniello et al., 2010; Meng et al., 2011). Industrial NH3emissions, rather than those from vehicles, were also identified in the megacity of Shanghai (Wang et al., 2015). However, in contrast to previous results, Teng et al. (2017)suggested that urban green spaces and evaporation of deposited NHx(NH3+NH4+) on wet surfaces, rather than traffic and agricultural emissions, were the primary source for NH3in an urban environment during winter in NCP. Thus, there is still no consensus on whether these emissions are among the major sources of urban atmospheric NH3. Currently, the rapid development of isotope techniques is promising (Liu et al., 2014) and may provide scientists and policymakers with a more robust methodology and reliable evidence to track atmospheric NH3sources (Felix et al., 2014; Pan et al., 2016; Chang et al.,2019; Walters et al., 2020a).

    Fig. 1. Surface ammonia concentrations during 2015?16 observed by AMoN in (a) the U.S.(http://nadp.slh.wisc.edu/AMoN/), (b) the UK (https://uk-air.defra.gov.uk/), and (c) East Asia(https://www.eanet.asia) including China (Pan et al., 2018). (d) Long-term surface measurements of ammonia in Africa within the framework of the IDAF (IGAC-DEBITSAFRICA) program (mean values from 1998 to 2007) (Adon et al., 2010). Global ammonia morning column measurements (2008-16) observed from space by IASI are also shown(https://doi.pangaea.de/10.1594/PANGAEA.894736).

    4. Constraining ammonia sources utilizing nitrogen isotopes

    The use of nitrogen isotopic composition of NH3(δ15N-NH3) as a fingerprint identification of NH3emissions sources requires distinguishable isotopic signatures (Felix et al., 2013). While this technique has been widely used in Chinese cities,e.g., Beijing (Pan et al., 2016; Zhang et al., 2020) and Shanghai (Chang et al., 2019), considerable uncertainties remain in characterizing the endmembers. In particular, current collection methods are almost exclusively based on passive samplers,which have not been verified for their suitability to characterize δ15N-NH3accurately. Recently, Walters and Hastings(2018) validated an active sampling collection technique using an acid-coated honeycomb denuder to characterize δ15NNH3under a variety of laboratory-controlled conditions as well as under field conditions. As a reference to this new verified method, Walters et al. (2020a) also found a substantial low bias of 15‰ in the ALPHA passive sampler in characterizing δ15N-NH3from traffic plumes. Such a low bias of passive samplers in characterizing δ15N-NH3was also confirmed in field observations in urban Beijing by Pan et al. (2020a). Thus, previous source apportionment needs to be reevaluated if using an inventory of δ15N-NH3based on passive samplers, especially the ALPHA sampler.

    To evaluate the potential influences of the low bias of δ15N-NH3by passive samplers, we revisited the sources of atmospheric NH3in urban Beijing using a Bayesian isotope mixing model (SIAR, Stable Isotope Analysis in R) (Kendall et al.,2007). Two scenarios were performed based on an isotopic inventory with and without correction for the passive collection δ15N-NH3bias (Fig. 2). Accordingly, the model was run with δ15N-NH3values of ?18.2‰ (corrected) and ?33.2‰ (original uncorrected) as input for ambient samples. The latter value represented an annual mean δ15N-NH3value in urban Beijing based on a year-round and weekly collection by the passive ALPHA sampler (Zhang et al., 2020).

    Figure 3a demonstrates that non-agricultural sources contributed only 57% of NH3using the inventory without correction (Fig. 2), which is lower than the original estimation of ~72% by Zhang et al. (2020). This difference implied the impacts of different selection of source signatures in these two studies. Also, we have apportioned the source of NH3with corrected δ15N-NH3values of both inventories and samples by adding 15‰ to the corresponding passive sampler measurement data. The results showed that 66% of NH3was from non-agricultural emissions (Fig. 3b). This attribution may be more reliable due to the updated inventory. The different contributions between Figs. 3a and b for each source, in particular for fertilizers, industry, and vehicles, indicated the uncertainty introduced by the low δ15N-NH3bias of passive samplers.

    Fig. 2. The nitrogen isotopic composition of ammonia characterized at various endmembers. Recent reported isotopic signatures from traffic plumes, fertilizer and livestock (Ti et al., 2018; Kawashima, 2019; Walters et al., 2020a) were updated based on the previous summary by Walters and Hastings (2018). Note that the field sampling was conducted by different collection methods (legend) and is grouped by passive against active samplers (symbols with colors). To correct the low bias of passive data (gray symbols), 15‰ was added to the original values and is shown as corrected (symbols with colors) accordingly. Symbols with the same color and shape represent a series of observations during the same campaign. Data sources: (a) Freyer(1978); (b) Hristov et al. (2009); (c) Heaton (1987); (d) Savard et al. (2017); (e) Smirnoff et al. (2012); (f) Ti et al. (2018); (g) Felix et al. (2013); (h) Walters et al. (2020b); (i) Kawashima (2019); (j) Felix et al. (2014);(k) Chang et al. (2016).

    Fig. 3. Source apportionment of atmospheric ammonia in urban Beijing based on isotopic inventory (a)without and (b) with correction for the passive collection bias in characterizing nitrogen isotopic composition of ammonia, as shown in Fig. 2. The nitrogen isotopic values of ?18.2‰ (corrected) and ?33.2‰ (original)were selected as input for ambient ammonia samples. The original isotope data of ?33.2‰ were the annual mean values observed between March 2016 and March 2017 by Zhang et al. (2020).

    5. Outlook

    It is important to note that tropospheric NH3concentrations can be reduced through tight control measures; else they will continue to increase. Constraining NH3sources utilizing stable nitrogen isotopes can aid policymakers to draft a mitigation strategy for NH3emissions, but this method depends on an accurate characterization of δ15N-NH3from both source and receptor sites. While the isotopic inventory has significant impacts on the source apportionment, a verified collection technique is warranted to improve the source inventory of δ15N-NH3. Due to the different lifetime of NH3and NH4+in the atmosphere, the sources of NH3and NH4+at a given site may also be different. Thus, a better knowledge of nitrogen fractionation via atmospheric processes, e.g., gas-to-particle conversion, also helps in source apportionment of atmospheric NH3and NH4+. To address this concern, the concurrent determination of different chemical speciation (i.e., δ15N-NH3and δ15NNH4+) is highly needed.

    Acknowledgements.This study was supported by the National Key Research and Development Program of China (Grant No.2017YFC0210100), National Research Program for Key Issues in Air Pollution Control (Grant No. DQGG0208) and the National Natural Science Foundation of China (Grant No. 41405144). WWW acknowledges support from the Atmospheric and Geospaces Sciences U.S. National Science Foundation (Grant No. AGS 1351932). We acknowledge the U.K. Department for Environment Food & Rural Affairs (uk-air.defra.gov.uk) as the source of the UK ammonia data (? Crown 2020 copyright Defra via uk-air.defra.gov.uk, licenced under the Open Government Licence). ? Crown copyright 2020 and reproduced by permission of the Controller of HMSO and the Queen’s Printer for Scotland.

    少妇的逼好多水| 精品免费久久久久久久清纯| 亚洲国产精品成人久久小说| 久久久a久久爽久久v久久| 日韩,欧美,国产一区二区三区 | av在线播放精品| 麻豆成人午夜福利视频| 欧美97在线视频| 成人亚洲欧美一区二区av| 只有这里有精品99| 国产精品日韩av在线免费观看| 毛片女人毛片| 天堂网av新在线| 欧美最新免费一区二区三区| 色综合亚洲欧美另类图片| av视频在线观看入口| 啦啦啦啦在线视频资源| 亚洲国产日韩欧美精品在线观看| 亚洲精品亚洲一区二区| 中国国产av一级| 水蜜桃什么品种好| 久久这里有精品视频免费| 亚洲av二区三区四区| 国产一区二区在线观看日韩| 女人十人毛片免费观看3o分钟| 中文字幕精品亚洲无线码一区| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载 | 国产毛片a区久久久久| 国产午夜精品久久久久久一区二区三区| 亚洲国产欧美人成| 人妻系列 视频| 成人午夜精彩视频在线观看| 国产亚洲5aaaaa淫片| 国产av不卡久久| 六月丁香七月| 美女cb高潮喷水在线观看| 久久久久久久国产电影| 韩国高清视频一区二区三区| 婷婷色av中文字幕| 亚洲人成网站高清观看| 女人久久www免费人成看片 | av视频在线观看入口| 日日摸夜夜添夜夜爱| 好男人在线观看高清免费视频| 亚洲人成网站在线播| 国产探花在线观看一区二区| av黄色大香蕉| 熟妇人妻久久中文字幕3abv| 亚洲av日韩在线播放| 国产精品无大码| 欧美bdsm另类| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 欧美人与善性xxx| 99热网站在线观看| 毛片女人毛片| 久久久欧美国产精品| 欧美一区二区精品小视频在线| 国产av不卡久久| 午夜爱爱视频在线播放| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 日本猛色少妇xxxxx猛交久久| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 国产免费福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲国产色片| 尾随美女入室| 国产一区二区三区av在线| 一夜夜www| 欧美极品一区二区三区四区| .国产精品久久| 久久婷婷人人爽人人干人人爱| 一个人观看的视频www高清免费观看| 亚洲久久久久久中文字幕| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看 | 综合色av麻豆| 老司机福利观看| 国产毛片a区久久久久| 亚洲美女视频黄频| 日韩欧美精品免费久久| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| 嫩草影院新地址| 亚洲国产成人一精品久久久| 一个人看的www免费观看视频| 国产成人91sexporn| 最近手机中文字幕大全| 青春草视频在线免费观看| 国产乱人视频| 欧美zozozo另类| 九九爱精品视频在线观看| 老司机影院毛片| 久久久久久久久大av| 亚洲综合精品二区| 午夜免费男女啪啪视频观看| 97人妻精品一区二区三区麻豆| 岛国在线免费视频观看| 国产日韩欧美在线精品| 国产三级在线视频| 一区二区三区免费毛片| 联通29元200g的流量卡| 亚洲精品,欧美精品| 精品久久久久久电影网 | 久久久欧美国产精品| 国产精品国产三级专区第一集| 少妇裸体淫交视频免费看高清| 久久久国产成人精品二区| 免费看光身美女| 国产精品av视频在线免费观看| 亚洲国产最新在线播放| 大又大粗又爽又黄少妇毛片口| 久久热精品热| 综合色丁香网| 亚洲精品一区蜜桃| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 色视频www国产| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 最近手机中文字幕大全| 麻豆成人av视频| www日本黄色视频网| 一个人观看的视频www高清免费观看| 日韩欧美国产在线观看| 蜜臀久久99精品久久宅男| 日日干狠狠操夜夜爽| 国产精品永久免费网站| 亚洲国产高清在线一区二区三| 国产亚洲午夜精品一区二区久久 | 国产精品熟女久久久久浪| 美女被艹到高潮喷水动态| 免费看a级黄色片| 国产黄片视频在线免费观看| 别揉我奶头 嗯啊视频| 夜夜看夜夜爽夜夜摸| 九色成人免费人妻av| 国产精品国产三级国产专区5o | 亚洲欧美日韩无卡精品| 国产免费视频播放在线视频 | 欧美日韩一区二区视频在线观看视频在线 | 十八禁国产超污无遮挡网站| 精品熟女少妇av免费看| 亚洲国产欧美人成| 亚洲欧美精品综合久久99| 国产午夜精品论理片| 亚洲精品成人久久久久久| 69人妻影院| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 听说在线观看完整版免费高清| 国产亚洲一区二区精品| 国内精品一区二区在线观看| av免费在线看不卡| 老司机影院成人| 国产免费又黄又爽又色| 一区二区三区高清视频在线| 久久人人爽人人爽人人片va| 简卡轻食公司| 日日摸夜夜添夜夜添av毛片| 五月伊人婷婷丁香| 最近手机中文字幕大全| 在线播放无遮挡| 国内精品美女久久久久久| 男女下面进入的视频免费午夜| 国产黄片视频在线免费观看| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花 | 国内精品一区二区在线观看| 五月玫瑰六月丁香| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 日韩三级伦理在线观看| 久99久视频精品免费| 国产91av在线免费观看| 精品酒店卫生间| 国产精品福利在线免费观看| 亚洲国产精品sss在线观看| 一级毛片电影观看 | 久久久久久久久久久免费av| av在线蜜桃| av免费观看日本| 黑人高潮一二区| 99久久精品热视频| 毛片一级片免费看久久久久| 国产v大片淫在线免费观看| av专区在线播放| 亚洲欧美精品自产自拍| 在线免费观看的www视频| 国模一区二区三区四区视频| 亚洲久久久久久中文字幕| 少妇高潮的动态图| 婷婷色综合大香蕉| 91在线精品国自产拍蜜月| 日本黄色片子视频| 91狼人影院| 欧美日本亚洲视频在线播放| 乱人视频在线观看| 午夜激情福利司机影院| 国产精品野战在线观看| 边亲边吃奶的免费视频| 在线观看一区二区三区| 视频中文字幕在线观看| 女人被狂操c到高潮| 熟妇人妻久久中文字幕3abv| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 99久久人妻综合| 亚洲经典国产精华液单| 久久这里只有精品中国| 欧美成人a在线观看| 精品久久久久久久久久久久久| .国产精品久久| 欧美日韩精品成人综合77777| 一边摸一边抽搐一进一小说| 精品人妻一区二区三区麻豆| 岛国毛片在线播放| 日韩欧美精品v在线| 成人漫画全彩无遮挡| 秋霞在线观看毛片| 国产又色又爽无遮挡免| 欧美精品一区二区大全| 高清av免费在线| 男插女下体视频免费在线播放| 真实男女啪啪啪动态图| 国产极品精品免费视频能看的| 亚洲av免费在线观看| 99在线视频只有这里精品首页| 亚洲三级黄色毛片| 亚洲精品aⅴ在线观看| 麻豆国产97在线/欧美| 最近2019中文字幕mv第一页| 国产激情偷乱视频一区二区| 91午夜精品亚洲一区二区三区| 舔av片在线| 久久草成人影院| 黄色配什么色好看| 美女国产视频在线观看| 亚洲欧美清纯卡通| 欧美成人午夜免费资源| 亚洲欧美精品自产自拍| 亚洲av熟女| 少妇的逼水好多| 99久久中文字幕三级久久日本| 国产亚洲一区二区精品| 亚洲精品亚洲一区二区| 最近手机中文字幕大全| 少妇熟女aⅴ在线视频| 床上黄色一级片| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 一级av片app| 午夜福利高清视频| 午夜福利视频1000在线观看| 久久久久久久久久久免费av| 一级二级三级毛片免费看| 夜夜爽夜夜爽视频| 免费不卡的大黄色大毛片视频在线观看 | 精品欧美国产一区二区三| 国内精品一区二区在线观看| 欧美性猛交黑人性爽| 又爽又黄a免费视频| 亚洲激情五月婷婷啪啪| 精品欧美国产一区二区三| h日本视频在线播放| 嫩草影院精品99| 日韩视频在线欧美| 黑人高潮一二区| 免费黄网站久久成人精品| 日日啪夜夜撸| 中文字幕精品亚洲无线码一区| 精品熟女少妇av免费看| 午夜免费激情av| 欧美人与善性xxx| 国产一区二区亚洲精品在线观看| 久久久久久久久久久丰满| 免费看a级黄色片| 成人av在线播放网站| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 国产伦理片在线播放av一区| 国产成人福利小说| 中文字幕久久专区| 亚洲av福利一区| 亚洲国产精品国产精品| 日韩精品有码人妻一区| 极品教师在线视频| 亚洲自拍偷在线| 国产美女午夜福利| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av成人精品| 少妇熟女aⅴ在线视频| 听说在线观看完整版免费高清| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 亚洲国产精品国产精品| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 精品无人区乱码1区二区| 国产免费福利视频在线观看| 亚洲va在线va天堂va国产| 在线播放无遮挡| 婷婷六月久久综合丁香| 午夜亚洲福利在线播放| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人综合色| 啦啦啦观看免费观看视频高清| 又粗又爽又猛毛片免费看| 最近视频中文字幕2019在线8| 极品教师在线视频| 精品国产一区二区三区久久久樱花 | 97超碰精品成人国产| eeuss影院久久| 2021少妇久久久久久久久久久| 午夜免费男女啪啪视频观看| 男女下面进入的视频免费午夜| 一本一本综合久久| 欧美日韩国产亚洲二区| 99热网站在线观看| 热99re8久久精品国产| 三级经典国产精品| 亚洲最大成人av| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 欧美成人一区二区免费高清观看| 久久这里有精品视频免费| 成人国产麻豆网| 午夜a级毛片| 久久6这里有精品| 麻豆av噜噜一区二区三区| 人人妻人人澡人人爽人人夜夜 | 久久久久国产网址| 午夜a级毛片| 一本一本综合久久| 久久精品国产亚洲av涩爱| 色吧在线观看| 女人被狂操c到高潮| 日本-黄色视频高清免费观看| 日韩强制内射视频| 国产精品永久免费网站| 午夜日本视频在线| 69av精品久久久久久| 青春草视频在线免费观看| www日本黄色视频网| 成人性生交大片免费视频hd| 黄色配什么色好看| 色哟哟·www| av线在线观看网站| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 日韩在线高清观看一区二区三区| 久久久久久伊人网av| 日韩一区二区三区影片| 中文亚洲av片在线观看爽| 18禁在线播放成人免费| 十八禁国产超污无遮挡网站| 成人三级黄色视频| 简卡轻食公司| av福利片在线观看| 毛片一级片免费看久久久久| 精品不卡国产一区二区三区| 免费观看的影片在线观看| 亚洲中文字幕日韩| 麻豆成人午夜福利视频| 亚洲精品自拍成人| 欧美丝袜亚洲另类| 日本色播在线视频| 欧美另类亚洲清纯唯美| 久久这里只有精品中国| 观看免费一级毛片| 亚洲av成人av| 国产激情偷乱视频一区二区| 一级二级三级毛片免费看| 国产伦在线观看视频一区| 青青草视频在线视频观看| 欧美激情国产日韩精品一区| 色播亚洲综合网| 大香蕉久久网| 久久午夜福利片| 国产高清不卡午夜福利| 久久久色成人| 日韩精品青青久久久久久| 99热全是精品| 日本色播在线视频| 99久久人妻综合| 亚洲av男天堂| 中文字幕久久专区| 亚洲最大成人av| 亚洲,欧美,日韩| 视频中文字幕在线观看| 国语自产精品视频在线第100页| 好男人视频免费观看在线| 精品国产一区二区三区久久久樱花 | 91精品国产九色| 久久精品人妻少妇| 在线观看美女被高潮喷水网站| 校园人妻丝袜中文字幕| 成年av动漫网址| 久久精品人妻少妇| 日本一二三区视频观看| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 亚洲三级黄色毛片| 丰满人妻一区二区三区视频av| 91精品国产九色| 全区人妻精品视频| 搡女人真爽免费视频火全软件| 久久久精品欧美日韩精品| 成人av在线播放网站| 国内精品一区二区在线观看| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲网站| 国产精品久久久久久久电影| 91久久精品国产一区二区成人| 国产日韩欧美在线精品| 七月丁香在线播放| 国产精品伦人一区二区| 国内精品美女久久久久久| 国产免费视频播放在线视频 | 久久精品国产鲁丝片午夜精品| 亚洲精品,欧美精品| 好男人在线观看高清免费视频| 成人亚洲欧美一区二区av| 日本爱情动作片www.在线观看| 久久久久久久久中文| 黑人高潮一二区| 亚洲国产精品国产精品| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 九九在线视频观看精品| 两个人视频免费观看高清| 国产午夜精品论理片| 丰满乱子伦码专区| 免费观看精品视频网站| 亚洲av男天堂| 国产精品永久免费网站| 26uuu在线亚洲综合色| 欧美3d第一页| 久久精品人妻少妇| 麻豆成人午夜福利视频| 亚洲第一区二区三区不卡| 嫩草影院入口| 亚洲成色77777| 亚洲国产精品成人综合色| 免费看光身美女| 一个人免费在线观看电影| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 亚洲18禁久久av| 别揉我奶头 嗯啊视频| 久久婷婷人人爽人人干人人爱| 亚洲在线观看片| 日韩强制内射视频| 亚洲色图av天堂| 亚洲av免费高清在线观看| 国产三级中文精品| 国产精品蜜桃在线观看| 99久久中文字幕三级久久日本| 免费一级毛片在线播放高清视频| 我要搜黄色片| 三级国产精品片| 永久免费av网站大全| 亚洲四区av| 国产免费福利视频在线观看| 久久精品熟女亚洲av麻豆精品 | 久久久午夜欧美精品| 免费观看人在逋| 赤兔流量卡办理| 欧美精品国产亚洲| 亚洲美女搞黄在线观看| 久久久久久久久久成人| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 国产精品.久久久| 日本爱情动作片www.在线观看| 国产精品野战在线观看| 一级毛片电影观看 | 亚洲人成网站在线观看播放| 我的女老师完整版在线观看| 国产91av在线免费观看| 日韩精品有码人妻一区| 高清毛片免费看| 国内揄拍国产精品人妻在线| 久久久久久久久久久丰满| 七月丁香在线播放| 国产色爽女视频免费观看| 国产高清视频在线观看网站| 午夜精品一区二区三区免费看| 亚洲av.av天堂| 亚洲人成网站高清观看| 黑人高潮一二区| 亚洲人成网站高清观看| 国产成年人精品一区二区| 亚洲国产精品国产精品| 色噜噜av男人的天堂激情| 欧美成人精品欧美一级黄| 美女大奶头视频| 女的被弄到高潮叫床怎么办| 欧美日韩精品成人综合77777| 免费看日本二区| 国产精品福利在线免费观看| 成人av在线播放网站| 成年版毛片免费区| 国产一区二区在线av高清观看| 亚洲在线观看片| 国产一区亚洲一区在线观看| 国产成人a区在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产伦理片在线播放av一区| 最近视频中文字幕2019在线8| 成人午夜精彩视频在线观看| 五月玫瑰六月丁香| 精品久久久噜噜| 国产精品日韩av在线免费观看| 国产激情偷乱视频一区二区| 国产亚洲最大av| 看片在线看免费视频| 日韩大片免费观看网站 | 一个人看视频在线观看www免费| 精品久久久久久久久av| 国产精品电影一区二区三区| 男女边吃奶边做爰视频| 国产伦精品一区二区三区四那| 久久久久久久午夜电影| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 国产精品99久久久久久久久| 嫩草影院新地址| 国产亚洲精品av在线| 成年女人永久免费观看视频| av专区在线播放| 色综合站精品国产| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| 亚洲丝袜综合中文字幕| 日韩大片免费观看网站 | 成人亚洲欧美一区二区av| 成人无遮挡网站| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 成人亚洲欧美一区二区av| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 99久国产av精品国产电影| 国产极品精品免费视频能看的| 99在线视频只有这里精品首页| 两个人的视频大全免费| 人妻少妇偷人精品九色| 日日啪夜夜撸| 极品教师在线视频| 婷婷六月久久综合丁香| 国产在视频线在精品| 精华霜和精华液先用哪个| 久99久视频精品免费| 在线观看66精品国产| 久久6这里有精品| 久久久久国产网址| 舔av片在线| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美人成| 联通29元200g的流量卡| 亚洲av男天堂| 一级爰片在线观看| 成年女人永久免费观看视频| 成人一区二区视频在线观看| 在线免费观看的www视频| 天堂网av新在线| 我的女老师完整版在线观看| 天堂影院成人在线观看| 亚洲av中文av极速乱| 少妇熟女欧美另类| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器| 亚洲真实伦在线观看| 亚洲av不卡在线观看| 国产精品久久久久久精品电影| 国产综合懂色| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美成人精品一区二区| 久久久久久大精品| 午夜免费男女啪啪视频观看| 久久久久久国产a免费观看| 亚洲人成网站在线观看播放| 亚洲av电影在线观看一区二区三区 | 永久网站在线| 久久久国产成人免费| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影小说 | 亚洲在久久综合| 嫩草影院新地址| 国产白丝娇喘喷水9色精品| 欧美一区二区亚洲| 日韩欧美国产在线观看| 有码 亚洲区| 国产亚洲精品av在线| 久久6这里有精品| h日本视频在线播放| 能在线免费看毛片的网站| 精品99又大又爽又粗少妇毛片| 婷婷六月久久综合丁香| 日本一本二区三区精品| 97在线视频观看| 色5月婷婷丁香| 午夜福利在线观看吧| 成人毛片a级毛片在线播放| 麻豆乱淫一区二区| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 亚洲18禁久久av| 国产欧美日韩精品一区二区| 嫩草影院精品99|