• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Scaling of the Generalized Complementary Relationship Improves Long-term Tendency Estimates in Land Evaporation

    2020-08-19 08:56:56JozsefSZILAGYIRichardCRAGOandNingMA
    Advances in Atmospheric Sciences 2020年9期

    Jozsef SZILAGYI, Richard CRAGO, and Ning MA

    1Department of Hydraulic and Water Resources Engineering, Budapest University of Technology H-1111, Budapest Hungary

    2Conservation and Survey Division, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA

    3Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, USA

    4Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    ABSTRACT Most large-scale evapotranspiration (ET) estimation methods require detailed information of land use, land cover,and/or soil type on top of various atmospheric measurements. The complementary relationship of evaporation (CR) takes advantage of the inherent dynamic feedback mechanisms found in the soil?vegetation?atmosphere interface for its estimation of ET rates without the need of such biogeophysical data. ET estimates over the conterminous United States by a new, globally calibrated, static scaling (GCR-stat) of the generalized complementary relationship (GCR) of evaporation were compared to similar estimates of an existing, calibration-free version (GCR-dyn) of the GCR that employs a temporally varying dynamic scaling. Simplified annual water balances of 327 medium and 18 large watersheds served as ground-truth ET values. With long-term monthly mean forcing, GCR-stat (also utilizing precipitation measurements)outperforms GCR-dyn as the latter cannot fully take advantage of its dynamic scaling with such data of reduced temporal variability. However, in a continuous monthly simulation, GCR-dyn is on a par with GCR-stat, and especially excels in reproducing long-term tendencies in annual catchment ET rates even though it does not require precipitation information.The same GCR-dyn estimates were also compared to similar estimates of eight other popular ET products and they generally outperform all of them. For this reason, a dynamic scaling of the GCR is recommended over a static one for modeling long-term behavior of terrestrial ET.

    Key words: land?atmosphere interactions, land evaporation, evapotranspiration, complementary relationship of evaporation

    1. Introduction

    Land surface evapotranspiration (ET) is a central component in the Earth’s energy, water, and carbon cycles (Wang and Dickinson, 2012; Fisher et al., 2017). Accurate ET information is therefore essential for a better understanding of land?atmosphere interactions (Seneviratne et al., 2006)and the biosphere’s water?carbon coupling (Biederman et al., 2016; Feng et al., 2016). It also improves drought predictions (Pendergrass et al., 2020) and helps to find answers to water resources sustainability issues (Condon et al., 2020).While the globally distributed eddy-covariance flux towers have contributed significantly to our knowledge of ET across a wide range of ecosystems [see a recent review by Baldocchi (2020)], the spatiotemporal variation of global ET and its response to the changing climate remains highly uncertain (Mueller et al., 2011; Liu et al., 2016) because the estimation of long-term, spatially resolved ET is yet laden by difficulties in parameterizing the biophysical processes (e.g.,root water uptake, stomatal resistance and its response to CO2concentration changes) that control ET in the current land surface models (LSMs) (Ukkola et al., 2016; Ma et al.,2017) and remote sensing algorithms (Vinukollu et al.,2011; Velpuri et al., 2013). In addition to possible model structural errors, the uncertainties in the estimated ET can also arise from errors in their gridded vegetation (Fang et al., 2019) and soil (Zheng and Yang, 2016) parameters due to the large degree of complexity/heterogeneity found in terrestrial ecosystems. For example, most LSMs within NLDAS-2 (the North American Land Data Assimilation System, phase 2) still utilize the NOAA normalized difference vegetation index data developed by Gutman and Ignatov(1998) on a five-year-mean monthly basis without any interannual variation as input (Xia et al., 2012), failing to reasonably capture the impact of vegetation changes on ET.Besides, a recent sensitivity study by Li et al. (2018) demonstrated that the Noah-MP LSM cannot always capture the effect of spatial changes in forest and/or soil types on the simulated ET because of the inherent uncertainties in multiple land cover and soil texture data.

    As an alternative, the complementary relationship (CR)(Bouchet, 1963) of evaporation inherently accounts for the dynamic feedback mechanisms found in the soil?vegetation?atmosphere interface, and thus provides a viable,robust alternative for land ET estimation relying solely on standard atmospheric forcing without the need for any soil or vegetation data. The description in the next two paragraphs of the applied CR method parallels that of Ma and Szilagyi (2019).

    The generalized nonlinear version of the complementary relationship (GCR) by Brutsaert (2015) relates two scaled variables,x=EwEp?1andy=EEp?1as

    Here,E(mm d?1) is the actual ET rate, whileEp(mm d?1)is the potential ET rate, i.e., the ET rate of a plot-sized wet area in a drying (i.e., not completely wet) environment, typically specified by the Penman (1948) equation as

    whereu2(m s?1) is the 2-m horizontal wind speed.

    The so-called wet-environment ET rate,Ew(mm d?1),of a well-watered land surface having a regionally significant areal extent, is specified by the Priestley and Taylor(1972) equation:

    The dimensionless Priestley?Taylor (PT) coefficient,α,in Eq. (4), normally attains values in the range of [1.1?1.32](Morton, 1983). For large-scale model applications of gridded data, Szilagyi et al. (2017) proposed a method of finding a value forα, thus avoiding the need for any calibration.

    Very soon after the publication of the GCR, Crago et al. (2016) and Szilagyi et al. (2017) introduced a necessary scaling into Eq. (1) by means of a time-varying wetness index,w= (Ep,max?Ep)(Ep,max?Ew)?1, to define the dimensionless variable,X, asX=wx, by which Eq. (1) keeps its original nonlinear form, i.e.,

    Note that Eq. (4) in Priestley and Taylor (1972) was designed with measurements under wet environmental conditions; therefore, Δ should be evaluated at the wet-environment air temperature,Tw(°C), instead of the typical dryingenvironment air temperature,T(Szilagyi and Jozsa, 2008;Szilagyi, 2014). By making use of a mild vertical air temperature gradient (de Vries, 1959; Szilagyi and Jozsa, 2009; Szilagyi, 2014) observable in wet environments (asRnis consumed predominantly by the latent heat flux at the expense of the sensible one, and water representing an unusually high latent heat of the vaporization value found in nature),Twcan be approximated by the wet surface temperature,Tws(°C). Note thatTwsmay still be larger than the drying-environment air temperature,T, when the air is close to saturation,but the same is not true forTw, due to the cooling effect of evaporation. In such cases, the estimated value ofTwshould be capped by the actual air temperature,T(Szilagyi, 2014;Szilagyi and Jozsa, 2018). Szilagyi and Schepers (2014)demonstrated thatTwsis independent of the size of the wet area. Thus,Twscan be obtained through iterations from the Bowen ratio (β) of the sensible and latent heat fluxes(Bowen, 1926) when applied over a small, plot-sized, wet patch (by the necessary assumption that the available energy for the wet patch is close to that for the drying surface) the Penman equation is valid for, i.e.,

    Ep,maxin the definition ofXwithin Eq. (5) is the maximum value thatEpcan achieve (under unchanging available energy for the surface) during a complete dry-out (i.e.,whenebecomes close to zero) of the environment, i.e.,

    in whichTdry(°C) is the so-achieved dry-environment air temperature. The latter can be estimated from the (isoenthalp)adiabat of an air layer in contact with the drying surface (Szilagyi, 2018a), i.e.,

    whereTwb(°C) is the wet-bulb temperature.Twbcan be obtained with the help of another iteration of writing out the Bowen ratio for adiabatic changes (e.g., Szilagyi, 2014),such as

    For a graphical illustration of the saturation vapor pressure curve, the different temperatures and the related ET rates defined, please refer to Ma and Szilagyi (2019). The same source also includes a brief description of how the CR evolved into Eq. (5) over the past 40 years. Additionally, it plots selected historical CR functions over sample data, and explains how assigning a value ofαis performed without resorting to any calibration. A sensitivity analysis of the ET rates in Eq. (5) to their atmospheric forcing is found in Ma et al. (2019).

    While Brutsaert et al. (2020) realized the necessity of scalingxwith the help of a static aridity index, Crago et al.(2016), Szilagyi et al. (2017), Szilagyi (2018a, b), Szilagyi and Jozsa (2018), Ma and Szilagyi (2019), and Ma et al.(2019) performed one (and the same one) via a dynamic wetness index. Whereas the wetness index assigns increasing values to wetter environmental conditions, the aridity index does the same to drier ones. Brutsaert et al. (2020) did not include this dynamic wetness index method in their study,and therefore the present work was initiated to fill this gap.

    2. Model applications

    The time-varying (and thus dynamic) scaling ofx(Crago et al., 2016; Szilagyi et al., 2017) by the wetness index,w[= (Ep,max?Ep)(Ep,max?Ew)?1], in Eq. (5), is necessary because the GCR of Brutsaert (2015) unrealistically predicts near-zero land evaporation only whenEwinxitself approaches zero. This is because the potential evaporation rate,Ep, in the denominator ofxalways assumes wellbounded values due to physical limits on the range of its constituents, i.e., net radiation, soil heat flux, air temperature,wind speed, and VPD.

    An alternative, static scaling ofxby Brutsaert et al.(2020) takes place via an adjustable parameter,αc, that acts as the PT-αvalue for wet environments. Since Eq. (4) can also be written asEw=αEe, whereEeis the equilibrium evaporation rate of Slatyer and Mcllroy (1961), thus the scaled variable,X, becomesX=αcEeEp?1=αcxα?1. The spatially variable (but constant through time at a given location)value ofαcwas then related to a long-term aridity index by Brutsaert et al. (2020), with the latter defined as the ratio of the mean annualEpand rain depth, and globally calibrated with the help of additional water-balance data, requiring altogether seven parameters in highly nonlinear equations.

    Note that theX=wxscaling by Crago et al. (2016) and Szilagyi et al. (2017) requires only the forcing variables (Rn,G,T,u2, and VPD), without the need for external precipitation/rain data, which is significant as precipitation is possibly the most uncertain meteorological variable to predict in climate models. It is important to mention thatwchanges with each value ofx, unlikeαc. As Szilagyi et al. (2017)demonstrated, a (temporally and spatially) constant value of the PTα, necessary forx, can be set by the sole use of the forcing variables, without resorting to additional water-balance data of precipitation and stream discharge, thus making the approach calibration-free on a large scale (Szilagyi,2018b; Ma et al., 2019; Ma and Szilagyi, 2019) where wetenvironmental conditions, necessary for setting the value ofα, can likely be found. Note that setting a constant value ofαis also necessary for Brutsaert et al. (2020) in order to force their spatially variable but temporally constantαcvalues to reach a predetermined value of about 1.3 under wet conditions. Despite almost half a century of research following publication of the Priestley and Taylor (1972) equation,there is still no consensus about what environmental variables (atmospheric, radiative, and/or surficial properties),and exactly how their spatial and temporal averaging, influence the value of the PTα. Until compelling information is available on these variables, a spatially and temporally constantαvalue may suffice for modeling purposes.

    As was found by Szilagyi (2018b), the value of the PTαdepends slightly on the temporal averaging of the forcing data, i.e., whether or not the monthly values are long-term averages [yieldingα= 1.13 (Szilagyi et al., 2017) and 1.15(Szilagyi, 2018b), respectively]. Therefore, here, it is tested if such is the case for the globally calibrated model of Brutsaert et al. (2020). Namely, if its performance is affected by similar changes (from long-term mean monthly values to monthly values) in the input/forcing variables, then some caution must be exercised during its routine future application,and recalibration of its seven parameters may be necessary.Note that besides the different scaling ofx, everything is the same (including data requirements) in the two GCR model versions applied here, except that Δ inEeis evaluated at the measured air temperature in Brutsaert et al. (2020) while the same inEw(=αEe) is evaluated at an estimated wet-environment air temperature (Szilagyi et al., 2017) explained above.

    Both model versions (denoted for brevity by GCR-stat and GCR-dyn, respectively) were tested over the conterminous United States, first with long-term averages(1981?2010) of monthly 32-km resolution North American Regional Reanalysis (NARR) (Mesinger et al., 2006) radiation and 10-m wind (u10) data [reduced to 2-m values viau2=u10(2/10)1/7(Brutsaert, 1982)], as well as with 4.2-km PRISM air, and dewpoint temperature values (Daly et al.,1994) followed by a continuous 37-year simulation of monthly values over the 1979?2015 period. The NARR data were resampled to the PRISM grid by the nearest neighbor method. Monthly soil heat fluxes were considered negligible. Evaluation of the model estimates were performed by water-balance estimates of basin-representative evaporation rates (Ewb) with the help of United States Geological Survey two- and six-digit Hydrologic Unit Code (HUC2 and HUC6) basin (Fig. 1) discharge data (Q) together with basin-averaged PRISM precipitation (P) values asEwb=P?Q, either on an annual (for trend analysis) or long-term mean annual basis. The application of a simplified water balance is justifiable as soil-moisture and groundwater-storage changes are typically negligible over an annual (or longer)scale (Senay et al., 2011) for catchments with no significant trend in the groundwater-table elevation values.

    3. Results and discussion

    With the long-term mean monthly data, GCR-stat performed slightly but consistently better than GCR-dyn (Fig. 2),reflected best in the Nash?Sutcliffe model efficiency (NSE)and root-mean-square error (RMSE) values, both models providing unbiased, basin-averaged mean annual ET estimates. This outcome is unsurprising, as GCR-stat takes advantage of measured precipitation while GCR-dyn does not.

    However, the picture changes when switching from long-term mean monthly forcing values to monthly values in a continuous simulation (Fig. 3). GCR-dyn, with a slightly changed PT-αvalue [from 1.13 to 1.15, using the procedure of Szilagyi et al. (2017)] continues to produce unbiased estimates of basin-averaged mean annual evaporation values. However, the globally calibrated GCR-stat model underestimates the water-balance-derived values by about 10% [i.e., relative bias (RB) of ?0.09 for both basin scales] and produces reduced interannual variability (see the horizontally elongated “crosses” for the HUC2 basins in Fig. 3) in comparison with GCR-dyn. Reduced model performance of GCR-stat is also apparent in the long-term linear tendencies (obtained as least-squares fitted linear trends)of the basin-averaged annual evaporation values (Fig. 4) by being less effective than GCR-dyn in reproducing the observed linear trends in the water-balance data.

    As on a mean-annual basis GCR-stat performs better than (with mean monthly values) or about equal to (in a continuous simulation) GCR-dyn by exploiting precipitation data (which on the watershed scale naturally serves as an upper bound for land ET), its weakened performance in trends can only be explained by the same reliance on the long-term means of the precipitation (andEp) rates in the(therefore) staticαcvalues that will hinder its response to slow (decadal) changes in aridity. The same problem cannot occur in GCR-dyn, since its wetness index (w) is updated in each step of calculations.

    Fig. 1. Distribution of the 18 HUC2 (outlined in red) and 334 HUC6 basins across the conterminous United States. Seven HUC6 basins, marked by green, yielded outlying water-balance-derived evaporation estimates and were left out of model comparisons.

    Fig. 2. Regression plots of model estimates [ES (a, c) from GCR-dyn; EB (b, d) from GCR-stat) against water-balance (Ewb)evaporation rates. Long-term mean (1981?2010) monthly values served as model forcing. α = 1.13 in GCR-dyn (a, c). NSE:Nash?Sutcliffe model efficiency; R: linear correlation coefficient; RB: relative bias; RMSE: root-mean-square error (mm); SR: ratio of standard deviations of the mean annual model and water-balance values.

    The current GCR-dyn model has already been shown to(a) yield correlation coefficient values in excess of 0.9 with local measurements of latent heat fluxes across diverse climates in China (Ma et al., 2019) in spite of large differences in spatial representativeness (i.e., grid resolution vs flux measurement footprint), and (b) outperform several popular large-scale ET products over the conterminous United States (Ma and Szilagyi, 2019). These products include three LSMs-namely, Noah (Chen and Dudhia, 2001), VIC(Liang et al., 1994), and Mosaic (Koster and Suarez, 1996);two reanalysis products-namely, NCEP-II (Kanamitsu et al., 2002), and ERA-Interim (Dee et al., 2011); another two remote-sensing based approaches-namely, GLEAM (Miralles et al., 2011; Martens et al., 2017) and PML (Zhang et al., 2017; Leuning et al., 2008); and a spatially upscaled eddy-covariance measurement product, FLUXNET-MTE(Jung et al., 2011). In a comparison with water-balance data, GCR-dyn turns out to produce even better statistics on the HUC2 scale than the spatially interpolated eddy-covariance measured ET fluxes (Fig. 5), which is remarkable from a calibration-free approach. GCR-dyn especially excels in the long-term linear tendency estimates of the HUC2 ET rates, demonstrated by Figs. 6 and 7. As FLUXNET-MTE employs several temporally static variables for its spatial interpolation method, its ability to capture long-term trends is somewhat limited (Jung et al., 2011). On the contrary, the dynamic scaling inherent in GCR-dyn automatically adapts to such trends and identifies them rather accurately.

    Fig. 3. Regression plots of model estimates [ES (a, c) from GCR-dyn; EB (b, d) from GCR-stat] against water-balance (Ewb)evaporation rates. Monthly (1979?2015) values served as model forcing for the continuous simulation of monthly evaporation rates. α = 1.15 in GCR-dyn (a, c). The vertical and horizontal bars represent the standard deviation of the annual modeled and water-balance HUC2 values, respectively. The large number of data points hinders a similar plot for the HUC6 values.

    Among the different popular large-scale ET models,GCR-dyn produces multi-year mean annual ET rates closest in its spatial distribution to those of FLUXNET-MTE(Fig. 8), with a spatially averaged ET value almost identical(both in its spatial average and standard deviation) to that of GLEAM (Fig. 8), which is a remote-sensing based approach.Note that all models of the comparison (except GCR-dyn)rely on precipitation data as input, which greatly aids ET estimations, as on a regional scale and long-term basis precipitation forms an upper bound for terrestrial ET rates; plus,it may drive any required soil-moisture water-balance calculations.

    The spatial distribution of the modeled multi-year linear ET trends is displayed in Fig. 9. Again, GCR-dyn produces results closest in spatial distribution to FLUXNETMTE in terms of the statistically significant trends and to GLEAM in general. For a more detailed discussion of model comparisons (including additional model descriptions), please refer to Ma and Szilagyi (2019).

    Fig. 4. Regression plots of the linear trends (1979?2015) in annual modeled [ES (a, c) from GCR-dyn; EB (b, d) from GCR-stat]and water-balance values. The vertical and horizontal bars represent the standard error in the trend-value estimates for the modeled and water-balance HUC2 values (a, b), respectively. The large number of data points hinders a similar plot of the HUC6 values (c, d). RMSE is now in mm yr?1.

    In conclusion, it can be stated that the GCR of evaporation (Brutsaert, 2015) is a very effective tool in land ET modeling, as it requires only a few, largely meteorological forcing variables, and avoids the need for detailed soil-moisture and land-cover information. Although attractive, as its(altogether seven) parameters have already been globally precalibrated, the GCR model version (GCR-stat) of Brutsaert et al. (2020) may, however, not perform optimally in estimating long-term tendencies in basin-wide ET rates. This is particularly the case in comparison to an earlier, calibrationfree version (GCR-dyn), having no precalibrated parameter values but requiring that its sole, temporally?and spatially?constant parameter (i.e., the PT coefficient) be set using the actual forcing data through a largely automated method, described in Szilagyi et al. (2017). Since in a continuous monthly simulation both models performed about the same, while the GCR-dyn produced better long-term tendencies, a dynamic scaling ofEwEp?1is recommended over a static one in future applications of the GCR of evaporation.

    As has been recommended before (Szilagyi, 2018b; Szilagyi and Jozsa, 2018; Ma and Szilagyi, 2019), it is reiterated here that GCR-dyn, due to its minimal data requirement, calibration-free nature and dynamic scaling, may continue to serve as a diagnostic and benchmarking tool for more complex and data-intensive models of terrestrial ET rates, including calibration/verification (for past values) and reality checking (for future scenario values) of the LSM-predicted ET rates of existing regional and general circulation models.

    Fig. 5. Regression plots of the HUC2-averaged multiyear mean annual ET rates (Emod) of GCR-dyn (a) and eight other (b?i) popular large-scale ET models against the simplified water-balance (Ewb) estimates.Temporal averaging follows the availability of data displayed in parentheses for each product. The length of the whiskers denotes the standard deviation of the HUC2-basin averaged annual ET values. The long blue line represents a 1:1 relationship, while the least-squares fitted linear relationships are shown in maroon color(after Ma and Szilagyi, 2019).

    Fig. 6. Regression plots of the linear trend values (mm yr?1) in modeled HUC2-averaged annual ET sums(Emod) against those in Ewb over 1979?2015. The length of the whiskers denotes the standard error in the estimated slope value. The long blue line represents a 1:1 relationship, while the least-squares fitted linear relationships are shown in maroon color (after Ma and Szilagyi, 2019).

    Fig. 7. Regression plots of the linear trend values (mm yr?1) in GLEAM-, PML-, and FLUXNET-MTE-modeled (a?c) HUC2-averaged annual ET sums (Emod) against those in Ewb over the different model periods (shown in parentheses). For comparison, regressions for the GCR-dyn ET values over the same periods are also displayed (d?f). The length of the whiskers denotes the standard error in the estimated slope value. The long blue line represents a 1:1 relationship, while the least-squares fitted linear relationships are shown in maroon color (after Ma and Szilagyi, 2019).

    Fig. 8. Spatial distribution of the multiyear (1979?2015) mean annual ET (mm) rates (Emod) by GCR-dyn and eight other popular large-scale ET models (a?i) and their spatially averaged (j) values, plus/minus standard deviations (after Ma and Szilagyi, 2019). The 18 HUC2 basins are also outlined.

    Fig. 9. Spatial distribution of the linear tendencies (mm yr?1) in annual ET sums of GCR-dyn and eight other popular largescale ET products. The stippling denotes trends that are statistically significant (p < 5%) in the Student’s t-test (after Ma and Szilagyi, 2019).

    Acknowledgements.All data used in this study can be accessed from the following websites. NARR data: www.esrl.noaa.gov/psd/data/gridded/data.narr.html. PRISM temperature,humidity and precipitation: prism.oregonstate.edu/. USGS HUC2 and HUC6 runoff: waterwatch.usgs.gov /?id=wwds_runoff. Noah ET data: disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_M_V002/summary?keywords=NLDAS. VIC ET data: disc.gsfc.xnasa.gov/datasets/NLDAS_VIC0125_M_V002/summary?keywords=NLDAS. Mosaic ET data: disc.gsfc.nasa.gov/datasets/NLDAS_MOS0125_M_V002/summary?keywords=NLDAS. NCEP-II ET data: www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html. ERA-Interim ET data: www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim. GLEAM ET data: http://gleam.eu/#home. PML ET data: data.csiro.au/dap/landingpage?pid=csiro:17375&v= %202&d=true. FLUXNET-MTE ET data: climatedataguide.ucar.edu/climate-data/fluxnet-mte-multi-tree-ensemble.The GCR-dyn modeled ET rates and the HUC2- and HUC6-averagedEwb,P,Q, data are available from https://digitalcommons.unl.edu/natrespapers/986/. This research was supported by a BMEWater Sciences and Disaster Prevention FIKP grant of EMMI(BME FIKP-VIZ).

    Open AccessThis article is distributed under the terms of the creative commons attribution 4.0 international license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the creative commons license, and indicate if changes were made.

    亚洲欧美日韩东京热| 日本-黄色视频高清免费观看| 嫩草影院新地址| 黑人高潮一二区| 另类亚洲欧美激情| 精品久久久久久久末码| 男女啪啪激烈高潮av片| 国产黄片美女视频| 成人综合一区亚洲| 女人被狂操c到高潮| 日韩亚洲欧美综合| 我要看日韩黄色一级片| 国产精品秋霞免费鲁丝片| 国产爱豆传媒在线观看| 99re6热这里在线精品视频| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲一区二区精品| 亚洲欧美清纯卡通| av国产久精品久网站免费入址| 亚洲国产欧美在线一区| 日本色播在线视频| 亚洲av欧美aⅴ国产| 国产黄片美女视频| 亚洲国产精品999| 亚洲av在线观看美女高潮| 久久久久网色| 嫩草影院精品99| 视频区图区小说| 肉色欧美久久久久久久蜜桃 | 国产精品99久久久久久久久| 国产爽快片一区二区三区| 五月天丁香电影| 日韩成人av中文字幕在线观看| 国产伦精品一区二区三区视频9| 国产有黄有色有爽视频| 欧美老熟妇乱子伦牲交| 国产日韩欧美亚洲二区| 97精品久久久久久久久久精品| 91久久精品国产一区二区成人| 五月玫瑰六月丁香| 亚洲熟女精品中文字幕| 夜夜看夜夜爽夜夜摸| 日韩成人伦理影院| 97在线人人人人妻| 建设人人有责人人尽责人人享有的 | 一级毛片电影观看| 在线观看一区二区三区| 亚洲电影在线观看av| 美女被艹到高潮喷水动态| 国产一级毛片在线| 成人无遮挡网站| 国产精品三级大全| 爱豆传媒免费全集在线观看| 久久久久久伊人网av| 亚洲av欧美aⅴ国产| 国产成人a区在线观看| 日韩一区二区视频免费看| 国产精品国产av在线观看| 成年女人在线观看亚洲视频 | 国产国拍精品亚洲av在线观看| 成人漫画全彩无遮挡| 国产精品秋霞免费鲁丝片| av在线观看视频网站免费| 大陆偷拍与自拍| 国产伦在线观看视频一区| 免费看不卡的av| 久久久久久久久久久丰满| 国产人妻一区二区三区在| 久久97久久精品| 一级片'在线观看视频| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| 亚洲内射少妇av| 亚洲国产欧美人成| 国产成人福利小说| 一级二级三级毛片免费看| 国产亚洲午夜精品一区二区久久 | 日韩亚洲欧美综合| 日韩免费高清中文字幕av| 丝袜美腿在线中文| 久久久精品94久久精品| 日韩三级伦理在线观看| 少妇人妻久久综合中文| 国内揄拍国产精品人妻在线| 日本色播在线视频| 免费看a级黄色片| 日韩av不卡免费在线播放| 成年女人看的毛片在线观看| 成人免费观看视频高清| 日本熟妇午夜| 亚洲成人av在线免费| 亚洲国产日韩一区二区| 亚洲,欧美,日韩| 色5月婷婷丁香| 欧美变态另类bdsm刘玥| 国产免费又黄又爽又色| 国产色爽女视频免费观看| 国产乱人偷精品视频| 男人狂女人下面高潮的视频| 免费看av在线观看网站| 97精品久久久久久久久久精品| 亚洲欧美清纯卡通| 直男gayav资源| 国产在线男女| 大陆偷拍与自拍| 精华霜和精华液先用哪个| 少妇被粗大猛烈的视频| 久久精品国产自在天天线| 一级片'在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91久久精品国产一区二区三区| 能在线免费看毛片的网站| 国产成人aa在线观看| 国产v大片淫在线免费观看| 国产综合懂色| 人妻一区二区av| 夫妻性生交免费视频一级片| 亚洲精品自拍成人| 99久久精品热视频| 欧美国产精品一级二级三级 | 大香蕉久久网| 插逼视频在线观看| 中文天堂在线官网| freevideosex欧美| 少妇人妻 视频| 国产男女内射视频| 在线观看国产h片| 校园人妻丝袜中文字幕| 大片免费播放器 马上看| 99久久精品国产国产毛片| 午夜激情福利司机影院| 亚洲精品456在线播放app| 内地一区二区视频在线| 精品人妻一区二区三区麻豆| 国产在线一区二区三区精| 波多野结衣巨乳人妻| 大香蕉久久网| 日韩av在线免费看完整版不卡| 日本wwww免费看| 偷拍熟女少妇极品色| 亚洲aⅴ乱码一区二区在线播放| 国产淫片久久久久久久久| 狠狠精品人妻久久久久久综合| 免费看不卡的av| 国产女主播在线喷水免费视频网站| 精品人妻视频免费看| 亚洲成人中文字幕在线播放| 久久久久久久久大av| 亚洲精品国产成人久久av| 免费观看性生交大片5| 国产亚洲av嫩草精品影院| 人妻系列 视频| 99热这里只有精品一区| 午夜精品一区二区三区免费看| 特级一级黄色大片| 国产成人免费观看mmmm| 久久久久久国产a免费观看| 国产人妻一区二区三区在| 成人综合一区亚洲| 亚洲成人av在线免费| 国产黄色免费在线视频| 国产精品久久久久久精品电影| 综合色丁香网| 99久国产av精品国产电影| 久久精品久久久久久久性| 日本三级黄在线观看| 少妇的逼水好多| av福利片在线观看| 午夜日本视频在线| 一区二区av电影网| 国产精品爽爽va在线观看网站| 亚洲婷婷狠狠爱综合网| 又爽又黄无遮挡网站| 免费少妇av软件| 久久精品国产亚洲av涩爱| 大香蕉久久网| 日韩一本色道免费dvd| 搡女人真爽免费视频火全软件| 激情 狠狠 欧美| 日韩欧美精品免费久久| 免费在线观看成人毛片| 中文在线观看免费www的网站| 麻豆成人av视频| 欧美+日韩+精品| 午夜福利高清视频| 成人国产麻豆网| 欧美性感艳星| 日韩免费高清中文字幕av| 久久99热6这里只有精品| videos熟女内射| 搞女人的毛片| 国产黄频视频在线观看| 成人漫画全彩无遮挡| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 99久久精品一区二区三区| 中文资源天堂在线| 亚洲国产高清在线一区二区三| 久久99精品国语久久久| av一本久久久久| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 免费看光身美女| 亚洲精品,欧美精品| 国产精品爽爽va在线观看网站| 国产精品久久久久久精品电影小说 | 久久久久久九九精品二区国产| 亚洲精品自拍成人| 又大又黄又爽视频免费| 舔av片在线| 国产片特级美女逼逼视频| 国产欧美日韩一区二区三区在线 | 看十八女毛片水多多多| av网站免费在线观看视频| 深夜a级毛片| 有码 亚洲区| 2021少妇久久久久久久久久久| 人妻系列 视频| 又黄又爽又刺激的免费视频.| 日韩国内少妇激情av| 国产av码专区亚洲av| 亚洲欧美精品专区久久| 亚洲精品色激情综合| 国产av国产精品国产| 下体分泌物呈黄色| 国产精品伦人一区二区| 中文字幕人妻熟人妻熟丝袜美| 成年版毛片免费区| 亚洲欧美日韩无卡精品| 久久人人爽av亚洲精品天堂 | 色播亚洲综合网| 色婷婷久久久亚洲欧美| 人妻少妇偷人精品九色| 狠狠精品人妻久久久久久综合| 18+在线观看网站| 99久久九九国产精品国产免费| 国产免费福利视频在线观看| 久久精品久久久久久噜噜老黄| 日韩三级伦理在线观看| 69av精品久久久久久| 人妻少妇偷人精品九色| 香蕉精品网在线| 午夜精品一区二区三区免费看| 国产精品99久久久久久久久| 国产精品一区二区在线观看99| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 亚洲欧美日韩卡通动漫| 美女高潮的动态| 欧美变态另类bdsm刘玥| av.在线天堂| 亚洲欧洲国产日韩| 天美传媒精品一区二区| 五月天丁香电影| 亚洲精品成人av观看孕妇| 狠狠精品人妻久久久久久综合| 日韩一区二区视频免费看| 大陆偷拍与自拍| 精品久久久久久久久亚洲| 亚洲国产欧美人成| 亚洲精品日本国产第一区| 久久精品熟女亚洲av麻豆精品| 欧美xxⅹ黑人| 伦理电影大哥的女人| 永久网站在线| 亚洲美女视频黄频| 一区二区三区四区激情视频| 韩国高清视频一区二区三区| 秋霞伦理黄片| 国产精品一区二区性色av| 久久久成人免费电影| 日本av手机在线免费观看| 麻豆乱淫一区二区| 国产精品麻豆人妻色哟哟久久| 亚洲国产日韩一区二区| 亚洲一区二区三区欧美精品 | 天堂俺去俺来也www色官网| 天堂网av新在线| 波野结衣二区三区在线| 国产精品福利在线免费观看| 欧美性感艳星| 97精品久久久久久久久久精品| 少妇的逼水好多| 大话2 男鬼变身卡| 国产精品久久久久久精品电影| 少妇猛男粗大的猛烈进出视频 | 1000部很黄的大片| 精品国产三级普通话版| 舔av片在线| 久久久久性生活片| 成人综合一区亚洲| 白带黄色成豆腐渣| 日韩欧美精品v在线| 久久久精品欧美日韩精品| 亚洲最大成人手机在线| 亚洲精品乱码久久久v下载方式| 国产伦在线观看视频一区| 精品人妻偷拍中文字幕| 99热网站在线观看| 午夜老司机福利剧场| 欧美日韩亚洲高清精品| 国产成人一区二区在线| av国产免费在线观看| 日本爱情动作片www.在线观看| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 亚洲欧美日韩无卡精品| 成人漫画全彩无遮挡| 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 国产女主播在线喷水免费视频网站| 欧美另类一区| 97精品久久久久久久久久精品| 中文字幕久久专区| 国产av码专区亚洲av| av免费在线看不卡| 2021少妇久久久久久久久久久| 亚洲人成网站高清观看| 大话2 男鬼变身卡| 亚洲国产欧美在线一区| 亚洲精品国产av成人精品| av在线app专区| 成人美女网站在线观看视频| 免费av不卡在线播放| 久久99精品国语久久久| 中国国产av一级| 国产黄色视频一区二区在线观看| 欧美日本视频| 免费观看a级毛片全部| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 内射极品少妇av片p| 亚洲欧洲国产日韩| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品| 亚洲av二区三区四区| 免费av毛片视频| videossex国产| 新久久久久国产一级毛片| 国产黄片美女视频| 亚洲欧美成人综合另类久久久| 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| 色综合色国产| 九九久久精品国产亚洲av麻豆| 成人无遮挡网站| 亚洲在线观看片| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人久久小说| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 国产精品女同一区二区软件| 国产69精品久久久久777片| 精品酒店卫生间| 亚洲av.av天堂| 午夜福利视频精品| 国产欧美日韩一区二区三区在线 | 久久久久国产网址| 99久久精品热视频| 中文乱码字字幕精品一区二区三区| 人人妻人人看人人澡| 国产 一区精品| 亚洲精品影视一区二区三区av| 欧美97在线视频| 精品人妻视频免费看| 性插视频无遮挡在线免费观看| 男女无遮挡免费网站观看| 精品人妻偷拍中文字幕| 97在线视频观看| 建设人人有责人人尽责人人享有的 | 国产精品久久久久久精品电影| 日本欧美国产在线视频| 99久久精品一区二区三区| 国产真实伦视频高清在线观看| 精品久久久久久久末码| 可以在线观看毛片的网站| 亚洲精品乱码久久久久久按摩| 国产成人福利小说| 亚洲欧美日韩另类电影网站 | 麻豆乱淫一区二区| 免费看光身美女| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 秋霞伦理黄片| 亚洲天堂av无毛| 国产亚洲精品久久久com| 久久综合国产亚洲精品| 亚洲成人久久爱视频| 亚洲欧美成人精品一区二区| 亚洲伊人久久精品综合| videossex国产| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 91在线精品国自产拍蜜月| 亚洲天堂国产精品一区在线| 日韩一本色道免费dvd| 久久6这里有精品| 国产高清三级在线| 亚洲一区二区三区欧美精品 | 97超碰精品成人国产| 久久精品久久久久久噜噜老黄| 最近手机中文字幕大全| 亚洲欧美成人精品一区二区| 日韩制服骚丝袜av| 国产成人aa在线观看| 久久女婷五月综合色啪小说 | 下体分泌物呈黄色| 欧美日本视频| 国产精品久久久久久精品电影| 高清欧美精品videossex| 久久久精品免费免费高清| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 男人添女人高潮全过程视频| 男人舔奶头视频| 国产精品女同一区二区软件| 亚洲图色成人| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 联通29元200g的流量卡| 91久久精品电影网| 99九九线精品视频在线观看视频| 欧美 日韩 精品 国产| 夜夜看夜夜爽夜夜摸| 成人特级av手机在线观看| 啦啦啦啦在线视频资源| 全区人妻精品视频| 搡老乐熟女国产| 高清在线视频一区二区三区| 亚洲精品乱码久久久久久按摩| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av天美| 纵有疾风起免费观看全集完整版| 欧美一区二区亚洲| 亚洲人成网站高清观看| 亚洲精品久久久久久婷婷小说| 亚洲国产精品成人综合色| 可以在线观看毛片的网站| eeuss影院久久| 禁无遮挡网站| 欧美+日韩+精品| 亚洲自偷自拍三级| 欧美3d第一页| 国产有黄有色有爽视频| 听说在线观看完整版免费高清| 成人美女网站在线观看视频| av播播在线观看一区| 99久国产av精品国产电影| 精品酒店卫生间| 久久久精品94久久精品| 免费黄网站久久成人精品| 久久热精品热| 春色校园在线视频观看| 日日摸夜夜添夜夜添av毛片| 国产成人91sexporn| 日韩 亚洲 欧美在线| 三级男女做爰猛烈吃奶摸视频| 精品久久国产蜜桃| 精品99又大又爽又粗少妇毛片| 纵有疾风起免费观看全集完整版| 欧美日韩视频高清一区二区三区二| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美人成| 99久久人妻综合| 国产黄频视频在线观看| 国产在视频线精品| 特级一级黄色大片| 久久精品综合一区二区三区| 在线观看人妻少妇| 自拍偷自拍亚洲精品老妇| 国产亚洲精品久久久com| 91狼人影院| 国产国拍精品亚洲av在线观看| 99热这里只有精品一区| 男女啪啪激烈高潮av片| 亚洲高清免费不卡视频| 亚洲,欧美,日韩| 国产男人的电影天堂91| 91精品国产九色| 久久精品人妻少妇| av卡一久久| 国产精品99久久久久久久久| 国产亚洲午夜精品一区二区久久 | 国产成人精品久久久久久| 色播亚洲综合网| 亚洲精华国产精华液的使用体验| 国产成年人精品一区二区| 国产欧美日韩一区二区三区在线 | 国产精品国产三级国产av玫瑰| 蜜桃亚洲精品一区二区三区| 久久久亚洲精品成人影院| 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 国产男女内射视频| 精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| 久久久久网色| 插逼视频在线观看| 亚洲色图综合在线观看| 精品久久久久久久人妻蜜臀av| 日韩三级伦理在线观看| 成年av动漫网址| 国产精品偷伦视频观看了| 国产老妇伦熟女老妇高清| 插逼视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看| 少妇的逼好多水| videos熟女内射| 99久久精品热视频| 91精品国产九色| 自拍偷自拍亚洲精品老妇| 久久久色成人| 少妇高潮的动态图| 偷拍熟女少妇极品色| 久久久精品免费免费高清| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 97人妻精品一区二区三区麻豆| 狂野欧美激情性bbbbbb| 夫妻性生交免费视频一级片| 亚洲av一区综合| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| 婷婷色av中文字幕| 91久久精品电影网| 亚洲欧美清纯卡通| 五月开心婷婷网| 99九九线精品视频在线观看视频| 日韩电影二区| 国产精品国产三级国产av玫瑰| 国产爽快片一区二区三区| 自拍偷自拍亚洲精品老妇| 少妇人妻精品综合一区二区| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 国产有黄有色有爽视频| 一区二区三区免费毛片| 免费大片黄手机在线观看| 青青草视频在线视频观看| 久久久精品免费免费高清| 久久久精品94久久精品| 久热这里只有精品99| 大片电影免费在线观看免费| 国产一区有黄有色的免费视频| 搡女人真爽免费视频火全软件| 亚洲精品456在线播放app| 街头女战士在线观看网站| 在线 av 中文字幕| 日本-黄色视频高清免费观看| 最近中文字幕高清免费大全6| 国产综合懂色| av在线观看视频网站免费| 午夜激情福利司机影院| 久久精品人妻少妇| 我的老师免费观看完整版| 国产精品爽爽va在线观看网站| a级一级毛片免费在线观看| 国产成人福利小说| 男人添女人高潮全过程视频| 一级片'在线观看视频| 成人综合一区亚洲| 黑人高潮一二区| 久久精品熟女亚洲av麻豆精品| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 久久久国产一区二区| 美女被艹到高潮喷水动态| 国产男女内射视频| 国产探花在线观看一区二区| 26uuu在线亚洲综合色| 嘟嘟电影网在线观看| 看非洲黑人一级黄片| 国产精品蜜桃在线观看| 婷婷色综合大香蕉| 91精品国产九色| eeuss影院久久| 成人亚洲精品av一区二区| 哪个播放器可以免费观看大片| 免费看av在线观看网站| av播播在线观看一区| 一级av片app| 亚洲精品成人久久久久久| 亚洲久久久久久中文字幕| 亚洲怡红院男人天堂| 蜜桃久久精品国产亚洲av| 99久久精品热视频| 97在线人人人人妻| 中国三级夫妇交换| 免费人成在线观看视频色| 亚洲内射少妇av| 亚洲av中文字字幕乱码综合| 欧美另类一区| 看黄色毛片网站| 99九九线精品视频在线观看视频| 欧美高清成人免费视频www| 国产视频首页在线观看| 在线播放无遮挡| 久久久久久久精品精品| 大香蕉久久网| 性色avwww在线观看| 在线看a的网站| 狂野欧美激情性bbbbbb| 国产黄频视频在线观看| 极品教师在线视频| 日韩不卡一区二区三区视频在线| 亚洲天堂国产精品一区在线| 亚洲精品色激情综合| 日韩一区二区视频免费看| 国产 精品1| 在线观看av片永久免费下载| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看|