• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edible Oil Classification Based on Molecular Spectra Analysis With SIMCA-SVDD Method

    2020-08-08 07:39:30ZHAOZhongLIBinWUYanxianYUANHongfu
    光譜學(xué)與光譜分析 2020年8期

    ZHAO Zhong, LI Bin,WU Yan-xian, YUAN Hong-fu

    1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China 2. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    Abstract Edible oil is a necessity in daily life. The nutritional value and price of different types of edible oils on the market vary a lot. Because of the spurious activities in the market, it is necessary to establish effective detection methods to classify the quality of the edible oils in the market. Traditional edible oil classification methods are usually time-consuming and requiring complex pre-treatment in the lab. Molecular spectroscopy can elucidate the sample information of both compositions and properties at the molecular level, and molecular spectra analysis has the advantages of fast speed detection and non-destructive testing for edible oil classification. Molecular spectra analysis combined with the chemometrics is becoming a popular method for rapid classification of edible oil. SIMCA (Soft Independent Modeling of Class Analogy) is widely applied to molecular spectra analysis. However, the Euclidean distance is used in SIMCA to classify the extracted features with PCA and F test. Therefore it is difficult to classify the irregular feature spaces. When the molecular spectral differences among the different types of samples are tiny such as edible oils, it is usually difficult to identify them with the traditional SIMCA method. SVDD(Support Vector Domain Description)algorithm is a support domain method for solving the one-class classification problem. SVDD can get a hypersphere to include as many objective samples as possible by solving the convex quadratic programming problem. In this work, a method of molecular spectra analysis based on SIMCA-SVDD method for rapid classification of edible oils is proposed. In order to accomplish recognition of the different types of edible oils, the attenuated total reflectance infrared spectra of four types of edible oil are scanned on ATR-FTIR. SIMCA is applied to extract the classification features T2 and Q. Since the extracted edible oil classification features T2 and Q distribute irregularly, instead of classification with Euclidean distance in SIMCA, Support Vector Domain Description (SVDD) is applied in this work to classify the extracted features. Since SVDD can map the extracted classification features to high dimensional space by mapping functions, then an optimal classification hypersphere can be trained to classify the irregular distributing feature spaces by solving the convex quadratic programming problem. Comparative experiments to identify the same molecular spectra samples with the proposed SIMCA-SVDD method and the SIMCA method have also been done. Comparative experiment results have verified that the classification results with the proposed SIMCA-SVDD method are obviously better than that with SIMCA. The proposed SIMCA-SVDD method has provided a new way to classify the edible oil rapidly based on molecular spectra analysis.

    Keywords Edible oil;Molecular spectrum;SIMCA;Euclidean distance;SVDD

    Introduction

    Edible oil is a necessity of daily life. There are many kinds of edible oil such as the peanut oil, rapeseed oil, soybean oil, corn oil, tea seed oil, sesame oil and olive oil in the market. The nutritional value and prices of different types of edible oils vary a lot according to their composition change. In order to avoid market fraud, it is necessary to establish an effective detection method to classify edible oils. There are some methods that have been reported to detect the quality of edible oil[1-2]. However, these detection methods are usually time-consuming and requiring complex pre-treatment. Spectral analysisbased detection methods[3-4]have been developed to analyze the edible oils with the advantages of fast speed and non-destructive testing.

    SIMCA (Soft Independent Modeling of Class Analogy)[5]is the widely applied method to molecular spectra analysis and chemometrics. In SIMCA, PCA and F test are used to extractT2andQas the classification features. Then, Euclidean distance is used to classify the extracted features. The range defined by Euclidean distance, which is a circle in the plane ofT2vsQ, can not accurately classify the extracted features distributing in irregular feature spaces. Support Vector Domain Description (SVDD)[6]is a supervised machine learning method based on SVM theory. SVDD can map the nonlinear feature data to the high-dimensional space with different kernel functions. A closed and compact sphere can be optimized to classify the nonlinear feature data. Since SVDD can be optimized with the distribution of the classification data, it can be used to classify the irregular feature spaces[7-8]. In this work, a method of molecular spectra analysis based on SIMCA-SVDD method for rapid classification of edible oil is proposed. Comparative experiments to identify the same samples with the proposed SIMCA-SVDD method, and SIMCA have also been done. Comparative experiment results have verified that the classification results with the proposed SIMCA-SVDD method are obviously better than that with SIMCA.

    1 Methods

    1.1 SIMCA

    SIMCA is a supervised pattern recognition method, PCA is applied to decompose sample matrix of each class as

    (1)

    (2)

    whereEis residual matrix. The fraction of the total variation can be estimated as

    Q=1-PRESS/SS

    (3)

    where PRESS is the sum of squares of the prediction errors and SS is the sum of squares of the residuals of the previous component. According to selectedAcomponents, the HotellingT2for observationiis calculated as

    (4)

    (5)

    (6)

    (7)

    1.2 SIMCA-SVDD

    s.t. ‖xi-a‖2≤R2+ξi,ξi≥0

    (8)

    whereCis the penalty coefficient andξiis a relaxation factor. According to Eq. (8), the Lagrangian function is defined as

    (9)

    whereαi(αi≥0) andγi(γi≥0) are Lagrangian multipliers. The class center of the sphereaand the radiusRcan be obtained by solving MaxMinL(R,a,ξi,αi,γi). According to Eq.(9), there are

    (10)

    (11)

    (12)

    Substituting Eq.(10), Eq.(11) and Eq.(12) into Eq.(9), there is

    (13)

    Use kernel function to replace the inner product in Eq.(13) and maximizeL, then

    (14)

    According to Eq.(14) and definedC,αcan be solved for every feature sample. The radiusRcan be calculated as

    (15)

    wherepis the support vector. For multi-classification, the relative distance is defined as

    (16)

    According to the minimumDiin Eq.(16), the feature samples are classified.

    2 Experimental

    2.1 Materials

    54 edible oil samples are provided by the National Institute of Metrology (NIM) of China,which belong to four types of edible oil. 43 samples are chosen as the calibration set and the remaining 11 samples are chosen as the validation set with the Rank-KS method[9]. The number of calibration set and validation set for each types of samplesis shown in Table 1.

    Table 1 Statistics of samples

    2.2 Spectra measurement

    The infrared spectra of the samples are scanned by Attenuated Totalinternal Reflectance Fourier Transform Infrared (Agilent 5500) spectrometer. The spectra are collected from 650 to 4 000 cm-1with a resolution 4 cm-1and with 32 scans. Each sample is scanned three times and the average is used for analysis. The spectra of all samples measured on ATR instrument are shown in Fig.1.

    Fig.1 Original spectrum of four types of oil samples measured on ATR spectrometer

    2.3 Software

    All data have been analyzed with MATLAB 2017a (The Mathworks Inc.).

    2.4 Preprocessing

    Eliminate the side effects of surface scattering and the change of optical path on infrared diffuse reflection spectra, and spectral mean centeringis applied to the spectral data.

    2.5 Evaluation of classification results

    Correct classification rate (CCR) is applied to evaluate the qualitative recognition results[9].

    3 Results and discussion

    3.1 Feature extractionwith SIMCA

    Fig.2 PRESS and Q-T2 distributions for the spectra samples

    3.2 Classification results

    Fig.3 Euclidean distance discrimination for blended oil samples

    Fig.4 SVDD discrimination for blended oil samples

    The comparative experiments for edible oil classification based on molecular analysis with SIMCA and proposed SIMCA-SVDD have been done. The classification results are shown in Table 2. According to Fig.2, it is noticed that the extracted edible oil features based on molecular spectra analysis with SIMCA are different. Then, the extracted features can be used for classification. But, the extracted features based on molecular spectra analysis with SIMCA are not always linear separable. The discrimination area for feature spaces with Euclidean distance in SIMCA is a circle, and then it is difficult to classify the irregular feature spaces such as the linear inseparable feature spaces. SVDD can map the linear inseparable feature data to a high-dimensional space with kernel tricks. Then, the minimum hypersphereis trained with SQP to include as many class samples as possible. According to the comparative experiments, the blended oil samples in the validation set can be recognized with SIMCA-SVDD accurately.

    Table 2 Classification results of SIMCA and SIMCA-SVDD

    For SIMCA, the decision plane is a circle, and its indicator is the radius in which Judging indicator is too single. After the features are extracted, the characteristic distribution rules of single oil can be distinguished within the regular area. However, for mixed oil, changes in its composition lead to irregularities in the decision plane. The SIMCA-SVDD method can change the irregular decision area by the parameters of the kernel function, so better classification results are achieved.

    4 Conclusions

    In this work, a method of edible oil classification based on molecular spectra analysis with SIMCA-SVDD is proposed. The IR spectra of four types of edible oil are scanned on ATR-FTIR. For a single oil sample, SIMCA and the proposed SIMCA-SVDD method can better classify the sample. However, due to changes in the composition of the mixed oil and changes in the content of the components, SIMCA does not distinguish well between the mixed oil and the single oil. SIMCA-SVDD!can correctly distinguish mixed oils in many samples. SIMCA is applied to extract the classification featuresT2andQ. Instead of classification with Euclidean distance in SIMCA, SVDD is applied in this work to classify the extracted linear inseparable features. The comparative experiment results have verified that the proposed method had a better classification of edible oils than the traditional SIMCA method. The proposed method has provided a new way to classify the edible oil rapidly based onmolecular spectra analysis.

    大型av网站在线播放| 欧美乱色亚洲激情| 侵犯人妻中文字幕一二三四区| av天堂在线播放| 欧美激情 高清一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产成人av教育| 欧美大码av| av免费在线观看网站| 国产又爽黄色视频| 欧美激情高清一区二区三区| 在线观看免费午夜福利视频| 国产精品电影一区二区三区| 国产爱豆传媒在线观看 | 18禁国产床啪视频网站| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 婷婷精品国产亚洲av| 巨乳人妻的诱惑在线观看| 俄罗斯特黄特色一大片| 成人国语在线视频| 久久久久国产精品人妻aⅴ院| 最好的美女福利视频网| 黄频高清免费视频| 亚洲avbb在线观看| 日本熟妇午夜| 男人舔女人下体高潮全视频| av超薄肉色丝袜交足视频| 成人国语在线视频| 成人国产综合亚洲| 草草在线视频免费看| 国产成人精品久久二区二区91| 视频在线观看一区二区三区| 亚洲成国产人片在线观看| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 一进一出好大好爽视频| 久久中文字幕一级| 无人区码免费观看不卡| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 51午夜福利影视在线观看| av片东京热男人的天堂| 美国免费a级毛片| 婷婷精品国产亚洲av在线| 久久久久久久午夜电影| 免费在线观看亚洲国产| 亚洲午夜理论影院| 日韩成人在线观看一区二区三区| 人成视频在线观看免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲自偷自拍图片 自拍| 99国产极品粉嫩在线观看| 亚洲无线在线观看| 桃色一区二区三区在线观看| 国产精品国产高清国产av| 美女免费视频网站| 久久天躁狠狠躁夜夜2o2o| 99热这里只有精品一区 | 国产97色在线日韩免费| www日本在线高清视频| 欧美av亚洲av综合av国产av| 99国产精品一区二区蜜桃av| 级片在线观看| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 热99re8久久精品国产| 波多野结衣巨乳人妻| 999久久久国产精品视频| 日韩三级视频一区二区三区| 久久香蕉激情| netflix在线观看网站| 久久久久亚洲av毛片大全| videosex国产| 国产区一区二久久| 欧美国产精品va在线观看不卡| 亚洲国产精品999在线| а√天堂www在线а√下载| 精品欧美一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 18禁黄网站禁片免费观看直播| 狠狠狠狠99中文字幕| 成人三级做爰电影| 亚洲色图av天堂| 日韩欧美一区视频在线观看| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添小说| 国内少妇人妻偷人精品xxx网站 | 亚洲,欧美精品.| 禁无遮挡网站| 亚洲国产欧美网| 2021天堂中文幕一二区在线观 | 国产亚洲av高清不卡| 91麻豆精品激情在线观看国产| 亚洲国产欧美一区二区综合| 午夜免费鲁丝| 伊人久久大香线蕉亚洲五| 国产一区二区三区在线臀色熟女| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲av高清不卡| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区精品| 国产成人精品久久二区二区免费| 国产成人系列免费观看| 久久久久久久精品吃奶| 久久热在线av| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 天堂影院成人在线观看| 波多野结衣高清无吗| 叶爱在线成人免费视频播放| 欧美国产日韩亚洲一区| 国产爱豆传媒在线观看 | av片东京热男人的天堂| 国语自产精品视频在线第100页| 国产精品久久久人人做人人爽| 国产成人影院久久av| 精品一区二区三区av网在线观看| 午夜福利18| 满18在线观看网站| 怎么达到女性高潮| 亚洲国产毛片av蜜桃av| 桃红色精品国产亚洲av| netflix在线观看网站| 亚洲第一av免费看| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| 国产真实乱freesex| 亚洲在线自拍视频| 亚洲自拍偷在线| 欧美在线一区亚洲| 夜夜躁狠狠躁天天躁| 自线自在国产av| 亚洲狠狠婷婷综合久久图片| 操出白浆在线播放| 国产精品 国内视频| 日韩精品青青久久久久久| 国产真人三级小视频在线观看| 久久99热这里只有精品18| 一夜夜www| 俺也久久电影网| 女警被强在线播放| 久久伊人香网站| www.精华液| 日本在线视频免费播放| 国产熟女xx| 老熟妇仑乱视频hdxx| 亚洲激情在线av| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 久久午夜综合久久蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲aⅴ乱码一区二区在线播放 | 欧美中文综合在线视频| 中文字幕精品免费在线观看视频| 男人舔女人的私密视频| 久久久久久久午夜电影| 一级作爱视频免费观看| 日韩国内少妇激情av| 两个人免费观看高清视频| 69av精品久久久久久| 国产精品一区二区免费欧美| 神马国产精品三级电影在线观看 | 午夜福利成人在线免费观看| 精品电影一区二区在线| 制服丝袜大香蕉在线| 国产av一区在线观看免费| 欧美一区二区精品小视频在线| 91av网站免费观看| 伦理电影免费视频| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 日日爽夜夜爽网站| 在线永久观看黄色视频| 99久久精品国产亚洲精品| 午夜激情av网站| 亚洲精品美女久久av网站| 国产单亲对白刺激| 国产视频一区二区在线看| 成人免费观看视频高清| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| a级毛片在线看网站| 脱女人内裤的视频| 在线观看一区二区三区| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 黄色丝袜av网址大全| 亚洲全国av大片| 亚洲一码二码三码区别大吗| 亚洲中文日韩欧美视频| 18禁国产床啪视频网站| 特大巨黑吊av在线直播 | 国产视频内射| 麻豆久久精品国产亚洲av| 少妇裸体淫交视频免费看高清 | 国产亚洲精品综合一区在线观看 | 亚洲精品久久国产高清桃花| 国产伦在线观看视频一区| 国产私拍福利视频在线观看| 久久久久国产一级毛片高清牌| 精品国产亚洲在线| 久久亚洲真实| 成人永久免费在线观看视频| 欧美激情极品国产一区二区三区| 日韩欧美国产在线观看| 国产真人三级小视频在线观看| 香蕉国产在线看| 久久精品亚洲精品国产色婷小说| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产男靠女视频免费网站| 这个男人来自地球电影免费观看| 91在线观看av| 99在线人妻在线中文字幕| 老司机午夜福利在线观看视频| 精品一区二区三区视频在线观看免费| 69av精品久久久久久| 可以在线观看毛片的网站| 国产不卡一卡二| 一级作爱视频免费观看| 欧美成人午夜精品| 天天添夜夜摸| 欧美最黄视频在线播放免费| 亚洲第一青青草原| 国产成人啪精品午夜网站| 日韩免费av在线播放| 99久久无色码亚洲精品果冻| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 首页视频小说图片口味搜索| 久久精品人妻少妇| 欧美乱妇无乱码| 在线十欧美十亚洲十日本专区| 男女午夜视频在线观看| 色尼玛亚洲综合影院| 久热爱精品视频在线9| av欧美777| 日本 欧美在线| 午夜久久久在线观看| 国产精品免费视频内射| 免费av毛片视频| 1024视频免费在线观看| www.熟女人妻精品国产| 不卡一级毛片| 嫩草影院精品99| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 精品国产超薄肉色丝袜足j| 午夜亚洲福利在线播放| 免费一级毛片在线播放高清视频| 国产精品二区激情视频| 一本精品99久久精品77| www日本黄色视频网| 精品熟女少妇八av免费久了| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 看免费av毛片| 国产精品,欧美在线| 99久久精品国产亚洲精品| 麻豆成人av在线观看| 亚洲色图 男人天堂 中文字幕| 成人欧美大片| 老司机靠b影院| videosex国产| 特大巨黑吊av在线直播 | 中文字幕人成人乱码亚洲影| 久久亚洲真实| 一本精品99久久精品77| 亚洲全国av大片| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲av嫩草精品影院| 最新美女视频免费是黄的| 色老头精品视频在线观看| 黄色女人牲交| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看| 天天一区二区日本电影三级| av欧美777| 欧美成狂野欧美在线观看| 波多野结衣巨乳人妻| 女人高潮潮喷娇喘18禁视频| 亚洲七黄色美女视频| 中文在线观看免费www的网站 | 亚洲全国av大片| 成在线人永久免费视频| 校园春色视频在线观看| 女同久久另类99精品国产91| 19禁男女啪啪无遮挡网站| 亚洲天堂国产精品一区在线| 国产免费av片在线观看野外av| 久久精品国产99精品国产亚洲性色| 精品电影一区二区在线| 精品熟女少妇八av免费久了| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 一级a爱视频在线免费观看| 亚洲人成77777在线视频| 国内精品久久久久精免费| 国产蜜桃级精品一区二区三区| 久久精品国产99精品国产亚洲性色| 好男人电影高清在线观看| 成人手机av| 欧美日韩精品网址| 人成视频在线观看免费观看| 超碰成人久久| 日本免费a在线| 亚洲av片天天在线观看| 亚洲av电影在线进入| 精品国产乱子伦一区二区三区| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 婷婷精品国产亚洲av在线| 欧美日韩福利视频一区二区| 妹子高潮喷水视频| tocl精华| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡免费网站照片 | 丝袜美腿诱惑在线| 国产伦在线观看视频一区| 成人亚洲精品一区在线观看| 色综合婷婷激情| 亚洲精品国产精品久久久不卡| 91老司机精品| 国产精品一区二区三区四区久久 | 久久狼人影院| 欧美日韩亚洲国产一区二区在线观看| 男人舔女人下体高潮全视频| 国产激情久久老熟女| 巨乳人妻的诱惑在线观看| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 欧美中文日本在线观看视频| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 此物有八面人人有两片| 99久久精品国产亚洲精品| 97碰自拍视频| 免费在线观看亚洲国产| 国产三级在线视频| 欧美中文日本在线观看视频| 97人妻精品一区二区三区麻豆 | 欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到| 黄色成人免费大全| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 香蕉国产在线看| 欧美三级亚洲精品| 男人操女人黄网站| 怎么达到女性高潮| 丰满的人妻完整版| 中文字幕最新亚洲高清| 美女高潮喷水抽搐中文字幕| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| 50天的宝宝边吃奶边哭怎么回事| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 亚洲精品美女久久av网站| 国内精品久久久久精免费| 中文字幕人妻丝袜一区二区| 国产激情欧美一区二区| 国产一区二区激情短视频| 成人一区二区视频在线观看| 成人免费观看视频高清| 9191精品国产免费久久| or卡值多少钱| 亚洲中文日韩欧美视频| 俄罗斯特黄特色一大片| 亚洲最大成人中文| 人成视频在线观看免费观看| 侵犯人妻中文字幕一二三四区| 亚洲精品久久国产高清桃花| 国产午夜福利久久久久久| 青草久久国产| 亚洲 欧美 日韩 在线 免费| 欧美色视频一区免费| 亚洲成人免费电影在线观看| 亚洲av第一区精品v没综合| 看片在线看免费视频| 在线视频色国产色| 麻豆av在线久日| 日日夜夜操网爽| 97碰自拍视频| 大香蕉久久成人网| 精品卡一卡二卡四卡免费| 国产不卡一卡二| 麻豆成人午夜福利视频| 国产亚洲精品一区二区www| 1024香蕉在线观看| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| 精品国产乱码久久久久久男人| 一卡2卡三卡四卡精品乱码亚洲| 9191精品国产免费久久| 国产不卡一卡二| 国产熟女午夜一区二区三区| 岛国在线观看网站| 欧美黄色片欧美黄色片| 一本久久中文字幕| 波多野结衣巨乳人妻| 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 级片在线观看| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 大型黄色视频在线免费观看| 两人在一起打扑克的视频| 色在线成人网| 欧美中文综合在线视频| 免费在线观看完整版高清| 亚洲在线自拍视频| 90打野战视频偷拍视频| 欧美绝顶高潮抽搐喷水| 夜夜爽天天搞| 精品国产亚洲在线| 99久久国产精品久久久| 成人三级黄色视频| 日本三级黄在线观看| 免费电影在线观看免费观看| 久久青草综合色| 亚洲无线在线观看| 不卡av一区二区三区| 国产精品久久久久久人妻精品电影| 侵犯人妻中文字幕一二三四区| 国产精华一区二区三区| 男人舔女人的私密视频| 老司机午夜福利在线观看视频| 国产精品香港三级国产av潘金莲| 国产又黄又爽又无遮挡在线| 久久久水蜜桃国产精品网| 亚洲av中文字字幕乱码综合 | 热re99久久国产66热| 午夜福利免费观看在线| 日韩国内少妇激情av| 99久久无色码亚洲精品果冻| 精品一区二区三区视频在线观看免费| 国产麻豆成人av免费视频| 91成人精品电影| 精品午夜福利视频在线观看一区| 少妇被粗大的猛进出69影院| 国产精品一区二区免费欧美| 露出奶头的视频| 欧美 亚洲 国产 日韩一| 一级片免费观看大全| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| 精品午夜福利视频在线观看一区| 91麻豆精品激情在线观看国产| 一级毛片女人18水好多| av在线天堂中文字幕| 婷婷亚洲欧美| 成人手机av| 嫩草影视91久久| 精品久久蜜臀av无| 18禁国产床啪视频网站| 成人精品一区二区免费| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 免费在线观看成人毛片| 国产不卡一卡二| 久久人妻av系列| 视频区欧美日本亚洲| 国产免费男女视频| 又大又爽又粗| 男人舔女人的私密视频| 色综合欧美亚洲国产小说| 国产精品,欧美在线| 免费一级毛片在线播放高清视频| 日本a在线网址| 亚洲专区国产一区二区| 日韩有码中文字幕| 欧美在线黄色| 国产成人av激情在线播放| 亚洲狠狠婷婷综合久久图片| 午夜激情av网站| 制服诱惑二区| 波多野结衣av一区二区av| 国产av一区在线观看免费| 变态另类丝袜制服| 日本熟妇午夜| 欧美成狂野欧美在线观看| 国产av在哪里看| √禁漫天堂资源中文www| 一二三四社区在线视频社区8| 国产亚洲精品av在线| 欧美黑人巨大hd| 成人av一区二区三区在线看| 少妇的丰满在线观看| 久久精品国产清高在天天线| 看黄色毛片网站| 免费人成视频x8x8入口观看| 悠悠久久av| 免费看日本二区| 亚洲成人国产一区在线观看| 人人妻人人看人人澡| 色播亚洲综合网| 12—13女人毛片做爰片一| 免费看日本二区| 欧美激情 高清一区二区三区| 国产成人精品久久二区二区免费| 亚洲黑人精品在线| 黄色 视频免费看| 欧美丝袜亚洲另类 | 精品一区二区三区视频在线观看免费| 老司机午夜十八禁免费视频| 日韩欧美一区二区三区在线观看| 丁香六月欧美| 日韩av在线大香蕉| 老熟妇仑乱视频hdxx| 婷婷丁香在线五月| 一二三四社区在线视频社区8| 一本大道久久a久久精品| 日韩大码丰满熟妇| 久久久久亚洲av毛片大全| 国产精品 欧美亚洲| 国产午夜精品久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 国产精华一区二区三区| 亚洲成人精品中文字幕电影| 久久久久久久久免费视频了| 丝袜美腿诱惑在线| 欧美三级亚洲精品| 久久久国产成人精品二区| 日韩欧美三级三区| 中文字幕精品免费在线观看视频| 国产亚洲av嫩草精品影院| 91成人精品电影| 精品第一国产精品| 制服丝袜大香蕉在线| 日本黄色视频三级网站网址| 久久久国产成人精品二区| 亚洲精品色激情综合| 成人永久免费在线观看视频| 两性夫妻黄色片| 亚洲国产精品999在线| 久久热在线av| 少妇裸体淫交视频免费看高清 | 日本五十路高清| 国产av一区在线观看免费| 亚洲av电影在线进入| 黑人巨大精品欧美一区二区mp4| 免费在线观看亚洲国产| 国产91精品成人一区二区三区| 91九色精品人成在线观看| 十分钟在线观看高清视频www| 99热只有精品国产| 日韩国内少妇激情av| 欧美色视频一区免费| 国产又色又爽无遮挡免费看| 一级毛片精品| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av在线| 久久午夜综合久久蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 999久久久精品免费观看国产| 久久草成人影院| 在线天堂中文资源库| 激情在线观看视频在线高清| 亚洲成人久久爱视频| 国产蜜桃级精品一区二区三区| 亚洲午夜理论影院| 午夜福利视频1000在线观看| 搡老岳熟女国产| 国产激情欧美一区二区| 日本 欧美在线| 女人高潮潮喷娇喘18禁视频| 黄片播放在线免费| 亚洲七黄色美女视频| 一区二区三区高清视频在线| 校园春色视频在线观看| 90打野战视频偷拍视频| 黄网站色视频无遮挡免费观看| 国产单亲对白刺激| 亚洲精品粉嫩美女一区| 婷婷精品国产亚洲av| 可以在线观看的亚洲视频| 他把我摸到了高潮在线观看| 欧美乱色亚洲激情| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 波多野结衣巨乳人妻| a在线观看视频网站| 美女大奶头视频| 久久国产精品人妻蜜桃| 欧美性猛交黑人性爽| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久热这里只有精品99| 国产亚洲精品av在线| 国产av又大| avwww免费| 精品国产国语对白av| 亚洲色图 男人天堂 中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 一二三四在线观看免费中文在| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区三区四区久久 | 中文字幕另类日韩欧美亚洲嫩草| 夜夜看夜夜爽夜夜摸| 免费在线观看成人毛片| 亚洲片人在线观看| 淫妇啪啪啪对白视频| 亚洲精品国产精品久久久不卡| 91在线观看av| 国产亚洲精品久久久久5区| 婷婷亚洲欧美| 1024视频免费在线观看| 免费在线观看影片大全网站| 国产区一区二久久|