• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Nonlinear Coordinated Approach to Enhance the Transient Stability of Wind Energy-Based Power Systems

    2020-08-05 09:40:12MohammadJavadMorshed
    IEEE/CAA Journal of Automatica Sinica 2020年4期

    Mohammad Javad Morshed,

    Abstract—This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs)and synchronous generators(SGs).The proposed coordination approach is based on the zero dynamics method aims at enhancing the transient stability of multi-machine power systems under a wide range of operating conditions. The proposed approach was implemented to the IEEE 39-bus power systems.Transient stability margin measured in terms of critical clearing time along with eigenvalue analysis and time domain simulations were considered in the performance assessment. The obtained results were also compared to those achieved using a conventional power system stabilizer/power oscillation(PSS/POD) technique and the interconnection and damping assignment passivity-based controller(IDA-PBC). The performance analysis confirmed the ability of the proposed approach to enhance damping and improve system’s transient stability margin under a wide range of operating conditions.

    I.Introduction

    TRANSIENT stability is one of the most challenging problems in large scale power systems[1].It refers to the power system’s ability to converge to a stable post-fault equilibrium following large disturbances such as faults,overload,or loss of generating units.Random oscillations caused by faults,sudden changes in loads,lightning may lead to transient instability and subsequently voltage collapse and blackouts.The increased penetration of wind energy systems into the grid have led to additional challenges to power system’s stability.This is mainly due to the intermittent power availability of DFIG-based wind turbines along with the differences in the dynamic behavior characteristics of their generators compared with the conventional synchronous generators(SGs)[1]–[4].Power system stabilizers(PSSs)have traditionally been considered to enhance both the transient and dynamic stability of SGs[5],while DFIGs were equipped with power oscillation damping(POD)devices to effectively damp power system oscillations[6],[7].However,because the operating points of power systems change remarkably,linear approaches such as PODs and PSSs lack the necessary robustness under all operating conditions.Further,system nonlinearities can also affect power system characteristics during large disturbances,hence limiting the damping properties of PODs/PSSs.Finally, the interactions between the conventional SGs and DFIGs,which are widely deployed in wind energy systems,may cause dynamic instability in the absence of coordinated control designs.Hence,it is imperative to coordinate the design of the various controllers of the DFIGs and SGs while also taking into consideration power system’s nonlinearities in wind energy based power systems[8],[9].

    Nonlinear excitation controllers were recently proposed to overcome the limitations of linear techniques and enhance the transient stability of large scale power systems in a much better way than the conventional techniques. A control structure based on two switching controllers working in a coordinated manner was proposed in[10]to enhance the transient stability of multi-machine power systems.A decentralized adaptive excitation control scheme was proposed in[11]for a three-machine power system.It was shown to enhance transient stability in the event of a large sudden fault. A decentralized multivariable adaptive voltage and speed regulator was proposed in[12] to stabilize power systems with multiple SGs.The approach was based on a nonlinear linearizing part with time varying parameters and an auxiliary stabilizing one and was shown to improve system stability and transient performance when implemented to a four-machine power system.An exact feedback linearizing excitation controller was proposed in to improve the stability margin of power systems under various operating conditions[13].However,the implementation of exact feedback linearizing excitation controllers requires using an observer for rotor angle estimation [14].A nonlinear approach based on the interconnection and damping assignment passivity-based control(IDA-PBC)was proposed in[15].The IDA-PBC control design methodology was used to achieve power angle stability and provide both frequency and voltage regulation for DFIGs,SGs,and STATCOM.Success of the IDA-PBC design,however,relied on the suitable selection of the closedloop interconnection structure and dissipation matrices and no general method currently exists for their selection,thus making its implementation to large scale power systems quite challenging [15].

    Partial feedback linearization,or zero dynamics(ZD),approach have recently been considered to design excitation controllers for synchronous generators in multi-machine power systems[16].In[17] the approach was used to allow the decoupling of the multi-machine power system based on the excitation control inputs of the synchronous generators.Among the attractive features of the zero dynamics(ZD)approach are its ability to 1)convert system’s highly nonlinear dynamics into a partial linear one algebraically;2)lead to a transformed system that is of reduced order and independent of the operating point.Further,ZD does not require the full model dynamics of the system [18].

    This paper focuses on the design of a coordinated approach based on the ZD technique for large scale power systems.The proposed approach takes into consideration the various interactions between SGs and DFIGs along with system nonlinearities.It aims at enhancing the transient stability of large scale power systems with DFIG-based wind energy systems.The main features of the proposed approach are,its ability to:

    1)A framework that enables the simultaneous coordination between SGs and DFIGs controllers.Contrary to existing approaches which either coordinate the design between SGs only[19],[20],or DFIGs only[21].Further, the proposed methodology was developed for large scale power systems withm-SGs andn-DFIGs, making it easily implemented to large scale complex power systems,which is one of the most significant contributions of this manuscript.

    2)A design methodology that takes into consideration the interactions between the SGs and DFIGs in multi-machine power systems.Contrary to existing approaches which omitted those interactions and resulted in poor dynamic stability [7],[19]–[23].

    3)A coordinated design to handle system nonlinearities,uncertainties and the differences in the dynamic behavior of all the generators.Existing approaches[19],[20],[24]–[26]have either considered an exact linearization or a traditional zero dynamics approach.

    The remainder of the paper is organized as follows.The dynamic models of the synchronous generators(SGs)and DFIGs are described in Section II.The proposed coordinated design is detailed in Section III.The performance of the proposed approach is illustrated in Section IV.A comparison analysis with other control approaches is also reported in that section. Some concluding remarks are finally given in Section V.

    II.Pow er System’s modelling

    Consider amulti-machine power system withm- SGs andn-DFIG-based wind energy systems.The dynamic models of each SG and DFIG can be represented as follows.

    III.Zero Dynamics Technique

    First order approximation of system’s dynamics around a given operating point is conventionally considered in linearizing nonlinear systems.While this technique yields satisfactory performance for systems with slowly varying equilibrium,it is not suitable for systems with inherently nonlinear dynamics[32]since it neglects high-order dynamics.Zero dynamics approach is a technique that transforms a nonlinear system to a linear one so that linear control methodologies can be used. Unlike conventional linearization,zero dynamics yields an input-output linear behavior that is valid globally,rather than in the vicinity of an equilibrium point [32]–[34].

    Consider the following state space model for the nonlinear multi-machine power system:

    IV.COMPUTER EXPERIMENTS

    To illustrate the performance of the proposed coordinated control(Fig.2),we implemented it to the modified IEEE 39-bus 10-machine New England power system illustrated in Fig.3[9].

    The New England power system was modified by adding two 200 MW DFIG-based wind turbines at buses 14 and 17,respectively.The parameters of the DFIGs considered in the simulation are listed in Table III in the Appendix.The data used for the SGs, transmission lines and transformers of the power system can be found in[9].The participation factor method[38]was considered to determine the optimum locations of the excitation controllers of the SGs.The results indicated that the synchronous generators,SG5,SG7,andSG9are the best locations for designing the excitation controller to damp out the local and inter-areas modes of oscillations.Further,in order to simulate the coupled dynamic response of the wind turbine and prevent the negative interaction between the fast and slow controllers, we implemented the fatigue,aerodynamics,structures,and turbulence(FAST) program proposed by the Renewable Energy Laboratory[39].Hence,three SGs(m=3)and two DFIGs(n=2) were considered in designing the nonlinear coordinated controller.The remaining SGs were equipped with PSS and were not considered in the coordination design implemented in this section.Eigenvalue analysis and time domain simulations were carried out to assess the damping performance and dynamic stability of the proposed approach.The control system dynamics were obtained by solving the differential equations(16)in MATLAB/Simulink environment R2011b version 7.13.

    Fig.1.Flow chart of the proposed coordinated approach.

    Fig.2.Block diagram of the proposed approach.

    Fig.3.Single-line diagram of the IEEE 39-bus New England power system.

    The performance of the proposed coordinated design was further compared with the following approaches:

    1) PSS/POD:the SGs are equipped with power system stabilizers(PSSs),while the DFIGs are equipped with power oscillation dampers(PODs)[9],[40].

    2) IDA-PBC:the passivity-based control design method(Interconnection and damping assignment passivity-based control (IDA-PBC))proposed in [15].

    A. Eigenvalues Analysis

    Eigenvalue analysis was performed to assess the system’s transient performance and damping capabilities.Further,in order to gain insight into the need for a type of control strategy to enhance system’s transient dynamics, the eigenvalues were also computed for the case where SGs and DFIGs were not equipped with any controller.

    The dominant eigenvalues of the power system at some normal operating conditions are illustrated in Fig.4 for all the approaches. Note that the minimum damping ratio(ζmin) of the power system with no controller is 0.0130.The system is clearly undamped and installing a controller for the SGs and DFIGs is a must.Equipping SGs with PSS and DFIGs with POD,however,did slightly improve damping and stabilize the power system.The minimum damping ratio in this case was ζmin=0.0423which means that all system eigenvalues are confined to the conic illustrated in Fig.4.Implementing the IDA-PBC approach resulted in even better improvement in dominant eigenvalues compared to the PSS/POD(ζmin=0.0830), but the best results were obtained with the proposed coordinated design (ζmin=0.1137)compared to all considered situations.Thus,clearly confirming the ability of the proposed approach to greatly enhance power system damping and transient behavior.

    B.Case I: Three-Phase Fault Scenario at Bus 16

    In this section,the performance of the proposed approach is evaluated under a three-phase fault condition.This choice is motivated by the fact that such unavoidable fault often results in one of the most severe disturbances to power systems.Assessment was carried over for two scenarios:one that includes DFIGs and one that does not.This aims at evaluating the effectiveness of approach in mitigating the impact of wind energy stems in the grid.Comparison analysis with PSS/POD and IDA-PBC is also carried over.A symmetrical three-phase fault at bus 16 for 100 ms is considered to evaluate the performance of the proposed controller.The rotor angle responses ofSG5,SG7,andSG9with respect to generatorSG10, rotor speed and term inal voltage ofSG5,SG7,andSG9generators are illustrated in Figs.5–7 while the rotor angle responses ofDFIG1andDFIG2with respect to generatorSG10and rotor speed ofDFIG1andDFIG2are illustrated in Figs.8 and 9.

    Fig.4.Dominant eigenvalues for the 39-bus New England system with:(+)no control;(O)PSS/POD;(□)IDA-PBC;(△)the proposed approach.

    Fig.5.Rotor angels of SG5, SG7, SG9under a three-phase fault at bus 16(Case I).

    Fig.6.Rotor speed of S G5, S G7, andS G9under a three-phase fault at bus 16(Case I).

    Fig.7.Terminal voltage of S G5, S G7, S G9under a three-phase fault at bus16(Case I).

    Fig.8.Rotor angels of DFIG1 and DFIG2under a three-phase fault at bus 16(Case I).

    Fig.9.Rotor speed of DFIG1and DFIG2under a three-phase fault at bus 16(Case I).

    Figs.5–9 show that the post-fault responses of the rotor angles,rotor speed and terminal voltage with PSS/POD and IDA-PBC are quite oscillatory.The time histories of the control signals,EfdiandVrkare depicted in Fig.10.The range ofEfdiandVrkare? 2 pu and ?1.5 pu.Those results confirm that the proposed coordinated approach has significantly improved the power system transient and voltage regulation.

    Fig.10.Control signals of SGs and DFIGs under a three-phase fault at bus 16(Case I).

    The oscillations in the rotor angles were slowly damped however but the rotor took a relatively long time to settle back to their post-fault steady state behavior. Note that,it took the proposed coordinated design less than 2 s from the fault occurrence to damp the oscillations in the rotor angles.Hence,we can conclude that the proposed coordinated approach improves the post-fault transient dynamic response of the system and enables it to regain its steady-state behavior faster than the IDA-PBC method.

    C.Case II:Three-Phase Fault Scenario at Bus34

    System performance is assessed in the presence of a symmetrical three-phase fault at the terminal ofSG5(bus34).In this case,since the SG will not supply any power when subjected to a three-phase fault at its terminal,the power system may become unstable after the fault is cleared because of the improper damping generated by the excitation system.Further,in order to assess the effectiveness of the proposed approach in dealing with the variability introduced by DFIGbased wind energy systems, the rotor angle of each SG was assessed in the presence and absence of DFIG.The rotor angle responses ofSG5,SG7,andSG9in this case are illustrated in Fig.11.

    D.Critical Clearing Time(CCT)and Computational Burden analysis

    Transient stability refers to the power system’s ability to converge to a stable post-fault equilibrium following large disturbances.It is often assessed by how quickly the power system is able to clear a fault so as to maintain the faulttriggered transients inside the stability boundary[32].Critical clearing time(CCT)is a well-established metric that measures the upper bound of such clearing time.Exceeding this maximum value results in the loss of stability and synchronism by the generators.

    In this section, we assess system’s transient stability by measuring the CCT following a critical fault such as a threephase fault occurring at various locations in the power network.The obtained results are illustrated in Table I for the proposed approach,PSS/POD,and IDA-PBC approach.

    TABLE I Critical Clearing Time (CCT) of the Different Approaches

    Table I shows that the proposed coordinated control approach resulted in an improvement of critical clearing time and subsequently transient stability by up to 23.33%for the considered fault.

    Further,the three approaches were qualitatively compared in terms of mathematical complexity,computational cost,reliability and robustness.The comparison analysis is illustrated in Table II.

    TABLE II Computational Burden and Various Parameters of the Different Approaches

    Note that,though the mathematical complexity and computational cost of the proposed approach is higher than that of the traditional PSS/POD,it outperforms this latter in terms of stability,robustness,transient performance,and application to large scale power systems.The computational burden and mathematical complexity of the proposed approach is lower than that of the IDA-PBC approach however.

    Based on the above results and discussions, we can conclude that the proposed coordinated design enhances the transient stability and performance of large scale power systems with SGs and DFIG-based wind energy systems,while keeping a reasonable computational cost.

    V.Conclusion

    This paper proposed a coordinated framework for large scale power systems with DFIG-based wind turbines and synchronous generators(SGs).The design is based on the multi input-multi output(M IMO)zero dynamics(ZD)approach and aims at enhancing power system’s transient stability.It captures system’s nonlinearities and considers the dynamic interactions among the various generators.The proposed framework resulted in faster post-fault recovery time and better transient stability compared to other approaches such as PSS/POD and IDA-PBC.One of the main features of the proposed approach is its ability to reduce the order of the feedback linearized power system,thus making the coordinated control design simple and cost effective.Further,the proposed approach can easily be implemented,in practice,using synchronized phasor measurement units(PMUs).These latter can be installed on the bus of each generator to estimate all the parameters of the network and generators needed for small signal stability analysis.

    In closing,we recognize that the multi-machine power system results presented in this paper are preliminary and that there is considerable work that needs to be done to extend this approach to large-scale power systems with different types of renewable energy sources such as PV systems,and/or considering delay time of the controllers[41].However,we have clearly shown that integrating a DFIG into power systems using a nonlinear coordinated control design methodology has the potential to improve power system performance.We are currently working to demonstrate these results on the laboratory scale power system.

    APPENDIX

    TABLE III DFIG Parameters

    国产成人午夜福利电影在线观看| 国产在视频线精品| 国模一区二区三区四区视频| 噜噜噜噜噜久久久久久91| 大片电影免费在线观看免费| av免费在线看不卡| 国产亚洲欧美精品永久| 久久人人爽人人爽人人片va| 99九九线精品视频在线观看视频| 六月丁香七月| 曰老女人黄片| 亚洲av综合色区一区| 欧美成人精品欧美一级黄| videos熟女内射| h视频一区二区三区| 人人妻人人看人人澡| 久久久久久久久久人人人人人人| 精品国产乱码久久久久久小说| 美女xxoo啪啪120秒动态图| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 欧美区成人在线视频| 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜爱| 热re99久久精品国产66热6| 欧美一级a爱片免费观看看| 在线天堂最新版资源| 日韩制服骚丝袜av| 高清欧美精品videossex| 亚洲av在线观看美女高潮| www.av在线官网国产| 日韩av在线免费看完整版不卡| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 成人午夜精彩视频在线观看| 91久久精品电影网| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 久久久精品免费免费高清| 三级国产精品欧美在线观看| 亚洲欧洲日产国产| 人妻少妇偷人精品九色| 国产又色又爽无遮挡免| 日本黄色片子视频| 日韩,欧美,国产一区二区三区| 国产精品福利在线免费观看| 丰满迷人的少妇在线观看| 秋霞在线观看毛片| 不卡视频在线观看欧美| 日本wwww免费看| 亚洲婷婷狠狠爱综合网| 高清在线视频一区二区三区| 国产成人精品久久久久久| 亚州av有码| 亚洲欧美清纯卡通| 久久精品熟女亚洲av麻豆精品| 精品少妇黑人巨大在线播放| 夜夜看夜夜爽夜夜摸| 亚洲,欧美,日韩| av在线app专区| 亚洲无线观看免费| av.在线天堂| 你懂的网址亚洲精品在线观看| 男人舔奶头视频| 美女国产视频在线观看| 97在线视频观看| av卡一久久| 欧美 日韩 精品 国产| 久久毛片免费看一区二区三区| 伦理电影大哥的女人| 日本-黄色视频高清免费观看| 欧美精品一区二区大全| 国产亚洲5aaaaa淫片| 视频区图区小说| 亚洲内射少妇av| 国产免费视频播放在线视频| 狂野欧美激情性bbbbbb| 亚洲精品一区蜜桃| 中文资源天堂在线| 欧美日韩综合久久久久久| freevideosex欧美| 桃花免费在线播放| 亚洲情色 制服丝袜| 久久国内精品自在自线图片| 免费看av在线观看网站| 亚洲三级黄色毛片| 女性生殖器流出的白浆| 日韩av不卡免费在线播放| 欧美精品国产亚洲| 亚洲欧洲精品一区二区精品久久久 | 下体分泌物呈黄色| 国产精品国产三级国产专区5o| 亚洲成人一二三区av| 少妇人妻精品综合一区二区| 最近2019中文字幕mv第一页| 女的被弄到高潮叫床怎么办| 国产在线男女| 夜夜看夜夜爽夜夜摸| 少妇丰满av| 国国产精品蜜臀av免费| 一区二区三区免费毛片| 麻豆精品久久久久久蜜桃| 免费少妇av软件| 亚洲中文av在线| 这个男人来自地球电影免费观看 | 国产成人精品无人区| 国产伦精品一区二区三区视频9| 9色porny在线观看| a 毛片基地| 成人美女网站在线观看视频| 老司机影院毛片| 欧美日韩精品成人综合77777| 九色成人免费人妻av| 亚洲欧洲精品一区二区精品久久久 | 在现免费观看毛片| 狠狠精品人妻久久久久久综合| 精品久久久噜噜| 免费大片黄手机在线观看| 岛国毛片在线播放| 男的添女的下面高潮视频| 国内揄拍国产精品人妻在线| 成人18禁高潮啪啪吃奶动态图 | av天堂中文字幕网| 黑人巨大精品欧美一区二区蜜桃 | 日韩大片免费观看网站| 国产综合精华液| 亚洲人与动物交配视频| 亚洲国产精品国产精品| 久热这里只有精品99| 在线精品无人区一区二区三| 两个人的视频大全免费| 视频区图区小说| 日韩大片免费观看网站| 又粗又硬又长又爽又黄的视频| 成人漫画全彩无遮挡| 在现免费观看毛片| 丁香六月天网| 欧美最新免费一区二区三区| 亚洲天堂av无毛| 青青草视频在线视频观看| 色视频www国产| 高清视频免费观看一区二区| 婷婷色麻豆天堂久久| 一边亲一边摸免费视频| 我要看黄色一级片免费的| 内地一区二区视频在线| 午夜免费观看性视频| 自线自在国产av| 日日摸夜夜添夜夜添av毛片| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| av女优亚洲男人天堂| 夜夜爽夜夜爽视频| 亚洲欧美日韩东京热| 91午夜精品亚洲一区二区三区| 3wmmmm亚洲av在线观看| 亚洲欧洲精品一区二区精品久久久 | 免费黄网站久久成人精品| 伦精品一区二区三区| a级毛片在线看网站| 极品人妻少妇av视频| 国产免费视频播放在线视频| 国产精品伦人一区二区| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 啦啦啦在线观看免费高清www| 欧美日韩国产mv在线观看视频| 成年av动漫网址| 亚洲中文av在线| 午夜av观看不卡| 久久人人爽人人爽人人片va| 能在线免费看毛片的网站| 91精品国产九色| 人人妻人人爽人人添夜夜欢视频 | 国产国拍精品亚洲av在线观看| 校园人妻丝袜中文字幕| 黄色视频在线播放观看不卡| 夜夜爽夜夜爽视频| 午夜福利在线观看免费完整高清在| 亚洲欧美成人综合另类久久久| 精品少妇久久久久久888优播| 国产亚洲一区二区精品| kizo精华| 男人舔奶头视频| 激情五月婷婷亚洲| 简卡轻食公司| 免费人成在线观看视频色| 男女免费视频国产| 777米奇影视久久| 简卡轻食公司| 欧美老熟妇乱子伦牲交| 国内少妇人妻偷人精品xxx网站| 亚洲伊人久久精品综合| 我的老师免费观看完整版| 美女国产视频在线观看| 噜噜噜噜噜久久久久久91| 水蜜桃什么品种好| 乱码一卡2卡4卡精品| 亚洲成人av在线免费| 日韩一本色道免费dvd| 亚洲欧洲国产日韩| 黑人高潮一二区| 91精品伊人久久大香线蕉| 特大巨黑吊av在线直播| 国产伦在线观看视频一区| 亚洲真实伦在线观看| a级毛片免费高清观看在线播放| a 毛片基地| 精品一品国产午夜福利视频| 91久久精品电影网| 色哟哟·www| 欧美日韩av久久| 成年女人在线观看亚洲视频| 成人毛片60女人毛片免费| 大片电影免费在线观看免费| 亚洲欧美中文字幕日韩二区| 少妇精品久久久久久久| 精华霜和精华液先用哪个| 日本欧美国产在线视频| 黄色日韩在线| 精品一区在线观看国产| 午夜影院在线不卡| www.色视频.com| a级毛色黄片| 亚洲第一区二区三区不卡| 嫩草影院新地址| 免费黄频网站在线观看国产| 久久精品久久久久久噜噜老黄| 人妻少妇偷人精品九色| 亚洲经典国产精华液单| 男女国产视频网站| 夜夜爽夜夜爽视频| 99久久中文字幕三级久久日本| 韩国av在线不卡| 熟女电影av网| 久久国产亚洲av麻豆专区| av专区在线播放| 亚洲伊人久久精品综合| 三上悠亚av全集在线观看 | 大片免费播放器 马上看| 久久久欧美国产精品| 国产成人91sexporn| 色视频www国产| 国产免费福利视频在线观看| 性色avwww在线观看| 国产精品99久久久久久久久| 欧美另类一区| 免费人成在线观看视频色| 精品国产一区二区久久| 晚上一个人看的免费电影| 永久免费av网站大全| 美女福利国产在线| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| 看非洲黑人一级黄片| 成人美女网站在线观看视频| 男人舔奶头视频| 偷拍熟女少妇极品色| 免费看日本二区| 99精国产麻豆久久婷婷| 男女国产视频网站| 美女视频免费永久观看网站| 午夜免费男女啪啪视频观看| 亚洲精品视频女| 国产男人的电影天堂91| 国内精品宾馆在线| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 欧美少妇被猛烈插入视频| 天堂俺去俺来也www色官网| 在线精品无人区一区二区三| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 久久婷婷青草| 国产精品国产三级专区第一集| 午夜免费鲁丝| av不卡在线播放| 日韩电影二区| 自拍偷自拍亚洲精品老妇| 久久99热这里只频精品6学生| videos熟女内射| 亚洲激情五月婷婷啪啪| 亚洲,一卡二卡三卡| 亚洲不卡免费看| 国产精品一区二区在线观看99| 亚洲欧美成人综合另类久久久| 日韩欧美 国产精品| av免费在线看不卡| 在现免费观看毛片| 亚洲精华国产精华液的使用体验| 一区二区三区精品91| 天堂8中文在线网| 简卡轻食公司| 中文资源天堂在线| 这个男人来自地球电影免费观看 | 99视频精品全部免费 在线| 五月玫瑰六月丁香| 少妇人妻精品综合一区二区| 日本黄色日本黄色录像| 美女国产视频在线观看| 欧美精品亚洲一区二区| 国产伦在线观看视频一区| 国产成人91sexporn| 人妻少妇偷人精品九色| 欧美日本中文国产一区发布| 久久久久久久久大av| 乱系列少妇在线播放| 在线精品无人区一区二区三| 日本vs欧美在线观看视频 | 纵有疾风起免费观看全集完整版| 亚洲内射少妇av| 国产一级毛片在线| 色婷婷久久久亚洲欧美| 欧美 日韩 精品 国产| 欧美最新免费一区二区三区| 一本色道久久久久久精品综合| 亚洲国产精品成人久久小说| 涩涩av久久男人的天堂| 欧美日韩综合久久久久久| 最近最新中文字幕免费大全7| 丰满少妇做爰视频| 亚洲欧美一区二区三区国产| 一级黄片播放器| 18+在线观看网站| 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 妹子高潮喷水视频| 99视频精品全部免费 在线| 成人影院久久| 又爽又黄a免费视频| av网站免费在线观看视频| 天堂8中文在线网| 久久久久久久亚洲中文字幕| 男女啪啪激烈高潮av片| 日日爽夜夜爽网站| 男女无遮挡免费网站观看| 国产 一区精品| 亚洲四区av| 中国美白少妇内射xxxbb| 精品久久久久久电影网| 国产精品99久久99久久久不卡 | 多毛熟女@视频| 少妇的逼好多水| 秋霞在线观看毛片| 免费观看在线日韩| 一级毛片久久久久久久久女| 在线观看人妻少妇| 边亲边吃奶的免费视频| 国产高清有码在线观看视频| 赤兔流量卡办理| 人人妻人人澡人人看| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| 久久ye,这里只有精品| av在线老鸭窝| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 成人毛片a级毛片在线播放| 久久午夜福利片| 不卡视频在线观看欧美| 国产极品粉嫩免费观看在线 | 美女国产视频在线观看| 亚洲人与动物交配视频| 黄色配什么色好看| 精品国产一区二区久久| 人妻少妇偷人精品九色| 久久久国产精品麻豆| 一级片'在线观看视频| 在线观看www视频免费| 亚洲中文av在线| 2018国产大陆天天弄谢| 久久精品夜色国产| 国产在线视频一区二区| 人体艺术视频欧美日本| av在线观看视频网站免费| 亚洲高清免费不卡视频| 男女无遮挡免费网站观看| 一区在线观看完整版| 2021少妇久久久久久久久久久| 久久久精品免费免费高清| 欧美 日韩 精品 国产| 人妻制服诱惑在线中文字幕| 大码成人一级视频| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 亚洲av.av天堂| 亚洲国产色片| 色94色欧美一区二区| 久久午夜综合久久蜜桃| 丝袜喷水一区| 精华霜和精华液先用哪个| 欧美精品亚洲一区二区| 久久国产精品大桥未久av | 欧美成人精品欧美一级黄| 纵有疾风起免费观看全集完整版| 美女福利国产在线| 亚洲精品一二三| 97超视频在线观看视频| 纯流量卡能插随身wifi吗| 蜜臀久久99精品久久宅男| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区 | 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| 国产精品一区二区性色av| 国产亚洲最大av| 99热这里只有是精品50| 99热国产这里只有精品6| 一级毛片aaaaaa免费看小| 极品人妻少妇av视频| 男人爽女人下面视频在线观看| 伦精品一区二区三区| 精品午夜福利在线看| 久久久久久久大尺度免费视频| 国内少妇人妻偷人精品xxx网站| 大片免费播放器 马上看| 在线精品无人区一区二区三| 丰满乱子伦码专区| 乱码一卡2卡4卡精品| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 我的老师免费观看完整版| 91精品伊人久久大香线蕉| 欧美人与善性xxx| a级毛片免费高清观看在线播放| av在线老鸭窝| 日本wwww免费看| 一级av片app| 高清黄色对白视频在线免费看 | 国产精品国产av在线观看| 欧美精品国产亚洲| 精品人妻一区二区三区麻豆| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 老司机影院毛片| 人妻夜夜爽99麻豆av| 日日摸夜夜添夜夜爱| a级片在线免费高清观看视频| 久久久国产一区二区| 久久国产精品男人的天堂亚洲 | 免费看不卡的av| av又黄又爽大尺度在线免费看| 欧美精品高潮呻吟av久久| 桃花免费在线播放| 免费看日本二区| 黄片无遮挡物在线观看| 少妇熟女欧美另类| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说| 日本黄大片高清| 老司机亚洲免费影院| 在线看a的网站| 国产片特级美女逼逼视频| 插逼视频在线观看| 丰满少妇做爰视频| 久久久久国产网址| 日日爽夜夜爽网站| h日本视频在线播放| 久久韩国三级中文字幕| av福利片在线观看| 久久精品久久精品一区二区三区| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 成人亚洲欧美一区二区av| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 777米奇影视久久| 高清在线视频一区二区三区| 日韩伦理黄色片| 国产精品久久久久久精品古装| 一级,二级,三级黄色视频| 在现免费观看毛片| 肉色欧美久久久久久久蜜桃| av卡一久久| 久久久国产精品麻豆| 中文字幕av电影在线播放| 国产成人freesex在线| 久久人人爽av亚洲精品天堂| 久久亚洲国产成人精品v| 久久ye,这里只有精品| 欧美变态另类bdsm刘玥| 多毛熟女@视频| 在线观看免费视频网站a站| 少妇的逼好多水| 精品视频人人做人人爽| 亚洲av福利一区| 观看免费一级毛片| 精品久久国产蜜桃| 伊人久久精品亚洲午夜| 2021少妇久久久久久久久久久| 汤姆久久久久久久影院中文字幕| 蜜桃久久精品国产亚洲av| 国产男人的电影天堂91| 内射极品少妇av片p| 亚洲欧美清纯卡通| 日日啪夜夜撸| 又爽又黄a免费视频| 欧美少妇被猛烈插入视频| 国产精品一区二区三区四区免费观看| 久久国内精品自在自线图片| 日产精品乱码卡一卡2卡三| 国产91av在线免费观看| 国产亚洲91精品色在线| 国产一区二区三区综合在线观看 | 亚洲国产精品一区三区| 黑丝袜美女国产一区| 狂野欧美激情性bbbbbb| 少妇丰满av| 精品视频人人做人人爽| 久久6这里有精品| 日本-黄色视频高清免费观看| 韩国高清视频一区二区三区| 99久久中文字幕三级久久日本| 蜜桃在线观看..| 久久青草综合色| 国产成人精品久久久久久| 另类精品久久| 国产一区亚洲一区在线观看| 国产毛片在线视频| 最后的刺客免费高清国语| 一级,二级,三级黄色视频| 久久久久久久国产电影| 国产亚洲午夜精品一区二区久久| 人妻制服诱惑在线中文字幕| 亚洲国产色片| 最新中文字幕久久久久| 免费人成在线观看视频色| 久久精品久久精品一区二区三区| 高清黄色对白视频在线免费看 | 爱豆传媒免费全集在线观看| 欧美人与善性xxx| 国产精品久久久久成人av| 亚洲真实伦在线观看| 中文在线观看免费www的网站| 久久午夜综合久久蜜桃| 精品国产露脸久久av麻豆| 国产精品国产三级国产专区5o| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 欧美日韩视频精品一区| 久久久久久久亚洲中文字幕| 视频中文字幕在线观看| 我的老师免费观看完整版| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 亚洲中文av在线| 日韩 亚洲 欧美在线| 日韩精品有码人妻一区| 国产欧美日韩精品一区二区| 热re99久久国产66热| 日韩av不卡免费在线播放| 国产在线一区二区三区精| 国产高清国产精品国产三级| 全区人妻精品视频| 国产一级毛片在线| 国产男女内射视频| 色94色欧美一区二区| 一级黄片播放器| 色吧在线观看| 不卡视频在线观看欧美| a 毛片基地| 99久久精品热视频| 国产伦理片在线播放av一区| 热99国产精品久久久久久7| 精品久久久久久久久亚洲| 久久狼人影院| 亚洲高清免费不卡视频| 亚洲精品,欧美精品| 在线观看一区二区三区激情| 日日爽夜夜爽网站| 亚洲激情五月婷婷啪啪| 国产亚洲av片在线观看秒播厂| 18禁在线播放成人免费| 久久99一区二区三区| 99热这里只有精品一区| 国产亚洲最大av| 肉色欧美久久久久久久蜜桃| 欧美日韩亚洲高清精品| av一本久久久久| 欧美日韩综合久久久久久| 亚洲av综合色区一区| 日韩av免费高清视频| 老司机影院毛片| 超碰97精品在线观看| 少妇的逼好多水| 欧美最新免费一区二区三区| 另类精品久久| 国产精品三级大全| 99视频精品全部免费 在线| 男人狂女人下面高潮的视频| 午夜久久久在线观看| 看免费成人av毛片| 欧美xxxx性猛交bbbb| 久久久久久久久大av| 伊人久久精品亚洲午夜| 狂野欧美白嫩少妇大欣赏| 中国三级夫妇交换| 国产在线免费精品| 久久久久国产精品人妻一区二区| 日日撸夜夜添| 99re6热这里在线精品视频| 熟女人妻精品中文字幕| 99久久中文字幕三级久久日本| 久久鲁丝午夜福利片| 秋霞在线观看毛片| 亚洲国产欧美在线一区| 人人妻人人澡人人爽人人夜夜| 日本黄色片子视频| 国产男女内射视频| 国产熟女欧美一区二区| 中文字幕免费在线视频6| 久久ye,这里只有精品|