• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-based Fault Tolerant Control for Affine Nonlinear Systems Through Particle Swarm Optimized Neural Networks

    2020-08-05 09:42:34HaoweiLinBoZhaoDerongLiuandCesareAlippi
    IEEE/CAA Journal of Automatica Sinica 2020年4期

    Haowei Lin,Bo Zhao,,Derong Liu,,and Cesare Alippi,

    Abstract—In this paper,a data-based fault tolerant control(FTC)scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First,a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network (PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then,a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally,simulations are provided to demonstrate the effectiveness of the developed method.

    I.Introduction

    MODERN complex control systems always require optimal control but ensuring closed-loop stability is a difficult task,as accurate dynamics are hardly modelled.Traditional optimal control theory built upon dynamic programming and Pontryagin’s maximum principle finds the optimal objective by optimizing self-defined cost functions.However,those methodologies operate off-line and require availability of equations describing the system in advance[1].Adaptive dynamic programming (ADP)[2]–[5]is an approximate optimal control approach emerging in the field of intelligent control.Similar to reinforcement learning(RL)[6]–[9],ADP uses two main algorithms named policy iteration(PI)[10],[11]and value iteration(VI)[12]to achieve policy evaluation and policy improvement iteratively.ADP aims at adaptively learning the optimal control strategy by constructing a critic neural network(NN)approximating the solution of the Hamilton-Jacobi-Bellman equation(HJBE)[13].Based on the NN approximator,the optimal control is obtained forward-in-time and the`curse of dimensionality' is conquered[14].ADP is a well-known advanced and effective method for optimal control in both the theoretical research and real-world applications[15]–[18].Extensive efforts have been dedicated to developing ADP approaches for nonlinear systems.

    In real systems,it is unavoidable to experience faults in actuators,sensors,or other system parts[19],[20].In particular,actuator faults would cause severe damages as faults cannot be accommodated by a pre-designed controller.In order to solve this problem and integrate fault tolerance ability at actuator level,robust control strategies should be considered at the control design phase[21].

    There are some ADP-based control algorithms that consider both optimization and fault tolerant abilities.In[22],a fault tolerant control(FTC)algorithm based on PI was developed for nonlinear systems.The solution of the HJBE was achieved by using the NN approximation.In order to solve the actuator fault problem,a fault compensator,which did not require fault detection and isolation abilities,was designed,and the closedloop system with actuator faults was guaranteed to be stable.Zhaoet al.[23]developed an ADP-based actuator FTC scheme by designing a fault observer for nonlinear systems.The key idea is that the FTC problem was regarded as an optimization problem by considering the fault estimate in the design of the loss function.Wuet al.[24]considered the actuator failure in the tracking control task and developed an optimal adaptive compensation control based on the estimation of actuator failure coefficients.These studies require the availability of system equations.The topic on FTC for discrete-time systems with unknown dynamics has attracted considerable attention[25]–[27].The RL-based adaptive tracking FTC was studied for M IMO(multi-input and multi-output)discrete-time systems in[25]and[26].Based on the actor-critic NN structure,systems affected by abrupt faults at actuator level could be maintained stable.The proposed strategy[25]required a lower computational load and fewer learning parameters as it estimated the Euclidean norm of unknown weights of NNs instead of updating the NN weights directly. A model-free FTC strategy was proposed in[27]for single-input single-output systems.The original system is transformed into a model-free data form.By designing an NN approximator to learn the sensor fault, the FTC strategy is reconstructed based on the optimality criterion.For ADP-based FTC of unknown continuous-time(CT)systems,Zhanget al.[28]proposed a fuzzy FTC strategy based on RL for systems whose dynamics was partially unknown.They designed a new performance index function which reflects four types of actuator failures.Then,based on the constructed fuzzy-augmented dynamics, the control policy which achieved the tracking goal and stabilized the closed-loop system under actuator failures was obtained.However,this methodology is applicable only to partially unknown fuzzy systems.We finally comment that there are few ADP-based FTC schemes for completely unknown CT nonlinear systems.

    As we know,the gradient-based critic NN(GDCNN)methods are widely used to solve HJBEs in order to achieve approximate optima.To train the critic NN with the gradientbased(GD)learning algorithm,one starts with random initial weights and updates them by moving along the direction of gradient descent.It means that the GD algorithm provides a tractable way for local hill climbing on the landscape of the critic NN weight parameter space.However,when initialized at a low hill in the parameter space,the GD algorithm may be trapped by unsatisfactory local optimization, resulting in inefficient HJBE solutions.One may avoid this problem by training the critic NN more than one session or applying specific prior knowledge to choose a good initial parameter.In this paper,we propose a particle swarm optimization(PSO)method to solve this problem.

    PSO is a stochastic optimization algorithm where each particle has a virtual position that represents a possible solution to the optimization problem[29]–[31].In the training phase,a set of particles are initialized and evolve to search the optimal solution associated with the particle characterized by the best fitness value.PSO has multiple initial positions and relies on the global heuristic search principle,which increases the probability to avoid and even jump out of local optimums.Recently,a better performance for NN based methods has been achieved by integrating PSO into NNs.Martinet al.[32]developed the PSO-trained NN to solve the electrical impedance tomography problem.It was shown that the PSOtrained NN converged faster compared to the GD algorithm.Daset al.[33]considered PSO-trained NNs in channel equalization problems.The proposed equalizer performs better than other NN-based equalizers in noisy conditions.Chanet al.[34] presented a short-term traffic flow forecast algorithm based on PSO and artificial NNs,which required simple NNs and contained memory.

    Motivated by the above analysis,this paper develops an ADP approach based on PSO and NNs to achieve actuator fault tolerance of unknown CT affine nonlinear systems.The main contributions are:

    1)The proposed data-based FTC algorithm deals with completely unknown CT nonlinear systems, rather than known or partially unknown systems(as in[23]and[28]).Moreover,the dynamics of the unknown systems are approximated by the PSO-trained nonlinear NN identifier based on available measurements,and hence making the method effective in real applications.

    2)The HJBE is solved through the particle swarm optimized critic NN(PSOCNN)instead of the general GDCNN;in this way the HJBE is solved with a high successful rate.

    3)The presented data-based FTC strategy provides an online fault tolerant control which is shown to be optimal.

    The rest of this paper is organized as follows.In Section II,the problem statement for faulty nonlinear CT systems is presented.In Section III,an NN identifier is constructed to estimate the system dynamics.Then, the data-based FTC through the PSONNs is developed based on the adaptive fault estimation.In Section IV,two simulation examples are provided to demonstrate the effectiveness of the proposed method.Finally,Section V concludes the present paper.

    II.Problem Statement

    III.Data-based Fault Tolerant Control Methodology Based on PSONNs

    V.Conclusions

    A data-based FTC algorithm exploiting PSONNs is developed for unknown CT affine nonlinear systems characterized by actuator faults.By constructing a PSOtrained NN identifier,the unknown system dynamics are obtained.Then,the PSOCNN is proposed to approximate the solution of the HJBE for the optimal control.In order to tolerate actuator faults in unknown nonlinear systems,the data-based FTC law is derived by an adaptive compensator.Simulation results show that the proposed data-based FTC algorithm can guarantee the stability of the closed-loop systems with actuator faults.Furthermore,the PSOCNN is better in producing a good solution for the HJBE than that of GDCNN.To the best of our knowledge,the unknown system should be modeled first to estimate the system states and the control matrix before constructing the FTC scheme,which means that the NN identifier is trained off-line and the proposed control scheme cannot be used for non-affine systems.In future work,we will focus on developing an online PSOCNN-based FTC scheme for unknown non-affine nonlinear systems.

    大香蕉97超碰在线| 国产成人精品久久久久久| 亚洲精品自拍成人| 69人妻影院| 亚洲精品成人久久久久久| 插逼视频在线观看| 亚洲国产精品国产精品| 国产精品蜜桃在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久人人爽人人片av| 乱系列少妇在线播放| 亚洲内射少妇av| 麻豆国产97在线/欧美| 久久久久久久久久黄片| 亚洲av成人av| 18禁在线播放成人免费| 淫秽高清视频在线观看| 99在线人妻在线中文字幕| 精品国产三级普通话版| 亚洲国产成人一精品久久久| 色播亚洲综合网| 国产精品精品国产色婷婷| 亚洲自偷自拍三级| av免费在线看不卡| 国产精品久久久久久精品电影| 亚洲成人精品中文字幕电影| 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片| 超碰97精品在线观看| 99热这里只有是精品50| 大香蕉久久网| av国产免费在线观看| 丰满乱子伦码专区| 能在线免费观看的黄片| 中文在线观看免费www的网站| 国产成人午夜福利电影在线观看| 日本-黄色视频高清免费观看| 只有这里有精品99| 亚洲最大成人av| 成人av在线播放网站| 99久久人妻综合| www.av在线官网国产| 91午夜精品亚洲一区二区三区| 亚洲av.av天堂| 天美传媒精品一区二区| 成人午夜高清在线视频| 一夜夜www| 嫩草影院新地址| 国产视频内射| 中文字幕av在线有码专区| 亚洲中文字幕日韩| 亚洲国产精品专区欧美| 免费观看性生交大片5| 免费黄色在线免费观看| 国产成人精品一,二区| 亚洲精华国产精华液的使用体验| 三级国产精品欧美在线观看| 美女国产视频在线观看| 国产黄片视频在线免费观看| 国产亚洲一区二区精品| 夜夜爽夜夜爽视频| 亚洲性久久影院| 亚洲最大成人av| 久久欧美精品欧美久久欧美| 91精品一卡2卡3卡4卡| 十八禁国产超污无遮挡网站| 成人特级av手机在线观看| 村上凉子中文字幕在线| av在线观看视频网站免费| 身体一侧抽搐| av在线观看视频网站免费| 日本色播在线视频| 床上黄色一级片| 成人午夜高清在线视频| 六月丁香七月| 国产乱来视频区| 国产免费又黄又爽又色| 国产精品99久久久久久久久| 国产黄片美女视频| 日产精品乱码卡一卡2卡三| 深夜a级毛片| 欧美精品国产亚洲| 观看美女的网站| 18禁裸乳无遮挡免费网站照片| 欧美成人一区二区免费高清观看| 99久久无色码亚洲精品果冻| 青青草视频在线视频观看| 淫秽高清视频在线观看| 男女边吃奶边做爰视频| 有码 亚洲区| 成人漫画全彩无遮挡| 嫩草影院精品99| 国产亚洲最大av| 在线观看美女被高潮喷水网站| 舔av片在线| 成人特级av手机在线观看| 免费不卡的大黄色大毛片视频在线观看 | 如何舔出高潮| 久久久精品94久久精品| 亚洲18禁久久av| 久久久精品欧美日韩精品| 97热精品久久久久久| 少妇猛男粗大的猛烈进出视频 | 国产视频内射| 亚洲人与动物交配视频| 春色校园在线视频观看| 久久久国产成人免费| 一个人观看的视频www高清免费观看| 欧美精品国产亚洲| 精品久久久久久久久av| 日韩三级伦理在线观看| 色哟哟·www| 一级二级三级毛片免费看| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩东京热| 男人舔奶头视频| 国产亚洲最大av| 久久人人爽人人片av| 国产午夜精品一二区理论片| 久久欧美精品欧美久久欧美| 成年女人永久免费观看视频| 欧美xxxx性猛交bbbb| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 国产一区亚洲一区在线观看| 亚洲欧美日韩高清专用| 亚洲在线观看片| 欧美精品一区二区大全| 99在线人妻在线中文字幕| av女优亚洲男人天堂| 青春草视频在线免费观看| 国产免费一级a男人的天堂| 国产高清视频在线观看网站| 2021少妇久久久久久久久久久| 乱码一卡2卡4卡精品| 白带黄色成豆腐渣| 色吧在线观看| 熟女人妻精品中文字幕| 亚洲人成网站在线观看播放| 蜜臀久久99精品久久宅男| 淫秽高清视频在线观看| 成年免费大片在线观看| 麻豆成人av视频| 看非洲黑人一级黄片| 欧美激情在线99| 天堂影院成人在线观看| 日本黄色视频三级网站网址| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| 欧美xxxx黑人xx丫x性爽| 乱码一卡2卡4卡精品| 天堂中文最新版在线下载 | 高清午夜精品一区二区三区| 国产精品一区二区三区四区久久| 免费大片18禁| 亚洲欧美清纯卡通| 欧美性猛交黑人性爽| 观看美女的网站| 能在线免费观看的黄片| 18禁动态无遮挡网站| 日本一本二区三区精品| 国产精品不卡视频一区二区| 国产免费男女视频| 美女脱内裤让男人舔精品视频| av天堂中文字幕网| 亚洲精品亚洲一区二区| 中文欧美无线码| 99热网站在线观看| 最近视频中文字幕2019在线8| 两个人视频免费观看高清| 一区二区三区免费毛片| 亚洲精品国产av成人精品| 成人性生交大片免费视频hd| 国产老妇伦熟女老妇高清| 99久久成人亚洲精品观看| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 成人无遮挡网站| 秋霞伦理黄片| 午夜a级毛片| 国产片特级美女逼逼视频| 免费一级毛片在线播放高清视频| 日韩欧美精品v在线| av视频在线观看入口| 尤物成人国产欧美一区二区三区| 精品一区二区三区人妻视频| 最近视频中文字幕2019在线8| 国产单亲对白刺激| 人体艺术视频欧美日本| 成年女人永久免费观看视频| 亚洲一区高清亚洲精品| 不卡视频在线观看欧美| 亚洲国产精品专区欧美| 中文乱码字字幕精品一区二区三区 | 一夜夜www| 亚洲国产高清在线一区二区三| 日韩,欧美,国产一区二区三区 | 国产欧美另类精品又又久久亚洲欧美| 天美传媒精品一区二区| 日韩 亚洲 欧美在线| 国产视频内射| 99九九线精品视频在线观看视频| 久久精品影院6| 亚洲高清免费不卡视频| 男人狂女人下面高潮的视频| 97超碰精品成人国产| 国产精品国产三级专区第一集| 精品久久国产蜜桃| 简卡轻食公司| 国产激情偷乱视频一区二区| av在线蜜桃| 国产精品爽爽va在线观看网站| 午夜激情欧美在线| 日韩在线高清观看一区二区三区| 男人舔奶头视频| 久久久精品94久久精品| 免费搜索国产男女视频| 非洲黑人性xxxx精品又粗又长| 午夜视频国产福利| 国产极品天堂在线| 在线观看美女被高潮喷水网站| 久久精品夜色国产| 欧美高清成人免费视频www| 小说图片视频综合网站| 久久精品久久久久久噜噜老黄 | a级毛色黄片| 青春草视频在线免费观看| 看免费成人av毛片| av福利片在线观看| 亚洲精品日韩在线中文字幕| 2021天堂中文幕一二区在线观| 青春草视频在线免费观看| 伊人久久精品亚洲午夜| 亚洲精品aⅴ在线观看| 日本午夜av视频| 国产私拍福利视频在线观看| 一夜夜www| 久久久久性生活片| videos熟女内射| 美女脱内裤让男人舔精品视频| 久久久久久伊人网av| 国产精品久久久久久av不卡| 18禁在线播放成人免费| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜爱| 国产精品永久免费网站| 国产精品国产高清国产av| 日韩中字成人| 亚洲国产精品成人综合色| 成年av动漫网址| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 自拍偷自拍亚洲精品老妇| 美女国产视频在线观看| 美女xxoo啪啪120秒动态图| 午夜精品在线福利| 国产乱人偷精品视频| 欧美一级a爱片免费观看看| 日本黄色视频三级网站网址| 爱豆传媒免费全集在线观看| 一区二区三区免费毛片| 婷婷色av中文字幕| 亚洲最大成人中文| 少妇被粗大猛烈的视频| 观看美女的网站| 亚洲美女搞黄在线观看| 亚洲经典国产精华液单| 欧美日韩精品成人综合77777| 国产精品爽爽va在线观看网站| 在现免费观看毛片| 亚洲美女搞黄在线观看| 在线a可以看的网站| www.色视频.com| 国产真实乱freesex| 午夜免费男女啪啪视频观看| 一级毛片aaaaaa免费看小| 国内少妇人妻偷人精品xxx网站| 少妇的逼好多水| 精品无人区乱码1区二区| 尾随美女入室| 在线观看一区二区三区| 搡老妇女老女人老熟妇| 久久草成人影院| 国产高清不卡午夜福利| 免费电影在线观看免费观看| 国产亚洲精品久久久com| 天堂网av新在线| 男人舔奶头视频| 日韩av在线大香蕉| 级片在线观看| 永久网站在线| 亚洲av成人av| 日本欧美国产在线视频| 亚洲天堂国产精品一区在线| 国产精品一区二区在线观看99 | 免费观看精品视频网站| 国产极品精品免费视频能看的| 最近最新中文字幕免费大全7| av女优亚洲男人天堂| av线在线观看网站| 精品人妻偷拍中文字幕| 淫秽高清视频在线观看| 女人被狂操c到高潮| 亚洲欧美日韩东京热| 日韩精品有码人妻一区| 搡老妇女老女人老熟妇| 一级黄片播放器| 一级毛片aaaaaa免费看小| 久久精品人妻少妇| 综合色丁香网| 久久久a久久爽久久v久久| av在线蜜桃| 亚洲内射少妇av| 麻豆av噜噜一区二区三区| 久久精品熟女亚洲av麻豆精品 | 黄色欧美视频在线观看| 国产一级毛片七仙女欲春2| 男女边吃奶边做爰视频| 非洲黑人性xxxx精品又粗又长| 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 亚洲18禁久久av| 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | 久久婷婷人人爽人人干人人爱| videossex国产| 亚洲av中文字字幕乱码综合| 国产精品福利在线免费观看| 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| av在线蜜桃| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| 色网站视频免费| 有码 亚洲区| 久热久热在线精品观看| 黄色配什么色好看| 欧美精品国产亚洲| 成人鲁丝片一二三区免费| 黄色日韩在线| 国产欧美另类精品又又久久亚洲欧美| 国产精品一二三区在线看| 99久久九九国产精品国产免费| av国产免费在线观看| 少妇猛男粗大的猛烈进出视频 | 久久这里只有精品中国| 欧美性感艳星| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 国产一区二区在线av高清观看| 人妻少妇偷人精品九色| 国产成人午夜福利电影在线观看| 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 人体艺术视频欧美日本| 熟女电影av网| 国产精品三级大全| 国产精品久久久久久久久免| 亚洲经典国产精华液单| 国产一区亚洲一区在线观看| 亚洲人与动物交配视频| 中国美白少妇内射xxxbb| 欧美日韩在线观看h| av在线播放精品| 99热精品在线国产| 国内揄拍国产精品人妻在线| videossex国产| 亚洲人成网站在线观看播放| 少妇丰满av| 最近2019中文字幕mv第一页| 美女被艹到高潮喷水动态| 在线观看av片永久免费下载| 淫秽高清视频在线观看| 老司机福利观看| 在线天堂最新版资源| 国产精品三级大全| 亚洲天堂国产精品一区在线| 中文天堂在线官网| 欧美zozozo另类| 精品国内亚洲2022精品成人| 男人舔奶头视频| 午夜老司机福利剧场| 成人一区二区视频在线观看| 永久免费av网站大全| 精品久久久久久久久av| 日本黄色片子视频| 亚洲欧美精品自产自拍| 亚洲最大成人av| 尤物成人国产欧美一区二区三区| 久久久亚洲精品成人影院| 久久久久久久午夜电影| 1024手机看黄色片| 天堂网av新在线| 五月伊人婷婷丁香| 一本久久精品| 91狼人影院| 哪个播放器可以免费观看大片| 国产亚洲最大av| av线在线观看网站| av福利片在线观看| 亚洲av成人精品一二三区| av女优亚洲男人天堂| 精品久久久久久久人妻蜜臀av| 国产真实伦视频高清在线观看| 一区二区三区免费毛片| 一级毛片aaaaaa免费看小| 少妇人妻一区二区三区视频| 国产免费视频播放在线视频 | 久久久久久久亚洲中文字幕| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久 | 精品一区二区三区人妻视频| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 亚洲av成人精品一二三区| 中文字幕制服av| 日韩精品有码人妻一区| 中文字幕制服av| 日本wwww免费看| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 日本三级黄在线观看| 男人舔女人下体高潮全视频| 特大巨黑吊av在线直播| 久久99蜜桃精品久久| 久久人人爽人人片av| 久久欧美精品欧美久久欧美| 99热这里只有是精品在线观看| 亚洲激情五月婷婷啪啪| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 色视频www国产| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 国产 一区精品| 亚洲国产成人一精品久久久| 亚洲欧洲国产日韩| 丝袜喷水一区| 国国产精品蜜臀av免费| 人人妻人人看人人澡| 国产视频首页在线观看| 亚洲性久久影院| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| 日本一二三区视频观看| 国产免费一级a男人的天堂| 欧美色视频一区免费| 国产高潮美女av| 国产精品国产三级国产专区5o | 中文字幕亚洲精品专区| 久久久久精品久久久久真实原创| av黄色大香蕉| av又黄又爽大尺度在线免费看 | 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 在线观看一区二区三区| 久久精品久久久久久久性| 亚洲欧美精品自产自拍| 国产精品日韩av在线免费观看| 日本免费一区二区三区高清不卡| 床上黄色一级片| 成年av动漫网址| 久久热精品热| 国产在视频线精品| 久久久久久久久久成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人精品一,二区| 看非洲黑人一级黄片| 少妇人妻精品综合一区二区| 高清午夜精品一区二区三区| 最近中文字幕高清免费大全6| 亚洲av中文字字幕乱码综合| 国产精品一及| 久久精品国产亚洲av天美| 波多野结衣高清无吗| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 国产淫语在线视频| 免费电影在线观看免费观看| 老司机福利观看| 亚洲国产精品专区欧美| 国产免费又黄又爽又色| 亚洲精品国产成人久久av| 亚洲性久久影院| 好男人视频免费观看在线| 人体艺术视频欧美日本| 麻豆成人午夜福利视频| 亚洲真实伦在线观看| 久热久热在线精品观看| 色综合亚洲欧美另类图片| 国产又黄又爽又无遮挡在线| 一边亲一边摸免费视频| 久久久欧美国产精品| 欧美性猛交╳xxx乱大交人| 免费看光身美女| 午夜免费激情av| 日韩精品青青久久久久久| 免费看av在线观看网站| 男女下面进入的视频免费午夜| 中文字幕亚洲精品专区| av免费在线看不卡| 亚洲精华国产精华液的使用体验| 一个人免费在线观看电影| 国产精品一区二区三区四区免费观看| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 99久久无色码亚洲精品果冻| 你懂的网址亚洲精品在线观看 | av在线观看视频网站免费| 如何舔出高潮| av又黄又爽大尺度在线免费看 | 亚洲精品色激情综合| a级一级毛片免费在线观看| 国产高清国产精品国产三级 | 久久午夜福利片| 欧美一区二区精品小视频在线| 三级国产精品片| 精品久久久久久电影网 | 搡老妇女老女人老熟妇| 色网站视频免费| 中文字幕精品亚洲无线码一区| 久久99蜜桃精品久久| 欧美高清性xxxxhd video| 久久久久久久久大av| 啦啦啦韩国在线观看视频| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 91精品伊人久久大香线蕉| 亚洲国产高清在线一区二区三| 国产精品一区www在线观看| 只有这里有精品99| 国产亚洲av片在线观看秒播厂 | 综合色丁香网| 国产午夜福利久久久久久| 一级黄片播放器| 亚洲伊人久久精品综合 | 高清日韩中文字幕在线| 国产亚洲av片在线观看秒播厂 | 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 国产午夜福利久久久久久| 禁无遮挡网站| av在线蜜桃| 成人性生交大片免费视频hd| 午夜福利网站1000一区二区三区| 十八禁国产超污无遮挡网站| 我的老师免费观看完整版| 91精品伊人久久大香线蕉| 免费看光身美女| 一本久久精品| 又粗又爽又猛毛片免费看| 亚洲最大成人手机在线| 一个人看的www免费观看视频| 乱人视频在线观看| 麻豆一二三区av精品| 亚洲av免费在线观看| 午夜久久久久精精品| 精品国产三级普通话版| 免费看av在线观看网站| 久久99精品国语久久久| 精品无人区乱码1区二区| 久久久久久九九精品二区国产| 亚洲欧美日韩高清专用| 国产熟女欧美一区二区| 男女视频在线观看网站免费| 国内精品一区二区在线观看| 乱人视频在线观看| 国产精品乱码一区二三区的特点| 18禁在线播放成人免费| 国产亚洲精品av在线| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 亚洲内射少妇av| 国产午夜精品一二区理论片| 久久久精品94久久精品| 精品久久久久久久人妻蜜臀av| 九色成人免费人妻av| 国产淫语在线视频| 国产高清国产精品国产三级 | 天堂影院成人在线观看| 日韩中字成人| 久久精品国产99精品国产亚洲性色| 日韩精品青青久久久久久| 国产老妇伦熟女老妇高清| 天堂中文最新版在线下载 | 黄色日韩在线| videossex国产| 身体一侧抽搐| 午夜激情欧美在线| 久久99蜜桃精品久久| 亚洲欧美日韩高清专用| 成人毛片60女人毛片免费| 男人和女人高潮做爰伦理| 日本黄大片高清| 一级黄片播放器| 精品久久久久久久久亚洲| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 久久精品国产鲁丝片午夜精品| 亚洲国产精品专区欧美| 日本一本二区三区精品| 国产黄a三级三级三级人| 黄色一级大片看看| 非洲黑人性xxxx精品又粗又长| 菩萨蛮人人尽说江南好唐韦庄 | 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品合色在线| 简卡轻食公司| 高清日韩中文字幕在线| 91狼人影院|