• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Iterative Pose Estimation Algorithm Based on Epipolar Geometry With Application to Multi-Target Tracking

    2020-08-05 09:40:22JacobWhiteandRandalBeard
    IEEE/CAA Journal of Automatica Sinica 2020年4期

    Jacob H.White and Randal W.Beard,

    Abstract—This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence.State-of-the-art algorithms for calculating the relative pose between two images use matching features to estimate the essential matrix.The essential matrix is then decomposed into the relative rotation and normalized translation between frames.To be robust to noise and feature match outliers, these methods generate a large number of essential matrix hypotheses from randomly selected minimal subsets of feature pairs,and then score these hypotheses on all feature pairs. Alternatively, the algorithm introduced in this paper calculates relative pose hypotheses by directly optimizing the rotation and normalized translation between frames, rather than calculating the essential matrix and then performing the decomposition. The resulting algorithm improves computation time by an order of magnitude. If an inertial measurement unit(IMU) is available, it is used to seed the optimizer,and in addition, we reuse the best hypothesis at each iteration to seed the optimizer thereby reducing the number of relative pose hypotheses that must be generated and scored.These advantages greatly speed up performance and enable the algorithm to run in real-time on low cost embedded hardware. We show application of our algorithm to visual multi-target tracking(MTT) in the presence of parallax and demonstrate its real-time performance on a 640× 480 video sequence captured on a UAV. Video results are available at https://youtu.be/HhK-p2hXNnU.

    I.Introduction

    ESTIMATING camera motion from a video sequence has many applications in robotics including target tracking,visual odometry,and 3D scene reconstruction.These applications often require on-board processing of the video sequence in real-time and thereby impose size,weight,and power (SWAP)constraints on the computing platform.

    One method to estimate motion from a video sequence is to calculate the essential matrix between consecutive frames.The essential matrix relates the homogeneous image coordinates between frames using the epipolar constraint.After the essential matrix has been determined,it can be decomposed into a rotation and a normalized translation to determine the relative motion of the camera between frames.In order to be robust to noise and feature mismatches,the essential matrix is typically estimated by generating a large number of hypotheses from five-point minimum subsets of matching features,and selecting the best hypothesis using either random sample consensus(RANSAC)[1]or least median of squares(LMedS)[2].When using RANSAC,the hypotheses are scored by counting the number of inlier points from the entire set.When using LMedS,the hypotheses are scored by calculating the median error.

    State of the art methods calculate essential matrix hypotheses directly from each five-point minimum subset.One of the best known methods is Nister’s algorithm[3].Nister showed that for five matching points,there are potentially ten essential matrices that satisfy the constraints,each corresponding to a real root of a tenth-order polynomial generated from the data.There are a many open-source implementation of Nister’s five-point algorithm including OpenCV’s findEssentialMat function[4].However,constructing,solving,and extracting the essential matrix from this tenth-order polynomial is complex and can be computationally expensive.Furthermore,since each minimum subset produces up to ten hypotheses,it can be time consuming to score them.

    As an alternative to directly calculating essential matrix solutions,some authors[5]–[9]propose solving for the essential matrix using non-linear optimization algorithms such as Gauss-New ton(GN)and Levenberg-Marquardt(LM).Since the essential matrix has nine entries but only five degrees of freedom,the optimization is performed on the five dimensional essential matrix manifold.There are a number of ways to define the essential matrix manifold.Some authors define the manifold using a rotation and translation unit vector, which are elements ofSO(3) andS2,respectively[5],[6].Others define the manifold using two elements ofSO(3)[8],[9].

    A third method of optimizing on a manifold is described in[7].This approach called LM Basis calculates the four essential matrix basis vectors in the nullspace of the essential matrix equation using SVD.The four coefficients to these matrices are solved for on theS3manifold.In contrast to the previously described methods which operate on fivedimensional manifolds,this method uses a three-dimensional manifold.

    During each iteration of the optimization algorithm, the optimizer step is solved for in terms of the three or five degrees of freedom along the manifold.The computational requirements of the resulting scheme are significantly less than Nister’s five point algorithm.However,one weakness of optimization-based solvers is that they only find one of the ten possible essential matrices at a time.Finding all solutions requires additional optimization runs with different initialization points.The optimization method is also sensitive to initial conditions,which can cause the optimizer to fail to produce a valid solution.For example,GN may diverge if the initial guess is too far from the true solution.LM can be used to prevent increases in the cost function, but still may fail to converge.Because of the need to run the optimizer multiple times from different initial conditions,these existing optimization-based solvers might not necessarily be faster than the direct essential matrix solvers if the same level of accuracy is desired.However, not all of the ten possible solutions are needed in order achieve comparable accuracy to direct essential matrix solvers if the best solution can be found the first time.

    After the essential matrix is found,it must then be decomposed into a rotation and normalized translation.Given an essential matrix, there are four possible rotation-translation pairs[10].The correct rotation-translation pair is typically determined using the Cheirality check that ensures that matching features are in front of both cameras.However, the Cheirality check is sensitive to noise in the image and frequently returns the wrong decomposition.

    The main contribution in this paper is a novel optimizationbased algorithm that directly solves for the relative pose using the epipolar constraint in the cost function.If an inertial measurement unit(IMU)is available, then it is used to seed the optimization algorithm at the next time step.When an IMU is not available,since the rotation and translation between consecutive video frames is similar to nearby frames,we use the relative pose estimate from the previous time step to initialize the optimization at the current time step. At each iteration, we use the current best hypothesis to seed the LM algorithm.

    We show that this approach significantly reduces the number of hypotheses that must be generated and scored to estimate the pose, thus allowing real-time execution of the algorithm on a Jetson TX2 processor.

    The remainder of the paper is organized as follows.The problem is formally stated in Section II.The new pose estimation algorithm is developed in Section III.Application of the algorithm to target tracking in the presence of parallax is described in Section IV.Simulation and flight results on a quadrotor UAV are presented in Section V,and conclusions are given in section VI.

    II.Problem Description

    III.Iterative Pose Estimation Algorithm

    IV.Motion Detection and Tracking in the Presence of Parallax

    One application of relative pose estimation is motion detection and tracking in the presence of parallax.Motion detection is a valuable source of information in target tracking applications.It can be used to track objects without any prior knowledge about their appearance,in contrast to many trackers that are designed to track specific classes of objects.

    There are many successful image-based background subtraction techniques in the literature that work on stationary cameras.In order for image differencing techniques to work on a moving camera,the images must first be aligned using a homography.While this works well for planar scenes,if there is parallax,artifacts will appear in the difference image.If the parallax is small enough in comparison to the movement of objects in the scene,the effects of parallax can be reduced using simple morphological operations and gradient suppression [17].

    In the presence of strong parallax, however,a better motion model that accounts for depth variation must be used.There are several methods in the literature that use a geometric model to describe the motion of tracked points in the scene over time.For example,[18] uses orthographic projections to segment moving objects,which works well if the camera is far from the scene or has a narrow field of view.Another approach maintains an affinity matrix and uses principal component analysis to segment moving objects[19].Another approach uses multiple-frame geometric constraints[20],[21].However,all of these methods can be computationally prohibitive.In contrast,the technique proposed in this paper exploits the two-frame epipolar constraint and is therefore computationally simple,enabling real-time performance.

    A. Motion Detection Algorithm

    Given two consecutive frames,with point correspondences detected in each frame,the objective is to determine which points are from stationary objects and which are from moving objects.In this section we assume that the relative pose between cameras()has been calculated )using Algorithm 2.The goal is to design a detector ?which returns1 if the feature pairis sourced from a moving object and 0 if it is sourced from a stationary background object.The output of the motion detector is used as an input to a tracking algorithm that produces target tracks as described in Section IV-B.

    The essential matrix relates points in one image to the other image with the epipolar constraint.In other words, the essential matrix maps a point in one image to a line in the other image.The location where the point in the other image appears along this line depends on the feature’s depth to the camera.As the camera translates,points that are closer to the camera will appear to move more than the points that are far away.This effect is known as parallax.

    There are two degrees of freedom for the apparent motion of each point in the image plane.One of these degrees of freedom can be explained by the epipolar constraint if the real-world point is stationary.However,motion along this degree of freedom can also be explained by object motion in the world frame.Hence,the source of any movement along this degree of freedom is ambiguous without additional information.The second degree of freedom for apparent motion of points in the image plane is perpendicular to the epipolar constraint.Thus,the only possible source of motion along this degree of freedom is movement in the real-world frame.

    To stream line the notation,we will drop theisubscript in the following discussion.The epipolar line in frame Fk2corresponding to the pointpk1is given by

    V.Results

    The performance of the pose estimation algorithm will be demonstrated in simulation and with real flight tests.In the simulation study outlined in Section V-A we know the true pose and so we will be able to assess the accuracy of pose estimation.In the flight test outlined in Section V-B,we apply pose estimation to motion detection and tracking as described in Section IV.

    Fig.3.Screenshot of the holodeck video sequence.

    The error over time for the OpenCV Nister/LMedS polynomial solver[4],LM Basis[7],and Algorithm 2 are shown in Fig.4.A ll three algorithms give low error for the UAV trajectory. Notice how the rotation error seems to be proportional to the total rotation,while the translation error becomes very large as the true translation approaches zero.

    Fig.4.Incremental rotation and translation error over entire video sequence.True incremental translation and rotation are also shown.

    In order to provide a fair comparison of initialization schemes for Algorithm 2 with the OpenCV five-point polynomial solver,the IMU was not used in this section for initialization.Alternatively we compare random initialization,where bothandare selected randomly,random recursive initialization,where the first LM optimization at each time step is initialized randomly,but subsequent LM optimizations at that time step use the best pose hypothesis prior,whereis the best pose from the previous time step,and prior recursive,where the first LM optimization at each time step is the best pose from the previous time step, but subsequent LM optimizations at that time step use the best pose hypothesis.All results use LMedS for outlier rejection.The LM optimization is repeated 100 times with five matching features at each iteration.The mean error across the entire video sequence is plotted in Fig.5.

    Fig.5.Comparison of LM seeding methods.

    This result shows the importance of initializing the optimizer with a prior.The random initialization method performs the worst out of all four methods,while initializing the optimizer with a prior from the previous time step or the best LMedS hypothesis so far from the current time step significantly reduces the error.IMU prediction will further improve these results. After 100 iterations,the LMedS error for the initialization methods that use prior information is comparable to the OpenCV five-point polynomial solver,despite the fact that only one hypothesis is generated per subset instead of an average of about four hypotheses.LM Basis also generates hypotheses from random seeds, resulting in higher error than methods that initialize from a prior. Note that while LM Basis generates up to 10 hypotheses per subset,it removes duplicates and hypotheses that do not appear to converge,resulting in an average of only 1.82 hypotheses per subset.Dropping these hypotheses early may increase the error based on iteration number, but results in a lower error when compared against time.

    Fig.6 shows the error of Algorithm 2 compared to the OpenCV 5-point algorithm, but with thex-axis changed to be time instead of number of iterations.When under a time constraint,Algorithm 2 significantly outperforms the OpenCV solver [4]and LM Basis[7].

    Fig.6.Sampson error over time.

    Fig.7.Average rotation and translation errors for RANSAC and LMedS.

    For outlier rejection,RANSAC and LMedS were also compared.For RANSAC the algorithm was tested with 19 different thresholds.For LMedS,the algorithm was run once,because there is no threshold parameter to tune.For each run the average truth rotation and translation error over the entire video sequence were calculated.As shown in Fig.7,LMedS performs well without requiring a threshold.However,in order for RANSAC to perform as well as LMedS, the threshold must be tuned to within an order of magnitude of the optimal threshold.

    Table I shows the results of the rotation and translation disambiguation algorithms.The first row within each group shows a baseline comparison,where no method was used for pose disambiguation.The baseline method gives poor results.However,it is worth nothing that Algorithm 2 returns the correct rotation,even without any form of pose disambiguation.This is likely because it is seeded at the first frame with the identity rotation,and in every frame thereafter the best hypothesis from the previous iteration is used as the seed to the optimizer.The second row in each group shows the results when the Cheirality check was used to determine the best of the four possible rotation/translation pairs.The translation direction is often correct but the rotation is correct only about half of the time.The third row in each group shows the results of using the matrix trace to determine which rotation is correct and the Cheirality check to determine the correct translation direction.This third pose disambiguation method consistently outperforms the other methods.

    The best hypothesis was refined using LM to optimize the Sampson cost over all inliers(Section III-D).The refined relative pose is only kept if the new relative pose successfully reduces the LMedS error.Table II compares the average error with and without refinement.Refining the best relative pose hypothesis significantly reduces all three error metrics.LM Basis also refines the best hypothesis and successfully reduces the translational and rotational error.However,even with refinement,LM Basis has a higher error than Algorithm 2.

    Table III compares the computation time for relative pose estimation between the OpenCV implementation[4],LMBasis[7],and Algorithm 2.The algorithms were both implemented on a laptop with a 2.1GHz Intel i7 CPU running Linux.The breakdown of the time required to generate each hypothesis set is shown in Fig.8.The most time-consuming part of the OpenCV solver is finding the zeros of the tenthorder polynomial. The most time-consuming part of Algorithm 2 is the Eigen matrix solver. Note that while LM Basis and Algorithm 2 take about the same amount of time to generate hypotheses per subset,LM Basis generates up to 10 hypotheses per subset,while Algorithm 2 only generates one hypothesis.The faster optimization used in the LM Basis algorithm is likely due to solving simpler equations which require inverting a 3 ×3matrix instead of a 5 ×5matrix.

    TABLE I Pose Disambiguation Comparison

    TABLE II Relative Pose Refinement

    TABLE III Computation Time

    Fig.8.Time required to generate each hypothesis set.

    B. Motion Detection and Tracking-Flight Video

    The motion detection algorithm was tested on a moving camera video sequence taken from a multi-rotor UAV.Fig.9 shows the results of the motion detection algorithm. Note that the stationary points have zero perpendicular velocity and a positive parallax velocity,while the moving points have a non-zero perpendicular velocity component.Fig.10 shows the results of tracking these moving points using R-RANSAC[22].

    Fig.9.Video motion detection results.Each point position(left)and its corresponding net velocity (right)are plotted.Points with a net perpendicular velocity greater than one pixel are classified as moving points(red),while points with a velocity below this threshold are classified as stationary points(blue).

    The computation times of the motion detection and tracking algorithm are shown in Table IV.For faster processing the video was scaled to 640×480.The motion detection and tracking algorithm is running on a Linux desktop computer with a 4 GHz Intel i7 CPU.On average about 800 points are detected, tracked,and fed to Algorithm 2 each frame. Notice that the OpenCV feature detection and tracking are the most time-consuming components of the tracking algorithm and consume 70% of the total CPU usage.The complete algorithm takes 29 milliseconds to run per frame,which means it is capable of running in real-time at 34 frames per second (FPS).

    TABLE IV Motion Detection and Tracking Computation Times

    Fig.10.R-RANSAC tracks.

    VI.Conclusion

    In this paper we have presented a relative pose estimation algorithm for solving the rotation and translation between consecutive frames,that requires at least five matching feature points per frame,and is capable of running in real-time.We show the importance of seeding the LM optimizer with an initial pose estimate and demonstrate that this initial estimate significantly improves the performance of the algorithm.We have applied the algorithm to detecting motion and tracking multiple targets from a UAV and demonstrated real-time performance of this tracking algorithm on a 640×480 video sequence.Future work includes applications to 3D scene reconstruction and more complex tracking methods.

    999久久久精品免费观看国产| 国产精品自产拍在线观看55亚洲 | 欧美日韩亚洲综合一区二区三区_| 亚洲av国产av综合av卡| 精品一区二区三区四区五区乱码| 高清在线国产一区| 一边摸一边抽搐一进一出视频| 不卡一级毛片| 十八禁网站免费在线| 一夜夜www| 精品国产乱码久久久久久小说| 欧美精品av麻豆av| 美女国产高潮福利片在线看| 欧美精品高潮呻吟av久久| 深夜精品福利| 超色免费av| 日韩大片免费观看网站| 国产成+人综合+亚洲专区| 日韩免费av在线播放| 宅男免费午夜| 一区二区三区精品91| 国产精品久久电影中文字幕 | 中文字幕精品免费在线观看视频| av线在线观看网站| 亚洲中文av在线| 免费人妻精品一区二区三区视频| 成人影院久久| 亚洲欧美激情在线| 久久天堂一区二区三区四区| 99riav亚洲国产免费| 国产激情久久老熟女| 日韩免费高清中文字幕av| 男人舔女人的私密视频| 亚洲精品美女久久av网站| 欧美日韩成人在线一区二区| 久久青草综合色| 999久久久精品免费观看国产| 国产91精品成人一区二区三区 | 欧美亚洲日本最大视频资源| av有码第一页| 老司机午夜十八禁免费视频| 91精品国产国语对白视频| 老司机靠b影院| 欧美黄色片欧美黄色片| 高清黄色对白视频在线免费看| 中文字幕色久视频| 国产精品98久久久久久宅男小说| 美女高潮喷水抽搐中文字幕| 欧美乱妇无乱码| 欧美久久黑人一区二区| 成人av一区二区三区在线看| 国产午夜精品久久久久久| 免费人妻精品一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 欧美 日韩 精品 国产| 天堂动漫精品| 69精品国产乱码久久久| 色播在线永久视频| 国产精品久久久av美女十八| 在线看a的网站| 亚洲国产欧美在线一区| 侵犯人妻中文字幕一二三四区| 欧美黑人精品巨大| 久久久久国内视频| 看免费av毛片| 老熟女久久久| 18禁美女被吸乳视频| 亚洲成国产人片在线观看| 一本大道久久a久久精品| 免费黄频网站在线观看国产| 久久精品91无色码中文字幕| 91老司机精品| 久久人人97超碰香蕉20202| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线| 高清欧美精品videossex| 亚洲国产毛片av蜜桃av| 久久久久久久久久久久大奶| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 欧美激情极品国产一区二区三区| 人人妻人人澡人人看| 热re99久久国产66热| 韩国精品一区二区三区| 男女之事视频高清在线观看| 黄色丝袜av网址大全| 欧美成人午夜精品| 国产免费现黄频在线看| 日韩大片免费观看网站| 国产精品1区2区在线观看. | 天堂中文最新版在线下载| 亚洲精品乱久久久久久| 一边摸一边抽搐一进一出视频| 人妻 亚洲 视频| 一级,二级,三级黄色视频| 在线播放国产精品三级| 久久久久久人人人人人| 99国产综合亚洲精品| 欧美日本中文国产一区发布| 国产成人一区二区三区免费视频网站| 女性被躁到高潮视频| 久久精品国产亚洲av香蕉五月 | 制服人妻中文乱码| 女人被躁到高潮嗷嗷叫费观| 丝袜美腿诱惑在线| 成人国产av品久久久| 亚洲av日韩精品久久久久久密| 国产一区二区在线观看av| 欧美乱码精品一区二区三区| 日韩精品免费视频一区二区三区| 高清毛片免费观看视频网站 | 一边摸一边抽搐一进一小说 | 一区二区三区激情视频| 十八禁网站免费在线| 人人妻人人澡人人看| 搡老熟女国产l中国老女人| 波多野结衣av一区二区av| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 老汉色∧v一级毛片| 女人久久www免费人成看片| 一区二区av电影网| 老熟妇乱子伦视频在线观看| 在线天堂中文资源库| 99久久国产精品久久久| 成年版毛片免费区| 18禁国产床啪视频网站| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 国产精品香港三级国产av潘金莲| 国产av又大| 国产1区2区3区精品| 亚洲成人免费av在线播放| 亚洲av第一区精品v没综合| 午夜成年电影在线免费观看| 成人av一区二区三区在线看| 最近最新中文字幕大全免费视频| 欧美久久黑人一区二区| 在线观看人妻少妇| 十八禁人妻一区二区| 国产av国产精品国产| 亚洲少妇的诱惑av| 十八禁人妻一区二区| 国产在线精品亚洲第一网站| 一个人免费看片子| 久久久久久久久久久久大奶| av又黄又爽大尺度在线免费看| 日日爽夜夜爽网站| 精品国产亚洲在线| 久久精品aⅴ一区二区三区四区| 捣出白浆h1v1| 母亲3免费完整高清在线观看| 国产麻豆69| 伦理电影免费视频| 夜夜骑夜夜射夜夜干| 欧美 日韩 精品 国产| 国产欧美日韩一区二区三| 国产成人精品在线电影| 亚洲熟女精品中文字幕| www.熟女人妻精品国产| av不卡在线播放| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 一区在线观看完整版| 国产精品欧美亚洲77777| 超碰成人久久| 午夜免费成人在线视频| 女性生殖器流出的白浆| 国产熟女午夜一区二区三区| 久久午夜综合久久蜜桃| 777久久人妻少妇嫩草av网站| 99国产极品粉嫩在线观看| 一夜夜www| 国产一区二区 视频在线| 欧美+亚洲+日韩+国产| 日本a在线网址| 国产日韩一区二区三区精品不卡| 女人高潮潮喷娇喘18禁视频| 男女边摸边吃奶| 久久 成人 亚洲| 国产又爽黄色视频| bbb黄色大片| 女性被躁到高潮视频| 欧美黑人欧美精品刺激| 国产单亲对白刺激| 久久久久久人人人人人| 亚洲av国产av综合av卡| 精品国产国语对白av| av欧美777| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 国产91精品成人一区二区三区 | 日韩精品免费视频一区二区三区| 一区二区av电影网| 在线观看www视频免费| 欧美日本中文国产一区发布| 夫妻午夜视频| 麻豆乱淫一区二区| 黄频高清免费视频| 欧美久久黑人一区二区| av欧美777| 日韩有码中文字幕| 在线观看免费视频日本深夜| 亚洲精品中文字幕一二三四区 | 91av网站免费观看| 久久99热这里只频精品6学生| 一个人免费看片子| 亚洲av欧美aⅴ国产| 日日夜夜操网爽| 99久久人妻综合| 这个男人来自地球电影免费观看| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 成年人黄色毛片网站| 一本大道久久a久久精品| 一本一本久久a久久精品综合妖精| 国产区一区二久久| 老司机靠b影院| 国产成人精品无人区| 啦啦啦在线免费观看视频4| 日韩 欧美 亚洲 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品1区2区在线观看. | 超色免费av| 香蕉久久夜色| 日韩熟女老妇一区二区性免费视频| 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 天天添夜夜摸| 啦啦啦在线免费观看视频4| av欧美777| 国产欧美日韩综合在线一区二区| 国产精品1区2区在线观看. | 极品少妇高潮喷水抽搐| 嫁个100分男人电影在线观看| 国产在视频线精品| 国产精品.久久久| 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| 久久精品亚洲av国产电影网| 亚洲va日本ⅴa欧美va伊人久久| 老汉色av国产亚洲站长工具| 欧美精品av麻豆av| 一区福利在线观看| 少妇的丰满在线观看| 久久婷婷成人综合色麻豆| 大型av网站在线播放| 久久 成人 亚洲| 久久天堂一区二区三区四区| 午夜久久久在线观看| 午夜免费成人在线视频| 女警被强在线播放| 亚洲精品中文字幕在线视频| 18禁美女被吸乳视频| 亚洲精品av麻豆狂野| 日韩欧美一区二区三区在线观看 | svipshipincom国产片| 午夜免费成人在线视频| 欧美人与性动交α欧美精品济南到| 成年版毛片免费区| 视频区欧美日本亚洲| 色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 久久性视频一级片| 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久5区| 看免费av毛片| 在线永久观看黄色视频| www.精华液| 99久久人妻综合| 香蕉国产在线看| 9热在线视频观看99| 久久久国产精品麻豆| 久久午夜综合久久蜜桃| 国产精品久久久人人做人人爽| 在线av久久热| 国产高清视频在线播放一区| 1024视频免费在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区 | 久久人妻熟女aⅴ| 国产精品电影一区二区三区 | 极品教师在线免费播放| 久久人人爽av亚洲精品天堂| 午夜福利欧美成人| 日本vs欧美在线观看视频| 亚洲精品国产区一区二| 亚洲精品自拍成人| 黄色视频在线播放观看不卡| 99国产精品一区二区蜜桃av | 新久久久久国产一级毛片| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 麻豆av在线久日| av不卡在线播放| 亚洲人成77777在线视频| 高潮久久久久久久久久久不卡| 国产主播在线观看一区二区| 一级片'在线观看视频| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜在线中文字幕| 后天国语完整版免费观看| 亚洲五月色婷婷综合| 日本a在线网址| 亚洲午夜理论影院| 人人妻人人澡人人爽人人夜夜| 一级毛片女人18水好多| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 国产av一区二区精品久久| 精品久久蜜臀av无| 涩涩av久久男人的天堂| e午夜精品久久久久久久| 午夜精品国产一区二区电影| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三区在线| 成年人黄色毛片网站| 女同久久另类99精品国产91| 最新的欧美精品一区二区| 精品福利观看| 男女免费视频国产| 成年人午夜在线观看视频| 91av网站免费观看| 欧美人与性动交α欧美软件| 性色av乱码一区二区三区2| 精品少妇内射三级| 国产三级黄色录像| 热re99久久国产66热| 在线天堂中文资源库| 精品一区二区三区av网在线观看 | 老司机福利观看| 日本五十路高清| 国产国语露脸激情在线看| 国产一区二区三区视频了| 嫁个100分男人电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品无人区| 99国产精品一区二区三区| 99国产综合亚洲精品| 亚洲av成人一区二区三| 成在线人永久免费视频| 黑人操中国人逼视频| 色94色欧美一区二区| 久久 成人 亚洲| 在线天堂中文资源库| 50天的宝宝边吃奶边哭怎么回事| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 天堂动漫精品| 精品少妇久久久久久888优播| 亚洲第一青青草原| 中文字幕最新亚洲高清| 国产一卡二卡三卡精品| 国产精品欧美亚洲77777| avwww免费| 亚洲精品国产一区二区精华液| 少妇精品久久久久久久| 国产97色在线日韩免费| 午夜福利视频在线观看免费| 欧美黄色淫秽网站| 亚洲国产毛片av蜜桃av| 熟女少妇亚洲综合色aaa.| 精品一区二区三卡| 亚洲精品国产一区二区精华液| 精品视频人人做人人爽| 2018国产大陆天天弄谢| 国产xxxxx性猛交| 国产成人欧美在线观看 | 久久人妻福利社区极品人妻图片| av电影中文网址| 欧美激情高清一区二区三区| 欧美 亚洲 国产 日韩一| 亚洲九九香蕉| 超碰成人久久| 夜夜爽天天搞| 欧美日韩精品网址| 超色免费av| 亚洲精品在线美女| 免费在线观看黄色视频的| 狠狠精品人妻久久久久久综合| 成人黄色视频免费在线看| 妹子高潮喷水视频| 后天国语完整版免费观看| 黄色 视频免费看| 最黄视频免费看| 男人舔女人的私密视频| 两人在一起打扑克的视频| 男女午夜视频在线观看| 欧美一级毛片孕妇| 久热这里只有精品99| 午夜成年电影在线免费观看| 亚洲第一青青草原| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 国产在视频线精品| 精品福利永久在线观看| 亚洲三区欧美一区| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃| 一本—道久久a久久精品蜜桃钙片| 波多野结衣av一区二区av| 欧美一级毛片孕妇| 国产精品国产av在线观看| 亚洲欧洲精品一区二区精品久久久| 91麻豆精品激情在线观看国产 | 久久久国产一区二区| 国产精品香港三级国产av潘金莲| 中文字幕最新亚洲高清| 啦啦啦 在线观看视频| 亚洲精品av麻豆狂野| avwww免费| 色尼玛亚洲综合影院| 宅男免费午夜| 丁香六月欧美| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 成人手机av| 欧美亚洲日本最大视频资源| 精品久久久久久电影网| 国产又爽黄色视频| av天堂久久9| 亚洲久久久国产精品| 9色porny在线观看| 视频区欧美日本亚洲| 色综合婷婷激情| 91成年电影在线观看| 99国产精品99久久久久| 99精国产麻豆久久婷婷| 曰老女人黄片| 久久九九热精品免费| 黄色 视频免费看| 免费观看a级毛片全部| 精品福利观看| 亚洲熟女精品中文字幕| 日本五十路高清| 最黄视频免费看| 97在线人人人人妻| 午夜久久久在线观看| a级片在线免费高清观看视频| 国产成人啪精品午夜网站| 热99久久久久精品小说推荐| 亚洲欧洲精品一区二区精品久久久| 国产精品免费一区二区三区在线 | 精品国产国语对白av| 性色av乱码一区二区三区2| 777久久人妻少妇嫩草av网站| 国产黄频视频在线观看| 久久人人97超碰香蕉20202| 在线av久久热| 国产欧美日韩一区二区三| 在线 av 中文字幕| 日本a在线网址| 久久国产精品影院| 久9热在线精品视频| 亚洲专区中文字幕在线| 在线av久久热| 久久天堂一区二区三区四区| 久久国产亚洲av麻豆专区| 欧美激情高清一区二区三区| 在线观看66精品国产| 欧美日韩视频精品一区| av天堂在线播放| av网站在线播放免费| 亚洲第一青青草原| 99久久99久久久精品蜜桃| 在线看a的网站| 中文亚洲av片在线观看爽 | 看免费av毛片| 免费观看人在逋| 久久国产精品影院| 一进一出抽搐动态| 亚洲第一av免费看| 黄片播放在线免费| 免费高清在线观看日韩| 黄色视频在线播放观看不卡| 69精品国产乱码久久久| 欧美精品高潮呻吟av久久| 正在播放国产对白刺激| 久久久国产精品麻豆| 五月天丁香电影| 久久天躁狠狠躁夜夜2o2o| 国产亚洲av高清不卡| 国产极品粉嫩免费观看在线| 美女午夜性视频免费| 国产一区二区 视频在线| 午夜福利免费观看在线| a级毛片黄视频| 日本av免费视频播放| 涩涩av久久男人的天堂| 久久ye,这里只有精品| 国产亚洲欧美在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 汤姆久久久久久久影院中文字幕| av线在线观看网站| 国产精品 欧美亚洲| 一二三四社区在线视频社区8| av电影中文网址| 一边摸一边抽搐一进一小说 | 人人妻人人澡人人爽人人夜夜| 欧美激情久久久久久爽电影 | 亚洲成人免费av在线播放| 高清在线国产一区| 午夜福利免费观看在线| 国产精品98久久久久久宅男小说| 99热国产这里只有精品6| 天天影视国产精品| 91老司机精品| 国产伦人伦偷精品视频| 亚洲精品在线美女| 亚洲成国产人片在线观看| 91麻豆精品激情在线观看国产 | 高潮久久久久久久久久久不卡| 99国产综合亚洲精品| 亚洲欧美日韩另类电影网站| 一边摸一边抽搐一进一小说 | 亚洲专区国产一区二区| 国产日韩一区二区三区精品不卡| 国产91精品成人一区二区三区 | 一区福利在线观看| 午夜久久久在线观看| 久久狼人影院| 正在播放国产对白刺激| 99re6热这里在线精品视频| 久久青草综合色| 国产精品一区二区在线观看99| 无限看片的www在线观看| 国产成人精品无人区| 夜夜骑夜夜射夜夜干| 亚洲欧美日韩另类电影网站| 久久久久国内视频| 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| av电影中文网址| 久久中文看片网| 50天的宝宝边吃奶边哭怎么回事| tube8黄色片| 久久久久久亚洲精品国产蜜桃av| 国产精品麻豆人妻色哟哟久久| 国产激情久久老熟女| 欧美黑人精品巨大| 多毛熟女@视频| 一二三四社区在线视频社区8| 丁香六月欧美| 国产午夜精品久久久久久| 在线观看免费高清a一片| 国产欧美亚洲国产| 王馨瑶露胸无遮挡在线观看| 美女高潮到喷水免费观看| 日日爽夜夜爽网站| 一个人免费在线观看的高清视频| 我要看黄色一级片免费的| a级毛片在线看网站| 欧美成人午夜精品| 麻豆av在线久日| 女人被躁到高潮嗷嗷叫费观| 十八禁人妻一区二区| 欧美 日韩 精品 国产| 亚洲人成电影免费在线| 国产精品影院久久| 亚洲精品国产一区二区精华液| av视频免费观看在线观看| 欧美成人免费av一区二区三区 | 黑人猛操日本美女一级片| 亚洲男人天堂网一区| 免费一级毛片在线播放高清视频 | 在线av久久热| 国产又爽黄色视频| 国产男女内射视频| 天天影视国产精品| 久久热在线av| 18禁观看日本| 91麻豆av在线| 日韩欧美一区二区三区在线观看 | 久9热在线精品视频| 国产成人欧美| 日本wwww免费看| 日本五十路高清| 午夜激情久久久久久久| 亚洲视频免费观看视频| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人| 建设人人有责人人尽责人人享有的| 热99re8久久精品国产| 国产日韩欧美在线精品| 欧美大码av| 五月开心婷婷网| 天天躁日日躁夜夜躁夜夜| 国产福利在线免费观看视频| 精品久久久精品久久久| 大型av网站在线播放| 亚洲五月色婷婷综合| 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 夫妻午夜视频| 久久午夜亚洲精品久久| 999久久久国产精品视频| 成年女人毛片免费观看观看9 | 午夜日韩欧美国产| 国产福利在线免费观看视频| 国产成人精品在线电影| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品自拍成人| 99久久人妻综合| 成人18禁在线播放| 日韩三级视频一区二区三区| 免费在线观看视频国产中文字幕亚洲| 日韩大码丰满熟妇| 亚洲精品在线观看二区| 熟女少妇亚洲综合色aaa.| www.999成人在线观看| 亚洲午夜理论影院| 欧美精品人与动牲交sv欧美|