• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GPS 5.0:An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins

    2020-07-29 05:34:44ChenweiWangHaodongXuShaofengLinWankunDengJiaqiZhouYingZhangYingShiDiPengYuXue
    Genomics,Proteomics & Bioinformatics 2020年1期

    Chenwei Wang ,Haodong Xu ,Shaofeng Lin ,Wankun Deng ,Jiaqi Zhou ,Ying Zhang ,Ying Shi ,Di Peng ,Yu Xue ,2,*

    1Key Laboratory of Molecular Biophysics of Ministry of Education,Hubei Bioinformatics and Molecular Imaging Key Laboratory,College of Life Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China

    2Huazhong University of Science and Technology Ezhou Industrial Technology Research Institute,Ezhou 436044,China

    KEYWORDS Protein phosphorylation;Protein kinase;Group-based Prediction System;Kinase-specific phosphorylation site;Dual-specificity kinase

    Abstract In eukaryotes,protein phosphorylation is specifically catalyzed by numerous protein kinases(PKs),faithfully orchestrates various biological processes,and reversibly determines cellular dynamics and plasticity.Here we report an updated algorithm of Group-based Prediction System(GPS) 5.0 to improve the performance for predicting kinase-specific phosphorylation sites(p-sites).Two novel methods,position weight determination(PWD)and scoring matrix optimization(SMO),were developed.Compared with other existing tools,GPS 5.0 exhibits a highly competitive accuracy.Besides serine/threonine or tyrosine kinases,GPS 5.0 also supports the prediction of dual-specificity kinase-specific p-sites.In the classical module of GPS 5.0,617 individual predictors were constructed for predicting p-sites of 479 human PKs.To extend the application of GPS 5.0,a species-specific module was implemented to predict kinase-specific p-sites for 44,795 PKs in 161 eukaryotes.The online service and local packages of GPS 5.0 are freely available for academic research at http://gps.biocuckoo.cn.

    Introduction

    Protein phosphorylation plays a critical role in almost all of biological processes and greatly expands the proteome diversity.By covalently attaching phosphate moieties to serine,threonine, and/or tyrosine residues in a dynamic manner,phosphorylation can reversibly change the structure,enzymatic activity,and subcellular trafficking of proteins[1,2].In eukaryotes,phosphorylation reaction is differentially and specifically catalyzed by numerous protein kinases(PKs),and each PK only modifies a limited subset of substrates to ensure the signaling fidelity[3-5].Aberrances in either PKs or phosphorylated substrates are highly associated with human diseases such as cancer[6,7].Therefore,the identification of kinase-specific phosphorylation sites(p-sites)is fundamental for understanding the regulatory mechanisms of phosphorylation.

    Besides experiments,bioinformatics provides an alternative means for computational prediction of potential PK-specific p-sites from protein sequences[8-15](Table S1).In 2004,we developed a novel algorithm,group-based phosphorylation site predicting and scoring(GPS)1.0,based on the hypothesis that similar short peptides exhibit similar biological functions[8].Accordingly,we refined the algorithm and constructed an online service of GPS 1.1,which can predict p-sites for 71 PK clusters[9].Later,we presented GPS 2.0 and 2.1(renamed as Group-based Prediction System),in which two methods matrix mutation(MaM)and motif length selection(MLS)were designed to improve the prediction accuracy,whereas the scoring strategy was not changed[10,11].Using 3417 known PK-specific p-sites as a training data set,GPS 2.1 contains 213 individual predictors,and can hierarchically predict specific p-sites for 408 human PKs[11].We also developed GPS 2.2,3.0,and 4.0 algorithms,which are used for the prediction of post-translational modification(PTM)sites other than p-sites[16-18].In particular,it should be noted that other bioinformaticians also put great efforts into the prediction of kinase-specific p-sites.At least 36 computational programs have been developed(Table S1).

    In this study,we collected 15,194 experimentally identified PK-specific p-sites as the training data set.Updated from the GPS 2.1 algorithm,we replaced the MLS method by developing a new approach named position weight determination(PWD).PWD uses the logistic regression(LR)[19]to rapidly determine position-specific weight values of flanking sequences around psites.The LR algorithm is also used to modify the MaM method into scoring matrix optimization(SMO)for improving the accuracy of prediction.The leave-one-out(LOO)validation and n-fold cross-validations were conducted to evaluate the performance of GPS 5.0,which shows a highly competitive accuracy in comparison with other existing tools.In GPS 5.0,we separately constructed 466 and 93 individual predictors to computationally analyze phosphoserine (pS)/phosphothreonine(pT)and phosphotyrosine(pY)residues specifically modified by serine/threonine kinases and tyrosine kinases,respectively.Since a number of serine/threonine and tyrosine kinases also modify pY and pS/pT sites,respectively,we further constructed 58 additional predictors for these dual-specificity PKs.In GPS 5.0,we developed two modules including the classical module and the species-specific module.In the classical module,we constructed 617 single predictors for computationally identifying specific p-sites of 479 human PKs.The species-specific module can predict p-sites of 44,795 PKs in 161 eukaryotes.We anticipate GPS 5.0 can help to generate high-confidence candidates for the discovery of new phosphorylation events.

    Method

    During the past decade,the GPS algorithm has been continuously maintained and improved [8-11]. Our fundamental hypothesis is that similar short peptides bear similar biochemical properties for the modification.Thus,we defined a phosphorylation site peptide PSP(m,n)as a pS,pT,or pY amino acid flanked by m residues upstream and n residues downstream.Then we used an amino acid substitution matrix,e.g.,BLOSUM62,to calculate the similarity between two PSP(m,n)peptides.This basic scoring strategy has been reserved in all versions of GPS algorithms,although GPS 2.1 implemented two methods,MLS and MaM,for performance improvement[11].For each PK cluster,MLS determines an optimal motif length around p-sites since different PKs recognize distinct motifs with different lengths,whereas MaM generates an optimal matrix for better estimating PSP(m,n)similarity.Since different positions around p-sites might contribute differentially to the phosphorylation specificity,GPS 2.2 added a method of weight training(WT)to determine a weight value for each position after the MLS manipulation[16].To process large data sets,we added a k-means clustering procedure in GPS 3.0 to cluster PTM sites into multiple groups[17],whereas GPS 4.0 adopted a particle swarm optimization(PSO)to rapidly determine parameters in the steps of MLS,MaM,and/or WT[18].

    Here,we hypothesized that long flanking regions around psites might be generally and differentially important for the recognition of PKs,which are bulky molecules to interact with phosphorylatable residues.Thus,the weight value at each position rather than the motif length could be directly and rapidly optimized by the LR algorithm[19].Because the numbers of psites for most PK clusters are lower than 1000(Tables S2 and S3),the k-means clustering is not necessary.In this regard,GPS 5.0 was updated from GPS 2.1,and comprises two parts,including the scoring strategy and performance improvement.

    In the step of the scoring strategy,the average similarity score(S)between a PSP(30,30)peptide P and peptides around all known p-sites in the training data set is defined as:

    where L is the length of the PSP(30,30)peptide(L=61 representing a relatively long flanking region).N is the number of known p-sites in the positive data set.Tijis the amino acid at position j around a known p-site Ti(i=1,2,3,...,N).Wjis the weight value of position j,and Mtraindenotes the optimized amino acid substitution matrix in this study.

    The performance improvement procedure comprises two steps,and we updated MLS and MaM into PWD and SMO,respectively.

    PWD

    We first used the amino acid substitution matrix BLOSUM62(MBLOSUM62)to calculate an average similarity score at the position j of a PSP(30,30)peptide P as

    Initially,the weight value of each position Wjin the PSP(30,30)peptide was set to 1.Then we used the one-vs-rest(OVR)classifier with the ridge(L2)penalty of the LR algorithm to optimize Wjvalues,by using the‘‘newton-cg”solver in the class LogisticRegressionCV of scikit-learn v0.21.0 (https://scikitlearn.org/),an extensively used machine learning(ML)toolbox[19].To avoid over-fitting,such a procedure was repeated for 100 times and 10-fold cross-validation was conducted to determine the inverse of regularization strength at each time.Receiver operating characteristic(ROC)curves were illustrated,and area under curve(AUC)values were calculated.The optimal Wjvectors were determined based on the highest AUC value:

    In order to evaluate position-specific contributions of flanking regions around p-sites for different PK clusters,the Wjvectors were normalized into-1 to 1 based on the maximum absolute value.

    SMO

    The average similarity score of an amino acid a in the given PSP(30,30)peptide P and a residue b in peptides around all known p-sites is defined as Sab:

    where Cjis the number of ab amino acid pairs at position j.In BLOSUM62,there are 24 types of characters including 20 types of amino acids and 4 non-canonical characters(B,aspartic acid or asparagine;Z,glutamic acid or glutamine;X,any one type of 20 amino acids;*,the ending of protein sequence).Thus,a number of[24×(24+1)]/2=300 unique Sabscores(Sab=Sba)were generated.Then,the same LR algorithm was used to optimize all of Sabscores to produce a new matrix

    Implementation

    First,we took 3417 experimentally identified p-sites used in GPS 2.1[11],and further conducted a literature curation to collect 10,225 site-specific kinase-substrate relations(ssKSRs).Also,we obtained 12,031 known PK-specific p-sites from the file‘‘Kinase_Substrate_Dataset.gz”(Last modified on May 02,2019)of PhosphoSitePlus(https://www.phosphosite.org/),a widely used phosphorylation database[20].In total,our benchmark data set contained 23,195 ssKSRs for 15,194 unique p-sites(Figure 1 and Table S4).

    As previously described[10],we downloaded the hierarchical classifications of human PKs at various levels(group,family,subfamily,and single PK)from Kinase.com/KinBase(http://kinase.com/web/current/kinbase/genes/SpeciesID/9606/),thus far the best annotated resource for PKs[21].Due to the fact that multiple aliases are present for each human PK,here we only used the standard gene names taken from iEKPD(http://iekpd.biocuckoo.org),which adopted the classification rationales of Kinase.com/KinBase to characterize and classify eukaryotic PKs at group and family levels[22].Based on the regulatory PK information,we classified known PK-specific p-sites into different PK clusters at group,family,subfamily,and single PK levels.The PK clusters with <3 p-sites were not further considered.It is well known that serine/threonine and tyrosine kinases usually modify pS/pT and pY sites,respectively.However,we found that a considerable number of serine/threonine and tyrosine kinases could additionally phosphorylate pY and pS/pT sites with important functions,respectively. For example, interferon-induced, doublestranded RNA-activated protein kinase(EIF2AK2/PKR)in the Other/PEK family is a typical serine/threonine PK that phosphorylates a human tumor suppressor p53 on S392 through physical interaction to regulate gene expression[23].EIF2AK2/PKR also exhibits tyrosine kinase activity and modifies human cyclin-dependent kinase 1(CDK1)at Y4 to promote its ubiquitination and proteasomal degradation[24].Moreover, human proto-oncogene tyrosine-protein kinase receptor RET in the tyrosine kinase(TK)/Ret family regulates the tyrosine kinase activity of focal adhesion kinase(FAK)through phosphorylating its Y576 and Y577[25].Human RET also modifies an important stress-responsive activating transcription factor 4 (ATF4) at four threonine residues,including T107,T114,T115,and T119,to inhibit ATF4-mediated apoptosis[26].Thus,we added a class of‘‘Dual”for the prediction of atypical p-sites of these dual-specificity PKs(Figure 1).

    Then,the GPS 5.0 algorithm was adopted to individually train a computational model for each PK cluster.In the classical module,we totally constructed 617 single predictors for computationally identifying specific p-sites of 479 human PKs, including 58 predictors for the dual-specificity PKs(Figure 1).For the development of the species-specific module,eukaryotic PKs pre-classified at group and family levels were taken from iEKPD[22].For each eukaryotic organism,PKs were reserved if their corresponding predictors at the family level could be obtained.In total,the species-specific module could predict the PK-specific p-sites of 44,795 PKs in 161 species(Figure 1).

    As previously described[10],we randomly generated 10,000 PSP(30,30)peptides based on the frequencies of the 20 amino acid residues in the training data set to estimate the false positive rate(FPR)of predictions.For each PK cluster,the process was repeated 20 times, and the average value was determined as the final FPR.The high,medium,and low thresholds were adopted with FPRs of 2%,6%,and 10%,respectively,for serine/threonine kinases.Likewise,FPRs of 4%,9%,and 15%were adopted for high,medium,and low thresholds for tyrosine kinases. The online service of the classical module of GPS 5.0 was implemented in PHP and JavaScript.We also integrated two web servers,IUPred[27]and NetSurfP[28],to predict surface accessibilities,disorder regions,and secondary structures of inputted proteins.The stand-alone packages of GPS 5.0 were developed in JAVA for supporting three major operation systems including Windows,Linux,and Mac OS(Figure 1).

    Figure 2 Performance evaluation of GPS 5.0

    Performance evaluation and comparison

    As previously described [10], four standard measurements including accuracy(Ac),sensitivity(Sn),specificity(Sp),and Matthews correlation coefficient (MCC) were adopted to evaluate the performance and robustness of the GPS 5.0.The self-consistency validations were calculated for all PK clusters(Tables S2 and S3).Also,10-fold cross-validations were performed for 245 PK categories wit ≥30 p-sites(Table S2),and LOO validations were conducted for other PK categories(Table S3).The high congruence of different validation results indicated the promising accuracy and robustness of GPS 5.0(Tables S2 and S3).

    To further demonstrate the superiority of GPS 5.0,we compared the prediction performance of GPS 5.0 with that of other existing predictors,such as GPS 2.1[11],ScanSite 4.0[12],NetPhos3.1[14],KinasePhos 1.0[15],KinasePhos 2.0[29],and MusiteDeep[13](Figure 2).Due to the page limitation,four typical PK families including CDK,casein kinase 2 (CK2), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) were selected for demonstration(Figure 2).For each PK family,we directly submitted its corresponding training data set into each tool to calculate the performance and compared with the 10-fold cross-validation result of GPS 5.0.The ROC curves of GPS 2.1[11]and MusiteDeep[13]were illustrated,while the Sn and 1-Sp values of ScanSite 4.0[12]were calculated at high,medium,low,and minimum thresholds separately.The default cut-off scores of NetPhos3.1[14]and KinasePhos 2.0[29]were adopted,whereas Sn values of KinasePhos 1.0[15]with Sp at 100%,95%, and 90% were computed separately. As shown in Figure 2A,we found that GPS 5.0 achieved a highly competitive accuracy with MusiteDeep,a deep learning-based predictor[13].The prediction performance of GPS 5.0 was much better than that of other tools,including GPS 2.1[11](Figure 2A).It should be noted that MusiteDeep only constructed 5 PK-specific predictors at the family level,whereas GPS 5.0 could predict for much more PK families, such as CaM kinase/protein kinase D (CAMK/PKD) and TK/Tec(Figure 2B).The pS/pT and pY sites differentially modified by dual-specificity tyrosine phosphorylation-regulated kinase(DYRK)could also be accurately predicted(Figure 2B).

    For the four PK families of CDK,CK2,PKA,and MAPK,we further compared the performance of the two new methods in GPS 5.0 with that of previous approaches implemented in GPS 2.1.For each PK family,the AUC values of MLS,PWD,MaM,and SMO were exclusively calculated from the 10-fold cross-validations.Our results demonstrate that PWD and SMO perform better than MLS and MaM in p-site prediction as indicated by higher AUC values for all four PK families tested(Figure 3A).In addition,three ML algorithms in scikitlearn,including support vector machines(SVMs),random forest(RF),and k-nearest neighbor(KNN),were adopted for training models and compared with GPS 5.0.As shown in Figure 3B,GPS5.0 achieved higher AUC values of the 10-fold cross-validations than other algorithms for all four PK families tested.

    Figure 3 Performance comparison between GPS 5.0,GPS 2.1,and other ML algorithms

    Usage of GPS 5.0

    For convenience,the stand-alone packages of GPS 5.0 are recommended(Figure 4).The main interface is the classical module of GPS 5.0,which contains three parts,including the hierarchical classification tree of PK categories shown in the left panel(Figure 4A),which enables the selection of PKs at four levels including group,family,sub-family,and single PK.In the lower-right panel,users could provide one or multiple protein sequences in FASTA format and select a threshold(Figure 4B).By left-clicking on the‘Submit’button,the prediction results will be presented in the upper-right panel as a tabular list containing position,code,PK,flanking peptide,score,and cutoff for a predicted p-site(marked in red)(Figure 4C).Alternatively,user could load a demo sequence by clicking the‘Example’button,or clear the inputs by clicking the‘Clear’button(Figure 4).

    In GPS 5.0,human Beclin-1,an important autophagyrelated (ATG) protein and tumor suppressor [30,31], was chosen as an example for the prediction of kinase-specific p-sites. It has been reported that the S234 and S295 of Beclin-1 are phosphorylated by Akt,which inhibits autophagy by regulating the interaction between Beclin-1 and 14-3-3 proteins[30].The predictions of GPS 5.0 are highly consistent with experimental results.Two additional p-sites,S10 and S90,were predicted under a medium threshold.Whether the two p-sites are really phosphorylated by Akt remains to be experimentally validated.

    Also,GPS 5.0 web server was developed in a user-friendly manner(Figure 5A,Figure S1).For each PK predictor,a sequence logo is illustrated by the R package ggseqlogo[32]with the PSP(30,30)items of its positive data set,and a simplified logo icon is added for each prediction result(Figure S1A).A column entitled‘‘Source”was added to denote whether a potential ssKSR was previously reported by the literature(Exp.)or just a prediction(Pred.)(Figure S1A).Besides the presentation and statistics of the predicted results,structural features such as secondary structures,surface accessibilities,and disorder regions could also be predicted and shown by IUPred and NetSurfP(Figure S1).In IUPred,the disorder propensity values range from 0 to 1,and an amino acid residue with a calculated score>0.5 would be considered as disordered[27].In NetSurfP,the relative surface area(RSA)was calculated for measuring the surface accessibility,and an amino acid with an RSA value>0.25 would be taken as an exposed residue[28].From protein sequences,NetSurfP could also predict three types of potential secondary structures,including α-helix,β-strand,and coil,for each amino acid residue[28].

    Figure 4 Interface of the classical module in GPS 5.0 software package

    To further exhibit the superiority of GPS 5.0,other known PKs that phosphorylate human Beclin-1 were collected from the literature[31,33-36].Unc-51-like kinase 1(ULK1)has been reported to induce autophagy through phosphorylating Beclin-1 at S15[33],while S90 is phosphorylated by CAMK2 to promote the ubiquitination of Beclin-1 for the activation of autophagy[34].Also,it is known that two pY sites(Y229 and Y233) in Beclin-1 are phosphorylated by epidermal growth factor receptor(EGFR),which is primarily responsible for the suppression of autophagy[31].The prediction results of GPS 5.0 covered most of the known kinase-specific p-sites.Moreover,two additional p-sites,S64 and S177 of Beclin-1,were predicted by GPS5.0 to be specifically modified by ULK1(Figures 5B and S1).

    Future developments

    In this study,we updated a highly useful tool named GPS 5.0 for the prediction of PK-specific p-sites,including a classical module(Figure 4)and a species-specific module(Figure S2).In the former,there were 617 individual predictors constructed for predicting p-sites of 479 human PKs,whereas kinasespecific p-sites of 44,795 PKs could be predicted for 161 eukaryotes in the latter.In GPS 5.0,two novel methods,PWD and SMO,were developed to improve the training efficiency and performance of the previous developed GPS 2.1 algorithm[11].

    For each PK predictor,the information content Riwas calculated in bits for the position i in the alignment as previously described[37]:

    Figure 5 Prediction of kinase-specific p-sites in human Beclin-1

    where EAlland EPosindicate Shannon entropies measured from the PSP(30,30)items in all phosphorylated proteins and in the PK-specific positive data set,respectively.The symbol n denotes one of the 20 types of amino acid residues,whereas pnand qnindicate the observed frequencies of n estimated from the background and foreground data sets,respectively.The Rivalues were separately calculated for serine/threonine PKs and tyrosine PKs,while the middle p-sites were not included for the computation.Then,Pearson correlation coefficient(PCC)values are pairwisely calculated between the Riscores and the outputs of PWD training processes for 617 individual PK predictors(Table S5).The average PCC value was 0.606,which was increased to 0.656 if only PK predictors with ≥30 p-sites were considered.Several instances for the correlation between the information content and the PWD output were shown(Figure S3).For example,weight values for AGC/Akt at positions-5 and-3 were determined as 0.8454 and 1.0000. Such a result follows the canonical motif R-X-R-X-X-S/T of the Akt family[38](Figure S3).Also,only the position+1 for Atypical/PIKK/ATM was determined as 1.0000, which is consistent with the S/T-Q motif of ATM/ATR[39].Moreover,the weight values of 0.5677 and 1.0000 at positions -2 and +1 are consistent with the P-X-S/T-P motif of CMGC/MAPK[40],and the weight value of 1.0000 at the+3 position supports a known motif Y-X-X-P of TK/Abl[41](Table S5 and Figure S3).In this regard,higher position weights derived from PWD are generally consistent with information contents of known PK consensus motifs.

    Since December 2004,the online service of GPS 1.1 and local packages of GPS 2.0 as well as 2.1 have been freely accessible to academic use for nearly 15 years[9-11].In future,GPS 5.0 will be continuously maintained and improved.The computational models will be updated if new experimentally characterized kinase-specific p-sites are available.In addition,we are currently testing various types of methods including both traditional ML algorithms and deep-learning algorithms,which will hopefully further improve the accuracy of GPS.It is also worth mentioning that only sequence information has been considered at the current stage,and we will test structural features and further integrate both sequence and structural features to improve the performance.We believe that GPS 5.0 could serve as a high-profile tool and provide useful information for further studies of phosphorylation.

    Availability

    The online service and local packages of GPS 5.0 were freely available for academic use at http://gps.biocuckoo.cn.Speciesspecific predictions are available either from the web server at http://gps.biocuckoo.cn/online_species.php,or in GPS 5.0 software packages by clicking‘Tools’in the menu bar.The benchmark data set for training was provided in Table S4.

    Authors’contributions

    YX conceived,designed,and supervised the study.CW and HX collected the data,designed the algorithm,performed the analysis,as well as constructed the online service and local packages.SL,WD,JZ,YZ,YS,and DP contributed to data analysis.YX,CW,and HX wrote the manuscript.All authors read and approved the final manuscript.

    Competing interests

    The authors have declared no competing interests.

    Acknowledgments

    Funding for open access charge:Special Project on Precision Medicine under the National Key R&D Program of China(Grant Nos. 2017YFC0906600 and 2018YFC0910500),National Natural Science Foundation of China(Grant Nos.31671360,81701567,and 31801095),National Program for Support of Top-Notch Young Professionals, Changjiang Scholars Program of China.This study is also supported by the program for HUST Academic Frontier Youth Team,Fundamental Research Funds for the Central Universities,China(Grant Nos.2017KFXKJC001 and 2019kfyRCPY043),and China Postdoctoral Science Foundation (Grant Nos.2018M642816 and 2018M632870).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2020.01.001.

    ORCID

    0000-0002-0920-8639(Wang C)

    0000-0003-2086-3893(Xu H)

    0000-0002-1177-5480(Lin S)

    0000-0002-5052-9151(Deng W)

    0000-0002-9285-8914(Zhou J)

    0000-0002-2018-7728(Zhang Y)

    0000-0002-8509-3503(Shi Y)

    0000-0002-1249-3741(Peng D)

    0000-0002-9403-6869(Xue Y)

    嫩草影院新地址| 中文字幕精品亚洲无线码一区| 亚洲怡红院男人天堂| 精品一区二区免费观看| 亚洲精品日韩av片在线观看| av国产免费在线观看| 久久精品国产自在天天线| 亚洲国产日韩欧美精品在线观看| 99热6这里只有精品| 晚上一个人看的免费电影| 国产在线一区二区三区精 | 激情 狠狠 欧美| 高清午夜精品一区二区三区| 国产午夜福利久久久久久| 91久久精品电影网| 久久99蜜桃精品久久| 久久精品人妻少妇| 国产免费一级a男人的天堂| 国产成人精品久久久久久| 国产爱豆传媒在线观看| 日产精品乱码卡一卡2卡三| 国产一区二区三区av在线| 五月玫瑰六月丁香| 精品欧美国产一区二区三| 日本三级黄在线观看| 人妻系列 视频| www日本黄色视频网| 亚洲经典国产精华液单| 国产毛片a区久久久久| 麻豆一二三区av精品| 国产成人一区二区在线| a级一级毛片免费在线观看| 秋霞伦理黄片| 天堂av国产一区二区熟女人妻| 久久精品熟女亚洲av麻豆精品 | 青青草视频在线视频观看| 久久精品影院6| 乱人视频在线观看| 在现免费观看毛片| 亚洲中文字幕日韩| 美女大奶头视频| 久久精品综合一区二区三区| 最近2019中文字幕mv第一页| 天堂av国产一区二区熟女人妻| 男的添女的下面高潮视频| 国产精品一区二区三区四区久久| 1024手机看黄色片| 成人午夜精彩视频在线观看| 又粗又爽又猛毛片免费看| 亚洲欧洲日产国产| 一级黄片播放器| 少妇的逼水好多| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 亚洲欧美一区二区三区国产| 麻豆一二三区av精品| 日韩人妻高清精品专区| 国产高清国产精品国产三级 | 国产av在哪里看| 国产高清国产精品国产三级 | 日韩中字成人| 国国产精品蜜臀av免费| 欧美性感艳星| 好男人视频免费观看在线| 毛片女人毛片| 国产麻豆成人av免费视频| 91精品国产九色| 99久久成人亚洲精品观看| 午夜精品一区二区三区免费看| 美女被艹到高潮喷水动态| 日韩成人伦理影院| 久久精品国产亚洲av涩爱| 在线观看66精品国产| 成人毛片a级毛片在线播放| 亚洲经典国产精华液单| 三级男女做爰猛烈吃奶摸视频| 全区人妻精品视频| 亚洲精品日韩在线中文字幕| 国产真实伦视频高清在线观看| 亚洲伊人久久精品综合 | 长腿黑丝高跟| 亚洲自偷自拍三级| 美女xxoo啪啪120秒动态图| 毛片女人毛片| 99久国产av精品| 日本一本二区三区精品| 欧美日本视频| 黄色欧美视频在线观看| 成人美女网站在线观看视频| 亚洲图色成人| 国产精品久久电影中文字幕| 在线播放国产精品三级| 中文在线观看免费www的网站| 国产精品电影一区二区三区| 伦理电影大哥的女人| 久久99蜜桃精品久久| or卡值多少钱| 国产精品嫩草影院av在线观看| 中文字幕亚洲精品专区| 亚洲精华国产精华液的使用体验| 一个人看的www免费观看视频| 日本熟妇午夜| 亚洲电影在线观看av| 精品人妻视频免费看| 国产国拍精品亚洲av在线观看| 嫩草影院精品99| 18禁裸乳无遮挡免费网站照片| 久久久久性生活片| 亚洲av不卡在线观看| 午夜视频国产福利| 精品国产露脸久久av麻豆 | 亚洲国产最新在线播放| 欧美色视频一区免费| 麻豆av噜噜一区二区三区| 精品久久久久久成人av| 日韩成人伦理影院| 国产高清不卡午夜福利| 国产乱人视频| 精品国产三级普通话版| 成年女人永久免费观看视频| 69av精品久久久久久| 国内精品宾馆在线| 在线播放无遮挡| 国产精品永久免费网站| 国产老妇女一区| 国产亚洲91精品色在线| 简卡轻食公司| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看 | 日本午夜av视频| 国产精品久久久久久av不卡| 国产成人精品一,二区| 久久久亚洲精品成人影院| 久久综合国产亚洲精品| 成人亚洲精品av一区二区| 精品酒店卫生间| 日韩大片免费观看网站 | 夜夜看夜夜爽夜夜摸| 色哟哟·www| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 国产私拍福利视频在线观看| 水蜜桃什么品种好| 免费看光身美女| 日本wwww免费看| 久久国内精品自在自线图片| 亚洲成av人片在线播放无| 91av网一区二区| 一边摸一边抽搐一进一小说| 免费av观看视频| 黄片wwwwww| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 日韩中字成人| 毛片一级片免费看久久久久| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩东京热| 国产精品国产三级国产av玫瑰| 久99久视频精品免费| 欧美日韩国产亚洲二区| 97超视频在线观看视频| a级毛色黄片| .国产精品久久| 国产成人福利小说| 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 国产精品女同一区二区软件| 老师上课跳d突然被开到最大视频| 一区二区三区高清视频在线| av在线播放精品| 99热这里只有是精品50| 91av网一区二区| 免费观看的影片在线观看| 国产伦精品一区二区三区四那| 日本午夜av视频| 国产亚洲精品久久久com| 亚洲国产日韩欧美精品在线观看| 免费电影在线观看免费观看| 免费看av在线观看网站| 成年女人看的毛片在线观看| av在线观看视频网站免费| 欧美又色又爽又黄视频| 国产黄片视频在线免费观看| 亚洲欧美清纯卡通| 少妇被粗大猛烈的视频| 国产真实伦视频高清在线观看| 九色成人免费人妻av| 成人av在线播放网站| 麻豆乱淫一区二区| 午夜免费男女啪啪视频观看| 免费av观看视频| 国产精品久久久久久久电影| 国产一区二区在线观看日韩| 成人漫画全彩无遮挡| 欧美成人a在线观看| 久99久视频精品免费| 亚洲在线自拍视频| 久久鲁丝午夜福利片| 欧美日韩精品成人综合77777| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看| 欧美+日韩+精品| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 黄色一级大片看看| 国产视频首页在线观看| 最近最新中文字幕大全电影3| 日产精品乱码卡一卡2卡三| 欧美xxxx黑人xx丫x性爽| 午夜视频国产福利| 丰满人妻一区二区三区视频av| a级毛色黄片| 全区人妻精品视频| 国产黄色小视频在线观看| 老女人水多毛片| 2022亚洲国产成人精品| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜 | 国产成人免费观看mmmm| 婷婷色av中文字幕| 中文字幕av成人在线电影| 国产精品久久久久久av不卡| 色5月婷婷丁香| 亚州av有码| 99久国产av精品| 一区二区三区高清视频在线| 成人无遮挡网站| 国产精品人妻久久久久久| 国产成人91sexporn| 精品无人区乱码1区二区| 欧美最新免费一区二区三区| 少妇裸体淫交视频免费看高清| 一级爰片在线观看| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 亚洲电影在线观看av| 久久99热这里只频精品6学生 | 日本wwww免费看| 精品无人区乱码1区二区| 精品国产露脸久久av麻豆 | 国产在视频线精品| 不卡视频在线观看欧美| 国产精品三级大全| 又黄又爽又刺激的免费视频.| 婷婷色麻豆天堂久久 | 亚洲三级黄色毛片| 干丝袜人妻中文字幕| 国产精品电影一区二区三区| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄 | 成人美女网站在线观看视频| 欧美成人午夜免费资源| 免费av不卡在线播放| or卡值多少钱| 啦啦啦韩国在线观看视频| 成人国产麻豆网| a级毛色黄片| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 天堂av国产一区二区熟女人妻| 亚洲国产精品专区欧美| 国产精品久久久久久久久免| 91午夜精品亚洲一区二区三区| 一级毛片我不卡| 国产成人一区二区在线| 国产精品爽爽va在线观看网站| 久久久a久久爽久久v久久| 欧美日韩精品成人综合77777| 国产精品美女特级片免费视频播放器| 亚洲欧美精品自产自拍| 亚洲综合精品二区| 99久久九九国产精品国产免费| 欧美一区二区国产精品久久精品| 欧美一级a爱片免费观看看| 国产一区二区在线观看日韩| 又爽又黄无遮挡网站| 纵有疾风起免费观看全集完整版 | 久久久久网色| 久久精品91蜜桃| 亚洲av熟女| 欧美高清成人免费视频www| 亚洲精品乱久久久久久| 老师上课跳d突然被开到最大视频| av免费观看日本| 少妇熟女欧美另类| 日本免费一区二区三区高清不卡| 久久国内精品自在自线图片| 美女脱内裤让男人舔精品视频| 久久精品久久精品一区二区三区| 麻豆成人av视频| 国产一区二区在线av高清观看| 国产大屁股一区二区在线视频| 哪个播放器可以免费观看大片| 亚洲人与动物交配视频| 欧美一区二区精品小视频在线| 丰满少妇做爰视频| 免费av不卡在线播放| 久久精品久久精品一区二区三区| 搞女人的毛片| 搡老妇女老女人老熟妇| 欧美激情国产日韩精品一区| av在线天堂中文字幕| 黄色欧美视频在线观看| 午夜福利在线观看免费完整高清在| 国产精品久久久久久精品电影| 美女高潮的动态| 日韩av在线免费看完整版不卡| 2021少妇久久久久久久久久久| 免费无遮挡裸体视频| 视频中文字幕在线观看| 高清视频免费观看一区二区 | 久久精品夜色国产| 午夜福利高清视频| 欧美色视频一区免费| 人体艺术视频欧美日本| 午夜福利在线观看吧| 黄色一级大片看看| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 九九热线精品视视频播放| 国产色婷婷99| 九色成人免费人妻av| 99热这里只有是精品50| 亚洲自偷自拍三级| 亚洲三级黄色毛片| 国产一区二区在线av高清观看| 又爽又黄a免费视频| 2022亚洲国产成人精品| 91在线精品国自产拍蜜月| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区三区人妻视频| 又粗又硬又长又爽又黄的视频| 97热精品久久久久久| 国产淫语在线视频| 亚洲电影在线观看av| 色哟哟·www| a级毛色黄片| 久久久久久久久久久免费av| 国产成人91sexporn| 精品一区二区三区视频在线| 国产午夜精品一二区理论片| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 色尼玛亚洲综合影院| 国产成人精品久久久久久| 一级毛片电影观看 | 高清午夜精品一区二区三区| 最后的刺客免费高清国语| 白带黄色成豆腐渣| av国产久精品久网站免费入址| 一个人看的www免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 伊人久久精品亚洲午夜| 色播亚洲综合网| 久久久久国产网址| 六月丁香七月| 你懂的网址亚洲精品在线观看 | 久久精品人妻少妇| 久久人人爽人人片av| 午夜日本视频在线| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 成人亚洲欧美一区二区av| 国产不卡一卡二| 亚洲国产精品成人久久小说| 亚洲经典国产精华液单| 久久久午夜欧美精品| 中文天堂在线官网| 久久久久久久久久黄片| 亚洲av免费高清在线观看| 亚洲国产精品合色在线| 国产成人福利小说| 内地一区二区视频在线| 午夜日本视频在线| 午夜免费激情av| 日韩国内少妇激情av| 在线免费观看的www视频| 久久99热6这里只有精品| 18+在线观看网站| 午夜福利在线在线| 青春草亚洲视频在线观看| 日本黄色片子视频| 亚洲性久久影院| 亚洲国产精品专区欧美| 成人性生交大片免费视频hd| 日韩在线高清观看一区二区三区| 久久99热这里只有精品18| 老司机影院成人| 伦精品一区二区三区| 免费电影在线观看免费观看| 韩国av在线不卡| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| 99热这里只有是精品在线观看| 中文亚洲av片在线观看爽| 亚洲aⅴ乱码一区二区在线播放| 99久久九九国产精品国产免费| 天天躁日日操中文字幕| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区 | 91精品一卡2卡3卡4卡| 中国国产av一级| 内射极品少妇av片p| 狠狠狠狠99中文字幕| 岛国毛片在线播放| 一本久久精品| 22中文网久久字幕| 久久99热6这里只有精品| 美女大奶头视频| 成年av动漫网址| 高清日韩中文字幕在线| 国产探花在线观看一区二区| 中国国产av一级| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 精品国产一区二区三区久久久樱花 | 国产大屁股一区二区在线视频| 国产欧美另类精品又又久久亚洲欧美| 天堂av国产一区二区熟女人妻| 最近视频中文字幕2019在线8| 色5月婷婷丁香| 两个人视频免费观看高清| 一个人看的www免费观看视频| 免费大片18禁| 久久久精品大字幕| 亚洲av中文av极速乱| 男女视频在线观看网站免费| 亚洲成av人片在线播放无| 七月丁香在线播放| 国产乱来视频区| 成年女人看的毛片在线观看| 校园人妻丝袜中文字幕| 亚洲三级黄色毛片| 99久久精品热视频| 干丝袜人妻中文字幕| 寂寞人妻少妇视频99o| 91精品伊人久久大香线蕉| 成人欧美大片| 亚洲成人中文字幕在线播放| 老司机影院成人| 老司机影院毛片| 最近中文字幕高清免费大全6| 啦啦啦韩国在线观看视频| 色综合亚洲欧美另类图片| 嘟嘟电影网在线观看| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 99久久成人亚洲精品观看| www日本黄色视频网| 久久精品夜色国产| 精品国产一区二区三区久久久樱花 | 男人舔女人下体高潮全视频| 99久久精品热视频| 99热全是精品| 欧美日韩综合久久久久久| 97在线视频观看| 国产在视频线在精品| 久久国产乱子免费精品| 亚洲国产精品成人久久小说| www.av在线官网国产| 99在线人妻在线中文字幕| 欧美精品国产亚洲| 久久久久久久久久久丰满| 少妇人妻一区二区三区视频| 国产一级毛片在线| av播播在线观看一区| 少妇熟女欧美另类| 久久热精品热| 在线免费十八禁| 两个人的视频大全免费| 最后的刺客免费高清国语| 国语自产精品视频在线第100页| 免费大片18禁| 精品久久久久久久人妻蜜臀av| 亚洲国产欧洲综合997久久,| 亚洲不卡免费看| 国产真实伦视频高清在线观看| 午夜精品在线福利| 精品国产露脸久久av麻豆 | 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 国产亚洲91精品色在线| 联通29元200g的流量卡| 亚洲熟妇中文字幕五十中出| 欧美97在线视频| 99九九线精品视频在线观看视频| 一级黄色大片毛片| 午夜激情福利司机影院| 看非洲黑人一级黄片| 国产一级毛片在线| 精品久久久久久久久亚洲| 99久久人妻综合| 国产国拍精品亚洲av在线观看| 中文字幕久久专区| АⅤ资源中文在线天堂| 久久久久久久久中文| 99久久无色码亚洲精品果冻| 男的添女的下面高潮视频| 极品教师在线视频| 五月玫瑰六月丁香| 搞女人的毛片| 亚洲av免费高清在线观看| av播播在线观看一区| 午夜久久久久精精品| 国产亚洲最大av| 免费无遮挡裸体视频| 亚洲国产精品成人久久小说| eeuss影院久久| 久久久精品大字幕| 久久99热这里只频精品6学生 | 欧美成人a在线观看| 欧美精品一区二区大全| 久热久热在线精品观看| 亚洲国产欧美在线一区| 不卡视频在线观看欧美| 日韩亚洲欧美综合| 婷婷色综合大香蕉| 一级毛片aaaaaa免费看小| 岛国在线免费视频观看| 日韩欧美 国产精品| 嘟嘟电影网在线观看| av又黄又爽大尺度在线免费看 | 97在线视频观看| 看十八女毛片水多多多| 51国产日韩欧美| 亚洲欧美成人综合另类久久久 | 两个人视频免费观看高清| 亚洲av日韩在线播放| 91精品国产九色| 亚洲熟妇中文字幕五十中出| 成人高潮视频无遮挡免费网站| 亚洲无线观看免费| 久久99热这里只有精品18| 赤兔流量卡办理| 国产精品久久久久久av不卡| 22中文网久久字幕| 亚洲图色成人| 舔av片在线| 熟女电影av网| 成人二区视频| 国产成人精品婷婷| 精品酒店卫生间| 国产精品美女特级片免费视频播放器| 亚洲欧洲国产日韩| 赤兔流量卡办理| 成人无遮挡网站| 亚洲精品,欧美精品| 级片在线观看| 偷拍熟女少妇极品色| 日本-黄色视频高清免费观看| 久久草成人影院| 天堂√8在线中文| 女人久久www免费人成看片 | 少妇被粗大猛烈的视频| 久久这里有精品视频免费| 欧美成人a在线观看| 久久久午夜欧美精品| 国产又黄又爽又无遮挡在线| 午夜亚洲福利在线播放| 欧美精品一区二区大全| av线在线观看网站| 偷拍熟女少妇极品色| 国产成人精品久久久久久| 老司机福利观看| 男女边吃奶边做爰视频| 国产高清不卡午夜福利| 啦啦啦啦在线视频资源| 99在线人妻在线中文字幕| 看十八女毛片水多多多| 久久人人爽人人片av| 国产精品,欧美在线| 精品少妇黑人巨大在线播放 | 五月伊人婷婷丁香| 看片在线看免费视频| 能在线免费看毛片的网站| 黄片无遮挡物在线观看| 联通29元200g的流量卡| 亚洲五月天丁香| 自拍偷自拍亚洲精品老妇| 一级爰片在线观看| 亚洲国产精品成人综合色| 午夜福利在线在线| 成人美女网站在线观看视频| 欧美激情在线99| 国产精品综合久久久久久久免费| 亚洲美女搞黄在线观看| 成人漫画全彩无遮挡| 精品一区二区三区人妻视频| 亚洲不卡免费看| 欧美性感艳星| 纵有疾风起免费观看全集完整版 | a级一级毛片免费在线观看| 一边摸一边抽搐一进一小说| 美女大奶头视频| 国产在线男女| 美女cb高潮喷水在线观看| 精品久久久久久久久亚洲| 少妇的逼水好多| 大香蕉97超碰在线| 欧美bdsm另类| 日韩欧美在线乱码| 大香蕉97超碰在线| 国产精品av视频在线免费观看| 亚洲成av人片在线播放无| 1024手机看黄色片| 国产成人91sexporn| 日韩国内少妇激情av| 免费黄色在线免费观看| 五月玫瑰六月丁香| av天堂中文字幕网|