• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MSIsensor-pro:Fast,Accurate,and Matchednormal-sample-free Detection of Microsatellite Instability

    2020-07-29 05:34:44PengJiaXiaofeiYangLiGuoBowenLiuJiadongLinHaoLiangJianyongSunChengshengZhangKaiYe
    Genomics,Proteomics & Bioinformatics 2020年1期

    Peng Jia ,Xiaofei Yang ,Li Guo ,4,Bowen Liu ,Jiadong Lin ,5,Hao Liang ,Jianyong Sun ,Chengsheng Zhang ,Kai Ye ,4,9,*

    1 School of Automation Science and Engineering,Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    2 MOE Key Laboratory for Intelligent Networks&Networks Security,Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    3 School of Computer Science and Technology,Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    4 School of Life Science and Technology,Xi’an Jiaotong University,Xi’an 710049,China

    5 Leiden Institute of Advanced Computer Science,Leiden University,Leiden 2311 ZE,Netherlands

    6 School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China

    7 Precision Medicine Center,the First Affiliated Hospital of Xi’an Jiaotong University,Xi’an 710061,China

    8 Jackson Laboratory for Genomic Medicine,Farmington,CT 06032,USA

    9 Genome Institute,the First Affiliated Hospital of Xi’an Jiaotong University,Xi’an 710061,China

    KEYWORDS Microsatellite;Polymerase slippage;Multinomial distribution;Microsatellite instability;Tumor

    Abstract Microsatellite instability(MSI)is a key biomarker for cancer therapy and prognosis.Traditional experimental assays are laborious and time-consuming,and next-generation sequencingbased computational methods do not work on leukemia samples,paraffin-embedded samples,or patient-derived xenografts/organoids,due to the requirement of matched normal samples.Herein,we developed MSIsensor-pro,an open-source single sample MSI scoring method for research and clinical applications.MSIsensor-pro introduces a multinomial distribution model to quantify polymerase slippages for each tumor sample and a discriminative site selection method to enable MSI detection without matched normal samples.We demonstrate that MSIsensor-pro is an ultrafast,accurate,and robust MSI calling method.Using samples with various sequencing depths and tumor purities,MSIsensor-pro significantly outperformed the current leading methods in both accuracy and computational cost.MSIsensor-pro is available at https://github.com/xjtu-omics/msisensor-pro and free for non-commercial use,while a commercial license is provided upon request.

    Introduction

    Microsatellite instability(MSI)is a form of hypermutation in the microsatellites of malignancies due to a deficient DNA mismatch repair(MMR)system[1].Significant proportions of tumor samples with MSI status are observed in colorectal cancer(CRC),stomach adenocarcinoma(STAD),and uterine corpus endometrial carcinoma(UCEC)[2,3].Given that MSI is an important molecular phenotype for cancers and a key biomarker for cancer immunotherapy[4-6],two gold standard detection methods,MSI-PCR and MSI-IHC,are widely used for identifying MSI clinically[7,8].However,both methods are laborious, time-consuming, and expensive [7,8].Recently, several next-generation-sequencing (NGS)-based methods have been developed,which show improved time and cost efficiency,and are highly consistent with both gold standards[2,3,9-13].For instance,MSIsensor[10],an FDAauthorized MSI detection solution based on MSK-IMPACT[14],achieved 99.4%concordance and high sensitivity[15].However,these NGS methods have several limitations,such as requiring matched normal samples as control(sometimes inaccessible),computational expense,and being affected by low sequencing depths and low tumor purities[7].Particularly,due to the requirement of matched normal samples,NGS-based methods do not work on leukemia samples,paraffin embedded samples or patient-derived xenografts/organoids.

    A hallmark of MSI is the enrichment of insertions or deletions in microsatellite regions initiated by polymerase slippage[16,17](Figure S1),which we have argued is an iterative process and described using a multinomial distribution(MND)model(Figure S2),providing promising improvements for MSI detection efficacy using NGS data.Here,we report a novel MSI calling method,MSIsensor-pro,which addresses the aforementioned limitations of current NGS-based MSI detection tools by applying an MND model to capture the intrinsic properties of polymerase slippages in a single sample.We demonstrated that MSIsensor-pro is an ultrafast,accurate,and normal sample-free MSI calling method.Moreover,it outperforms all current MSI detection methods and is robust for samples with various sequencing depths,tumor purities,and target sequencing regions.

    Method

    Data preprocessing

    Whole-exome sequencing data and clinical MSI status of 1532 tumor-normal pairs were downloaded from The Cancer Genome Atlas (TCGA) [18]. The sequencing data were aligned against a human reference genome(GRCh38),and MSI was determined using the gold standards[19].The scan module(default parameters)in MSIsensor[10]was used to retrieve the microsatellite regions from the human reference genome.Then,the allelic distribution of each microsatellite for each sample was extracted and used in subsequent analyses.

    Multinomial distribution model for polymerase slippage

    To detect MSI without matched normal samples,we evaluated the stability of microsatellites using single samples.Based on the characteristics of allelic distribution of microsatellites in normal samples(Figures S1 and S2),we proposed that the polymerase slippage during DNA replication is an iterative process and that each step is independently accumulative.Therefore,we use multinomial distribution to model the slippage process in microsatellite sites.We use variable x to denote hysteresis synthesis(causing deletions;x =0),pre-synthesis(causing insertions;x =2),and normal synthesis(x =1)of each step of repeat unit synthesis,and the corresponding probabilities are denoted by p,q,and 1-p-q,respectively.Then,x is subjected to a multinoulli distribution,and the probability distribution function is as follows:

    Thus,for a microsatellite site with n repeats on the reference genome,we assume that y is the repeat length observed from the data.Therefore,we have:

    and the probability distribution function of y is:

    where:

    Here,proNDand proNIdenote the probability of acquiring the observed repeat length due to deletion and insertion,respectively,with the minimum number of steps,while Δ is the probability of using more steps. Since Δ is much smaller and difficult to calculate,we ignore it in practice to preserve computational resources. For a microsatellite region spanned by m reads,we denote the observed repeat length as y1,y2,...yi...,ymand its distribution as Y ={y1,y2,...yi...,ym}. Based on Y, we use the maximum likelihood estimation to compute p and q in Equation(6).

    Finally,p and q can be estimated as follows:

    The values of p and q are positively correlated with the magnitude of polymerase slippages.

    Validation of the MND model

    To evaluate how well parameters p and q from the MND mimic polymerase slippages for microsatellites with various repeat lengths,we randomly selected 27,200 microsatellites from normal control samples of three cancer types in TCGA and estimated the parameters p and q for each microsatellite site.Then,the calculated p and q values(also known as the probabilities of deletion and insertion)were used to simulate allele length distribution. The sites with no significant difference (P <0.05, Kolmogorov-Smirnov test) between real and simulated distribution are defined as fitted sites.Then,the percentage of fitted sites to all test sites was used to evaluate the fitness of the MND model.To investigate polymerase slippages in tumor samples,we estimated p and q for 1532 TCGA tumor samples and compared the differences between MSI and microsatellite stable(MSS)samples.In this study,only samples with status of MSI-H as determined by MSI-PCR are classified as MSI samples,whereas cancer samples with status MSS or MSIL are classified as MSS samples, as reported previously[3].We found that p discriminates between MSI and MSS samples while q does not,indicating that p is an effective metric for MSI classification.

    MSI calling of MSIsensor-pro

    We used p(probability of deletion)from the MND model to evaluate the stability of microsatellites. To distinguish unstable sites from stable ones we determined the mean(μi)and standard deviation(σi)of p in the i-th microsatellite site in normal samples.Specifically,a microsatellite is classified as unstable with p >μi+3σi.We used 1532 normal control samples from three cancer types to build the baseline. The MSI score, defined as the percentage of unstable sites within all detected sites in a sample,is used for MSI calling.

    Discriminative microsatellite site selection

    To find discriminative microsatellite(DMS)sites for MSI calling,we computed the contribution of each site to MSI classification.For a given microsatellite site,the parameter p was used for MSI classification,and then the area under the receiver operating characteristic curve(AUC)was calculated to evaluate the contribution of this site to MSI calling.Finally,sites with AUC >0.65 were defined as DMS sites and used for MSI calling.In this study,340 TCGA samples were used to discover DMS sites, and all 1532 samples were used to test the performance of MSIsensorpro.

    MSIsensor-pro performance evaluation

    To assess the performance of MSIsensor-pro,we benchmarked MSIsensor-pro against MSIsensor[10],MANTIS[12],and mSINGS[11]using the 1532 TCGA tumor samples.The MSI score was used to rank sites for MSI classification,and AUC was used to evaluate the performance of each method(File S1).CPU usage,memory,and runtime for all these methods were tested on a TCGA sample,TCGA-AD-A5EJ,using a Linux machine running Ubuntu18.04 OS with Intel(R)Core(TM)i5-7500 CPU@3.40 GHz and 32-GB memory.

    To compare the performances of the four methods on samples with low sequencing depths or low tumor purities,we used 178 CRC(78 MSI and 100 MSS)tumor-normal paired samples from TCGA to simulate test data.We downsampled the raw sequencing data to 5×,10×,20×,40×,60×,and 80×sequencing depths and mixed different proportions of tumor and normal sequencing data to generate samples with tumor purities ranging from 5%to 80%.We called MSI for all simulated data and calculated the AUC for each method.To assess the performance of MSIsensor-pro using fewer sites,we selected microsatellite sets containing the top 1,2,5,10,20,50,100,200,500,and 1000 DMS sites for MSI calling.In addition, we randomly selected various number of microsatellites from DMS sites for MSI calling to examine the number of sites sufficient for MSI calling by MSIsensorpro.

    Results

    Evaluation of MND model

    To quantitatively describe the polymerase slippages present in a single sample,we first examined the allele length distributions of 27,200 microsatellites in 1532 normal samples from TCGA[18](Tables S1 and S2;Method).The distributions flattened(the variances became larger and the modes deviated from expectation) with increases in the repeat length of microsatellites in the reference genome(Figure 1A),suggesting that polymerase slippage could be an iterative process.We proposed that polymerase slippages are independently cumulative in the DNA replication process and could be modeled by the MND model.Here,we used p and q to denote the probabilities of hysteresis synthesis(causing deletions)and pre-synthesis(causing insertions), respectively, for each replication unit(Figure S2).We next estimated p and q for each microsatellite to quantify the polymerase slippage in a given allele length distribution.

    To explore the characteristics of p and q in the MND model,we applied the model to 1532 TCGA normal samples.We obtained a total of 11,666 microsatellites with sufficient read coverage(>20×)in more than half of the samples for subsequent study(Tables S1 and S2).We found that the average probability of hysteresis synthesis,p,is significantly larger(P <0.05,Wilcoxon rank-sum test)than that of presynthesis,q(Figure S3),at these sites,indicating that polymerase slippages tend to cause more deletions than insertions at microsatellites,confirming previous reports[2,17].To evaluate the power of our MND model for describing polymerase slippages in DNA replication,we simulated the allele length distributions at each microsatellite site with their corresponding computed p and q values, and compared them with the observed values from sequencing data.We found that the allele length distributions of the simulated data were consistent with those of observed values at 91.97%of microsatellites and the similarities between the two distributions decreased with increasing repeat length(Figures 1B and S4 and S5),confirming that the MND model is capable of describing polymerase slippages at microsatellite sites.

    Figure 1 MND model of polymerase slippages

    Performance of MSIsensor-pro

    Based on the MND model,we developed a method called MSIsensor-pro to detect MSI.We applied our MND model to 1532 TCGA tumor samples with clinical MSI status and obtained their p and q values at each microsatellite site.We found that the MSI samples have significantly larger p values than MSS samples(P <2×1016),while q values in the MSI and MSS samples are not significantly different(Figures 1C,D and S6-S9).Thus,it is conceivable that either the higher incidence of polymerase slippages or failure to fix deletion errors,and therefore,the greater instability of microsatellites in MSI as opposed to MSS,could be attributed to more deletions rather than insertions[9].Therefore,parameter p could evaluate the stability of each microsatellite site.MSIsensorpro classifies the i-th microsatellite as unstable when its p is larger than μi+3σi,in which μiand σiare the mean and standard deviation,respectively,of p in 1532 normal samples at the i-th microsatellite. The fraction of unstable sites in a given microsatellite set is used to score MSI in a tumor sample(Figure S10 and Methods).

    To assess the performance of MSIsensor-pro in terms of accuracy and computational cost,we compared MSIsensorpro against MSIsensor[10],MANTIS[12],and mSINGS[11].Among them,MSIsensor and MANTIS require tumornormal-paired samples, whereas mSINGS requires tumoronly samples(Tables S1 and S2;File S2).First,we applied MSIsensor-pro to 1532 TCGA tumor samples based on 11,666 preselected microsatellites to detect MSI and then compared the MSI detection accuracy with the other three methods in the same samples using AUC.We noticed that even without matched normal samples, AUC values of MSIsensor-pro are comparable to those of MSIsensor and MANTIS,but much higher than those of mSINGS(Table 1 and Table S3).

    Sequencing data from samples with low sequencing coverage or low tumor purities are common challenges for robust MSI detection in clinical applications[15].To indicate the robustness of MSIsensor-pro for various sequencing depths or tumor purities,we evaluated the performance of all four aforementioned methods on 178 CRC samples(78 MSI and 100 MSS)in both original settings and varied sequencing depths or tumor purities.Multiple sequencing depths(5×,10×,20×,40×,60×,and 80×)resulted from simulating and downsampling the original data,while various tumor purities(5%,10%,20%,40%,60%,and 80%)were simulated by mixing the tumor and matched normal samples(Method).Across samples of diverse depths and tumor purities,AUC values of MSIsensor-pro,MSIsensor,and MANTIS were all much higher than those of mSINGS.Notably,MSIsensorpro, requiring tumor samples only, achieved performance comparable to that of MSIsensor and MANTIS,both ofwhich require normal-tumor-paired samples to call MSI(Figure 2A;Tables S4-S7).These results confirm the robustness of MSIsensor-pro and indicate that MSIsensor-pro can achieve high accuracy on samples with low sequencing depth(e.g.,20×)or low tumor purity(e.g.,40%).

    Table 1 AUC obtained using four MSI detection methods for 1532 samples from TCGA

    To further evaluate the computational performances of all these four methods, we called MSI for a TCGA sample TCGA-AD-A5EJ(35-GB tumor and 12-GB normal bam files)using these four methods on a Linux machine running Ubuntu18.04 OS with Intel(R)Core(TM)i5-7500 CPU@3.40 GHz and 32-GB memory.MSIsensor-pro and MSIsensor required only 4 min and 15 min,respectively,thus performing significantly faster than mSINGS (94 min) and MANTIS(119 min).In addition,MSIsensor-pro consumed much less memory than MSIsensor,mSINGS,and MANTIS(Table 2;Figures S11 and S12).

    Figure 2 MSI calling accuracy in TCGA dataset

    Table 2 Peak RAM and runtime used by four MSI detection methods for the sample TCGA-AD-A5EJ

    While MSIsensor-pro exhibited satisfactory all-around performance in detecting MSI using the 11,666 preselected microsatellites,these sites seemed to have an unequal contribution to MSI classifications(Figure S13).We therefore evaluated the contribution of each microsatellite based on MND parameter p and identified 7698 sites(Table S8)with strong contributions(AUC >0.75),which are defined as DMS sites(Figure S13,Table S8,and Method).When only DMS sites were used, MSIsensor-pro exhibited a slight improvement compared to MSI detection using all 11,666 sites and performed superiorly to all other methods in the 1532 TCGA samples.Using DMS sites,performance of MSIsensor-pro was further enhanced with respect to sequencing data of low depths,especially for depths below 40×(Figure 2A;Tables S4 and S5).For data of different tumor purities using DMS sites,MSIsensor-pro exhibited performance comparable to those of other tumor-normal-paired methods for tumor purities of over 40%. However, for lower tumor purities(<40%),although the performances of all methods decreased,the performance of MSIsensor-pro on DMS sites remained superior to all other methods examined(Figure 2A;Tables S6 and S7).

    Since only a portion of all 11,666 sites(DMS sites)were sufficient for high performance MSI calling by MSIsensor-pro,we wonder whether an even smaller subset of DMS sites would be adequate for MSIsensor-pro to achieve similar performance,which would reduce time and cost in practical clinical applications.We therefore assessed the MSI calling performance of MSIsensor-pro on microsatellite sets from single type of tumor samples or in combination containing the top 1,2,5,10,20,50,100,200,500,and 1000 DMS sites based on their contributions.We found that even with only 1 top site,MSIsensor-pro achieved AUC values ranging 0.92-0.96(Figure 2B;Tables S9 and S10).The performance improved with increases in the number of top sites and reached a plateau when using the top 20 sites(0.98 AUC).In addition,by testing MSIsensorpro performance on various number of randomly selected DMS sites,we sought to identify small panels of DMS sites that are potentially effective at robust MSI calling.Indeed,we found that the AUC values for MSI detection steadily increased with growing number of randomly-selected DMS sites.When as few as 50 random sites were used,the AUC was approximately 0.98 and remained stable.Taken together,these results suggest that MSIsensor-pro could be applied to various target sequencing panels with as few as 50 sites(Figures 2C and S14;Tables S9 and S10).

    Discussion

    In this study,we completely redesigned the MSI scoring strategy.By incorporating a MND model for polymerase slippage,MSIsensor-pro scores MSI on tumor samples without matched normal controls,enabling detection of MSI status on patientderived xenografts/organoids, leukemia, and paraffinembedded samples.In addition,MSIsensor-pro is able to score MSI using as few as 50 microsatellite sites(Figure 2C),indicating its potential to compute MSI status in cancer gene panels,stool DNA,and circulating tumor DNA from liquid biopsy samples.

    MSIsensor-pro exhibits remarkable advantages in terms of both accuracy and computational cost,compared to the current leading NGS-based MSI scoring methods tested in this study,especially when processing samples with low sequencing depths or low tumor purities (Figure 2). MSIsensor-pro improves AUC values of MSI classification with tumor only samples from 0.594(mSINGS)to 0.994 in 1532 TCGA samples(Table 1).We have also demonstrated the advantageous performance of MSIsensor-pro using data with various tumor purities(Figure 2A).We will further optimize our approach to integrate tumor purity information to our MND model for polymerase slippage.

    In addition to these methodological analyses,we also examine the properties of DMS sites and find that these sites are closer to splicing sites and located in genes with higher expression than the other sites(Figures S15-S17),indicating potential roles of DMS sites in tumorigenesis.

    Code availability

    MSIsensor-pro is available at https://github.com/xjtu-omics/msisensor-pro with help documentation and demo data.It is free for non-commercial use by academic,government,and non-profit/not-for-profit institutions.A commercial version of the software is available and licensed through Xi’an Jiaotong University. For more information, please contact kaiye@xjtu.edu.cn.

    Data availability

    Primary sequencing data,gold standard MSI status,and RNA expression data can be downloaded from TCGA Research Network(http://cancergenome.nih.gov/).All results generated by this study are available in Supplementary materials from the article.

    Authors’contributions

    KY conceived of,designed,and supervised the study;PJ,BL,and JS developed the multinomial distribution model for polymerase slippage estimation; PJ and HL implemented the source code of MSIsensor-pro;PJ evaluated the performances of MSIsensor-pro and the other three MSI detection methods.PJ,JL,XY,LG,CZ,and KY wrote the manuscript.All authors contributed to critical revision of the manuscript,read and approved the final version.

    Competing interests

    The authors declare no competing financial interests.

    Acknowledgments

    We thank Beifang Niu,Tingjie Wang,Yongyong Kang,Xiujuan Li,and Shenghan Gao for helpful discussions regarding data analysis and Jing Hai for administrative and technical support. This study was supported by the National Key R&D Program of China(Grant Nos.2018YFC0910400 and 2017YFC0907500),the National Natural Science Foundation of China(Grant Nos.31671372,61702406,31701739,and 31970317),the National Science and Technology Major Project of China(Grant No.2018ZX10302205),as well as the‘‘World-Class Universities and the Characteristic Development Guidance Funds for the Central Universities”and the General Financial Grant from the China Postdoctoral Science Foundation(Grant Nos.2017M623178 and 2017M623188).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2020.02.001.

    ORCID

    0000-0002-3429-919X(Jia P)

    0000-0002-5118-7755(Yang X)

    0000-0001-6100-3481(Guo L)

    0000-0001-6570-1981(Liu B)

    0000-0002-8116-5901(Lin J)

    0000-0001-7987-6002(Liang H)

    0000-0002-9188-1856(Sun J)

    0000-0002-5144-7115(Zhang C)

    0000-0002-2851-6741(Ye K)

    看片在线看免费视频| 高清毛片免费观看视频网站| 在线观看美女被高潮喷水网站 | 级片在线观看| 亚洲国产精品久久男人天堂| 偷拍熟女少妇极品色| 女人十人毛片免费观看3o分钟| 99精品欧美一区二区三区四区| 久久久久亚洲av毛片大全| 久久欧美精品欧美久久欧美| 亚洲 国产 在线| 日本熟妇午夜| 成人高潮视频无遮挡免费网站| 婷婷亚洲欧美| 波野结衣二区三区在线 | 日韩精品青青久久久久久| av中文乱码字幕在线| 国产精品久久久久久久电影 | 网址你懂的国产日韩在线| 欧美乱码精品一区二区三区| 中文字幕av在线有码专区| 脱女人内裤的视频| 人妻丰满熟妇av一区二区三区| 国产色爽女视频免费观看| 国产精品永久免费网站| 男女那种视频在线观看| 色尼玛亚洲综合影院| xxx96com| 日日摸夜夜添夜夜添小说| 亚洲avbb在线观看| 久久人妻av系列| 久久久久国产精品人妻aⅴ院| 动漫黄色视频在线观看| 午夜影院日韩av| 国产真人三级小视频在线观看| 国产真人三级小视频在线观看| 国内揄拍国产精品人妻在线| 九色成人免费人妻av| 国产av不卡久久| 亚洲内射少妇av| 麻豆国产97在线/欧美| 欧美一区二区国产精品久久精品| 叶爱在线成人免费视频播放| 18禁裸乳无遮挡免费网站照片| 俺也久久电影网| 亚洲最大成人手机在线| 午夜激情欧美在线| 内地一区二区视频在线| a级一级毛片免费在线观看| 午夜免费男女啪啪视频观看 | 国产99白浆流出| 每晚都被弄得嗷嗷叫到高潮| 国产成人系列免费观看| 久久这里只有精品中国| 欧美性感艳星| 色av中文字幕| 欧美不卡视频在线免费观看| 精品国产三级普通话版| 99riav亚洲国产免费| 精品久久久久久成人av| 国产老妇女一区| 国产精品久久久人人做人人爽| 男女视频在线观看网站免费| 日本三级黄在线观看| 熟妇人妻久久中文字幕3abv| eeuss影院久久| 亚洲欧美日韩卡通动漫| 高清在线国产一区| 精品一区二区三区人妻视频| 变态另类丝袜制服| 97超级碰碰碰精品色视频在线观看| 怎么达到女性高潮| 两个人的视频大全免费| 成人特级av手机在线观看| 亚洲人与动物交配视频| 国产伦在线观看视频一区| 亚洲成人久久性| 亚洲美女视频黄频| 国产伦精品一区二区三区视频9 | 亚洲一区二区三区色噜噜| 大型黄色视频在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产激情欧美一区二区| 亚洲第一电影网av| 日韩欧美国产在线观看| 欧美最新免费一区二区三区 | 免费av毛片视频| 久久国产精品影院| 啦啦啦观看免费观看视频高清| 亚洲男人的天堂狠狠| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩瑟瑟在线播放| 波野结衣二区三区在线 | 97碰自拍视频| 久久久久久人人人人人| 一级毛片高清免费大全| 很黄的视频免费| 人人妻人人看人人澡| 午夜福利在线观看免费完整高清在 | 欧美黑人欧美精品刺激| 欧美成人a在线观看| 97超级碰碰碰精品色视频在线观看| 天堂av国产一区二区熟女人妻| 精品国产超薄肉色丝袜足j| 丰满人妻一区二区三区视频av | 亚洲欧美精品综合久久99| 国产免费男女视频| 日本五十路高清| 亚洲激情在线av| 搡老妇女老女人老熟妇| 午夜激情欧美在线| 日日摸夜夜添夜夜添小说| 亚洲国产高清在线一区二区三| 日韩 欧美 亚洲 中文字幕| 俄罗斯特黄特色一大片| 成人av在线播放网站| 两个人看的免费小视频| 色老头精品视频在线观看| 在线观看66精品国产| 97碰自拍视频| 午夜a级毛片| 亚洲18禁久久av| 久久久精品大字幕| 搡老熟女国产l中国老女人| 九九在线视频观看精品| 国产三级在线视频| 有码 亚洲区| 欧美xxxx黑人xx丫x性爽| 夜夜夜夜夜久久久久| 黑人欧美特级aaaaaa片| 成人国产综合亚洲| 亚洲国产欧洲综合997久久,| 午夜激情福利司机影院| 黄色成人免费大全| 90打野战视频偷拍视频| svipshipincom国产片| 精品国产亚洲在线| 我要搜黄色片| 精品久久久久久久久久免费视频| 男女午夜视频在线观看| 露出奶头的视频| 国产伦人伦偷精品视频| 亚洲成人久久性| 久久久久久人人人人人| 欧美在线黄色| 综合色av麻豆| 成年人黄色毛片网站| 国产精品永久免费网站| 国产亚洲精品av在线| 小说图片视频综合网站| 精品人妻偷拍中文字幕| 久久这里只有精品中国| 国产一区二区亚洲精品在线观看| 国产成人影院久久av| 国产美女午夜福利| 久久人妻av系列| 搡老熟女国产l中国老女人| 在线观看免费视频日本深夜| 午夜影院日韩av| 在线免费观看的www视频| 91在线精品国自产拍蜜月 | 国产伦精品一区二区三区四那| 亚洲中文字幕一区二区三区有码在线看| 久久香蕉国产精品| 91麻豆av在线| 日韩欧美 国产精品| 制服丝袜大香蕉在线| 国产av一区在线观看免费| 老汉色∧v一级毛片| 亚洲av电影在线进入| 成熟少妇高潮喷水视频| 日韩免费av在线播放| 亚洲av熟女| 99热这里只有是精品50| 美女大奶头视频| 久久久久国内视频| 亚洲国产欧美网| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜亚洲精品久久| 免费无遮挡裸体视频| 波多野结衣高清作品| 国产精品亚洲av一区麻豆| 亚洲精品一卡2卡三卡4卡5卡| 长腿黑丝高跟| 国产久久久一区二区三区| 国内少妇人妻偷人精品xxx网站| 性色av乱码一区二区三区2| 国产综合懂色| 18禁黄网站禁片免费观看直播| 国产成人影院久久av| 亚洲国产欧美网| 男女做爰动态图高潮gif福利片| 最近在线观看免费完整版| 国产伦在线观看视频一区| 国产精品一及| 亚洲欧美精品综合久久99| 精品一区二区三区人妻视频| 亚洲精品影视一区二区三区av| 啦啦啦观看免费观看视频高清| 欧美av亚洲av综合av国产av| 午夜免费激情av| 中文资源天堂在线| 99精品欧美一区二区三区四区| 国产69精品久久久久777片| 亚洲成人免费电影在线观看| 51午夜福利影视在线观看| 日本一本二区三区精品| 男女下面进入的视频免费午夜| 亚洲av免费高清在线观看| 老司机深夜福利视频在线观看| 丰满人妻一区二区三区视频av | 我的老师免费观看完整版| 亚洲欧美一区二区三区黑人| 欧美大码av| 午夜福利18| 黄片大片在线免费观看| 激情在线观看视频在线高清| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 国产午夜精品久久久久久一区二区三区 | 欧美一级毛片孕妇| 亚洲精品在线观看二区| 国产淫片久久久久久久久 | 国产极品精品免费视频能看的| 叶爱在线成人免费视频播放| 99久久精品一区二区三区| 久久这里只有精品中国| 成年女人毛片免费观看观看9| 国产99白浆流出| 最近最新中文字幕大全免费视频| 欧美最黄视频在线播放免费| 国产精品久久久久久精品电影| 一级黄片播放器| 国产亚洲精品久久久久久毛片| 乱人视频在线观看| 久久人妻av系列| 97人妻精品一区二区三区麻豆| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 偷拍熟女少妇极品色| 黑人欧美特级aaaaaa片| 欧美在线黄色| 欧美丝袜亚洲另类 | 国产精品一区二区三区四区免费观看 | 午夜福利成人在线免费观看| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 国产伦精品一区二区三区四那| 日韩欧美一区二区三区在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人精品中文字幕电影| 非洲黑人性xxxx精品又粗又长| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 中文资源天堂在线| 久久精品影院6| svipshipincom国产片| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频| 欧美最新免费一区二区三区 | 免费看十八禁软件| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 欧美乱码精品一区二区三区| 久久精品综合一区二区三区| 国产色爽女视频免费观看| www日本黄色视频网| 操出白浆在线播放| 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影| 久久久久久久久中文| 99热只有精品国产| 又爽又黄无遮挡网站| 日韩人妻高清精品专区| 久久久色成人| 亚洲精品在线美女| 久久久久九九精品影院| 黄色日韩在线| 欧美zozozo另类| 99久久99久久久精品蜜桃| 亚洲精品色激情综合| 人妻久久中文字幕网| 日韩欧美国产一区二区入口| 久9热在线精品视频| av福利片在线观看| 夜夜爽天天搞| 国产精品一区二区三区四区免费观看 | 天堂影院成人在线观看| 国产精品香港三级国产av潘金莲| 在线免费观看不下载黄p国产 | 国产精品1区2区在线观看.| 国产精品女同一区二区软件 | 偷拍熟女少妇极品色| 在线看三级毛片| 精品久久久久久久久久久久久| 日本黄色视频三级网站网址| 亚洲国产欧美人成| x7x7x7水蜜桃| 国产亚洲精品av在线| 3wmmmm亚洲av在线观看| 国产精品 国内视频| 99热这里只有是精品50| 国产高潮美女av| 长腿黑丝高跟| 国产真实乱freesex| 在线播放无遮挡| 亚洲精品在线观看二区| 偷拍熟女少妇极品色| 亚洲男人的天堂狠狠| 久久国产精品影院| 国产欧美日韩一区二区三| 免费看十八禁软件| 日日摸夜夜添夜夜添小说| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 天天躁日日操中文字幕| 丰满人妻熟妇乱又伦精品不卡| 日本熟妇午夜| 久久这里只有精品中国| 精品一区二区三区视频在线 | 国产精品爽爽va在线观看网站| 精品国内亚洲2022精品成人| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 88av欧美| 免费在线观看日本一区| 亚洲av成人av| 真实男女啪啪啪动态图| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 91麻豆精品激情在线观看国产| 国产精品 欧美亚洲| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 一本一本综合久久| 人妻夜夜爽99麻豆av| 成年人黄色毛片网站| 亚洲成人免费电影在线观看| 国产精华一区二区三区| 999久久久精品免费观看国产| 中国美女看黄片| 国产精品98久久久久久宅男小说| 老鸭窝网址在线观看| 国产精品国产高清国产av| 乱人视频在线观看| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影| 国产精品久久久久久人妻精品电影| 日本熟妇午夜| 亚洲国产精品成人综合色| 国产精品乱码一区二三区的特点| 69av精品久久久久久| www日本在线高清视频| 我要搜黄色片| 色老头精品视频在线观看| 最近最新中文字幕大全免费视频| 老司机在亚洲福利影院| www.www免费av| 国产精品亚洲一级av第二区| 亚洲最大成人手机在线| 国产精品综合久久久久久久免费| 久99久视频精品免费| 老熟妇仑乱视频hdxx| 亚洲国产色片| 国产乱人视频| 色视频www国产| 国产av在哪里看| 亚洲成a人片在线一区二区| av天堂在线播放| 非洲黑人性xxxx精品又粗又长| 嫩草影视91久久| 三级毛片av免费| 嫩草影视91久久| 一级黄片播放器| 亚洲真实伦在线观看| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 国产主播在线观看一区二区| 国产又黄又爽又无遮挡在线| 亚洲国产欧洲综合997久久,| 日日夜夜操网爽| 床上黄色一级片| 天堂av国产一区二区熟女人妻| 久久久国产精品麻豆| 9191精品国产免费久久| 偷拍熟女少妇极品色| 内射极品少妇av片p| а√天堂www在线а√下载| 内射极品少妇av片p| 最近最新中文字幕大全免费视频| av天堂中文字幕网| 男人和女人高潮做爰伦理| 99久久久亚洲精品蜜臀av| 国产成人aa在线观看| 久久精品人妻少妇| 最新在线观看一区二区三区| 五月伊人婷婷丁香| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美三级三区| 看免费av毛片| 乱人视频在线观看| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 午夜福利在线在线| 免费看日本二区| 亚洲精品成人久久久久久| 狂野欧美激情性xxxx| 男女下面进入的视频免费午夜| 久久伊人香网站| 久久中文看片网| 夜夜躁狠狠躁天天躁| 成年女人永久免费观看视频| 欧美+日韩+精品| 两个人视频免费观看高清| 一个人看的www免费观看视频| 欧美黑人巨大hd| 日韩中文字幕欧美一区二区| 国产精品美女特级片免费视频播放器| 久久久久久人人人人人| 欧美黄色淫秽网站| 国产蜜桃级精品一区二区三区| xxx96com| 亚洲av日韩精品久久久久久密| 好看av亚洲va欧美ⅴa在| 岛国在线免费视频观看| 亚洲中文字幕日韩| 成人av在线播放网站| 亚洲精品在线美女| 99热6这里只有精品| 丁香欧美五月| 国产综合懂色| 久久久国产精品麻豆| 欧美乱色亚洲激情| 精品久久久久久久末码| 91久久精品电影网| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久成人av| 国产免费av片在线观看野外av| 国产成人a区在线观看| 久久久久久久午夜电影| 亚洲va日本ⅴa欧美va伊人久久| 国产精品 国内视频| 午夜福利在线观看免费完整高清在 | 国产视频内射| 搡女人真爽免费视频火全软件 | 国产精品香港三级国产av潘金莲| 国产高清三级在线| 一个人免费在线观看的高清视频| 国产精品国产高清国产av| 久久久久九九精品影院| 男人舔奶头视频| 亚洲第一欧美日韩一区二区三区| 宅男免费午夜| 久久久久久久久中文| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 毛片女人毛片| 婷婷精品国产亚洲av在线| 亚洲av电影不卡..在线观看| 中文字幕人妻丝袜一区二区| 亚洲成av人片在线播放无| 欧美zozozo另类| 欧美三级亚洲精品| 99热6这里只有精品| 一a级毛片在线观看| 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 白带黄色成豆腐渣| 久9热在线精品视频| 51国产日韩欧美| 2021天堂中文幕一二区在线观| 国产成人啪精品午夜网站| www.999成人在线观看| 9191精品国产免费久久| 中亚洲国语对白在线视频| 日韩欧美 国产精品| 性欧美人与动物交配| 精品国产美女av久久久久小说| 一级毛片女人18水好多| 男女之事视频高清在线观看| 国产精品久久久久久久电影 | 久久精品夜夜夜夜夜久久蜜豆| 国产成人av激情在线播放| 亚洲av电影在线进入| 手机成人av网站| 毛片女人毛片| 亚洲成人精品中文字幕电影| 制服人妻中文乱码| 国产一区二区三区在线臀色熟女| 国产精品98久久久久久宅男小说| 亚洲成人久久爱视频| 国产一区在线观看成人免费| 精品久久久久久久久久免费视频| 99国产综合亚洲精品| 又紧又爽又黄一区二区| 99热6这里只有精品| 久久亚洲精品不卡| a级一级毛片免费在线观看| 成人午夜高清在线视频| 国产一区二区三区视频了| 欧美3d第一页| 黄片小视频在线播放| 波多野结衣巨乳人妻| 免费人成视频x8x8入口观看| 两个人的视频大全免费| 精品日产1卡2卡| 欧美黑人欧美精品刺激| 欧美绝顶高潮抽搐喷水| 青草久久国产| 美女大奶头视频| 99热这里只有是精品50| 国产伦人伦偷精品视频| 不卡一级毛片| 亚洲欧美精品综合久久99| 一二三四社区在线视频社区8| 特级一级黄色大片| 欧美乱妇无乱码| 亚洲欧美日韩无卡精品| 天堂网av新在线| 51午夜福利影视在线观看| 国内精品美女久久久久久| e午夜精品久久久久久久| 精品国产美女av久久久久小说| 人人妻人人看人人澡| 久久精品91无色码中文字幕| 国产精品影院久久| 丰满人妻熟妇乱又伦精品不卡| 久久久国产精品麻豆| 波野结衣二区三区在线 | 亚洲中文字幕一区二区三区有码在线看| 日本黄色片子视频| 88av欧美| 天天一区二区日本电影三级| 好男人在线观看高清免费视频| av国产免费在线观看| 国产探花在线观看一区二区| 日本a在线网址| 亚洲成人久久性| 欧美极品一区二区三区四区| 国产亚洲欧美在线一区二区| av天堂中文字幕网| 99久久精品国产亚洲精品| 国产精品,欧美在线| 9191精品国产免费久久| 亚洲五月婷婷丁香| 日韩人妻高清精品专区| 成年免费大片在线观看| 午夜福利欧美成人| 色尼玛亚洲综合影院| 精品国产美女av久久久久小说| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 国产成人啪精品午夜网站| 婷婷六月久久综合丁香| 亚洲第一电影网av| 在线免费观看的www视频| 可以在线观看毛片的网站| 国产三级黄色录像| 中文资源天堂在线| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 高清毛片免费观看视频网站| 麻豆久久精品国产亚洲av| 久9热在线精品视频| 国产精品影院久久| 亚洲avbb在线观看| 欧美黄色片欧美黄色片| 亚洲中文日韩欧美视频| 性色av乱码一区二区三区2| 亚洲av二区三区四区| 国产精品免费一区二区三区在线| 国产日本99.免费观看| 波多野结衣巨乳人妻| 亚洲av熟女| 亚洲中文字幕日韩| 亚洲av日韩精品久久久久久密| 亚洲人成网站高清观看| 亚洲性夜色夜夜综合| 国产精品乱码一区二三区的特点| 久久久久国内视频| 神马国产精品三级电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久大av| 国产成人a区在线观看| 精品久久久久久久毛片微露脸| 岛国在线观看网站| 俺也久久电影网| 日韩人妻高清精品专区| 97超级碰碰碰精品色视频在线观看| 欧美在线黄色| 男女那种视频在线观看| 国产亚洲欧美在线一区二区| 日本熟妇午夜| 桃红色精品国产亚洲av| 中文字幕av成人在线电影| 色视频www国产| 国产免费av片在线观看野外av| 人妻丰满熟妇av一区二区三区| 欧美一区二区亚洲| 又紧又爽又黄一区二区| 欧美日韩一级在线毛片| 国产成人系列免费观看|