• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Macroscopic Dynamic Constitutive Model for Ceramic Materials

    2020-07-28 18:22:26TANGRuitaoXULiuyunWENHemingWANGZihao
    高壓物理學(xué)報(bào) 2020年4期

    TANG Ruitao, XU Liuyun, WEN Heming, WANG Zihao

    (CAS Key Laboratory for Mechanical Behavior and Design of Materials,University of Science and Technology of China, Hefei 230027, Anhui, China)

    Abstract: A macroscopic constitutive model is presented herein for ceramic materials subjected to dynamic loadings by closely following a previous study on concrete. The equation of state is described by a polynomial equation and the strength model takes into account various effects such as pressure hardening,Lode angle, strain rate, shear damage and tensile softening. In particular, the strength surface of ceramic materials is characterized by a new function which levels out at very high pressures and strain rate effect is taken into account by dynamic increase factor (DIF) which excludes inertial effect. The present model is verified against some available experimental data for ceramic materials in terms of pressure-volumetric response, quasi-static strength surface and strain rate effect. The model is further verified against the data for triaxial test by single element simulation approach and the test data for depth of penetration in AD99.5/RHA struck by tungsten alloy penetrators. Furthermore, comparisons are also made between numerical results of the present model and the JH-2 model. It is demonstrated that the present model can be employed to describe the mechanical behavior of ceramic materials under different loading conditions with reasonable confidence and is advantageous over the existing model.

    Keywords: ceramic material;constitutive model;stain rate effect;triaxial test;JH-2 model;single element simulation approach

    Ceramic materials have been increasingly used in armors, personal armor system, aeronautic engineering and vehicle engineering due to its excellent ballistic performance. An understanding of the response and failure of ceramic materials under impact loading is of great significance for the design and assessment of military hardware and protective structures.

    As ballistic tests are expensive to perform and time consuming, numerical simulations have been widely employed in the design and optimization of ceramic armors. However, the accuracy of numerical simulations depends on the dynamic constitutive model for ceramic materials to a large extent. To this end, many models have been put forward[1-8]. Fahrenthold[1]proposed a continuum damage model for fracture of brittle solids under dynamic loading in which Weibull strength distribution was employed to account for the effects of flaw size distribution on the damage accumulation rate. The model was used to compute the depth of penetration in a steel plate impacted by a sphere of alumina without being applied to simulate the behavior of ceramic armors subjected to projectile impact. Rajendran[2]modeled the impact behavior of AD85 ceramic under multiaxial loading by assuming an existing distribution of micro-cracks and employing a criterion for crack growth based on theories of dynamic fracture mechanics. The strength of the intact material was rate dependent, and the inelastic deformation was modeled using an elastic-plastic cracking rule. The model predictions were found to be in good agreement with the test data obtained from plate impact tests. The most widely used constitutive model for ceramic materials in many commercial codes is the Johnson-Holmquist model (JH-2)[3]. The model employs two strength surfaces to describe the pressure-dependent compressive strength of the intact and failed materials, respectively. However, in the model strain rate effect is described by the same form of function adopted in the constitutive models for metals and concrete materials, which has been found to be inconsistent with the dynamic mechanical behavior in recent studies[9-12]. Furthermore, tensile softening cannot be accurately predicted, and no differentiation was made between the effects of strain rate and inertia (containment).

    The main objective of this paper is to establish a macroscopic dynamic constitutive model for ceramic materials by closely following the previous work on concrete[9]and on the basis of the experimental observations for some ceramic materials. Various equations of the constitutive model are given and compared with some available experimental data for ceramic materials in terms of pressure-volumetric response, quasi-static strength surface and strain rate effect. Furthermore, the model is also verified against the data for triaxial test by single element simulation approach.

    1 A Macroscopic Constitutive Model for Ceramics

    A dynamic macroscopic constitutive model for ceramic materials is developed in the following sections based on the computational constitutive model for concrete subjected to dynamic loadings[9]with some modifications being made. There are two points which should be highlighted here, namely, (1) the pressurevolumetric response is described by polynomial equation and the phase transition (e.g. AlN ceramics) as the pressure increases to a certain value is considered; (2) a hyperbolic tangent function is employed to describe the pressure dependent shear strength surfaces of ceramic materials which level out at very high pressures.

    1.1 Equation of State

    Ceramics are complex granular materials, which contain a large number of micro cracks and voids just as concrete material. On the one hand, it has been observed experimentally that the volumetric strains of Al2O3and SiC increase with increasing pressure[13-16]and the equation of state for this category of ceramic materials can be expressed as polynomial equation, viz.

    1.2 Strength Model

    2 Verification of the Newly-Developed Constitutive Model

    The present model is verified against some available experimental data in terms of pressure-volumetric response, quasi-static strength surface and strain rate effect.

    Values of various parameters in equation of state can be determined by hydrostatic compression experiment and they are listed in Table 1. For Al2O3and SiC ceramic materials, the relationship between pressure and volumetric strain (Eq.(1)) can be rewritten as

    Table 1 Values of parameters for BeO in the present model

    Fig.1 shows comparison of the present model predictions (Eq.(9) and Eq.(10)) with the experimental data for Al2O3and SiC[13-16]and for AlN[17-19]. It can be seen from Fig.1 that good agreement is obtained.

    Fig.2(a) and Fig.2(b) show comparisons between the present model predictions (Eq.(4) with B = 1.4 for B4C and BeO and Eq.(9) with B = 1.7 for Al2O3and AlN) and the test data[25-27]for the strength surfaces.The strength surfaces of Al2O3and AlN obtained from the JH-2 model[28]are also shown in Fig.2(b). It is clear from Fig.2 that the present model predictions are in good agreement with available test results for ceramic materials. It is also clear from Fig.2(b) that the JH-2 model produces similar results to those of the present model for relatively low pressures whilst for higher pressure the present model levels out and the JH-2 model increases with increasing pressure.

    Fig. 1 Comparison between the present model predictions(Eq.(9) and Eq.(10)) and the experimental data for ceramic materials

    Fig. 2 Comparisons between the present model predictions (Eq.(4) and Eq.(9)) with the experimental data

    Values of parameters Fm, Wxand S in Eq.(6) for the dynamic increase factor in tension can be determined from tensile test data for ceramic materials at different strain rates. Fig.3 shows comparisons between the present model predictions (Eq.(6) with Fm= 3, Wx= 3.8 and S = 1.25) and available experimental data[29-31]for different ceramic materials at different strain rates. It is evident from Fig.3 that reasonable agreement is obtained.

    Fig.4(a) and Fig.4(b) show comparisons between the theoretically predicted strength surfaces (Eq.(4))and some experimental data obtained from plate impact tests on B4C[32-34], AlN[17], Al2O3[20]and SiC[21-23]. In the calculations, a strain rate of 105s-1is taken which is of a typical value in a plate impact test. Also shown in Fig.4(b) are the predictions from the JH-2 model. It is clear from Fig.4(a) that reasonable agreement is obtained between the present model predictions and the tests results for B4C which are somehow scattered whilst good agreement is achieved between Eq.(4) and the test data for AlN,Al2O3and SiC as can be seen from Fig.4(b). It is also clear from Fig.4(b) that the JH-2 model has failed to predict the dynamic mechanical behavior of ceramic materials at higher confining pressure.

    Fig. 3 Comparison between the present model predictions(Eq.(6)) with available experimental data for different ceramic materials at different strain rates (Unit of strain rate: s-1)

    Fig. 4 Comparisons between the present model predictions (Eq.(4)) and the experimental data obtained from plate impact tests

    Fig.5 shows comparison of the present model predictions and the experimental data obtained from SHPB(split Hopkinson pressure bar) tests[25]. Also shown in the figure are the predictions from the JH-2 model. In the tests, confining pressures of up to 230 MPa were applied, and a constant strain rate was employed (i.e. 500 s-1).The solid line indicates theoretically predicted quasi-static strength surface, and the broken line designates dynamic strength surface from the present model with a strain rate of 500 s-1. As can be seen from Fig.5 that a good agreement is obtained between the present model predictions and the experimental data whilst the JH-2 model underestimates the strength surface of AlN ceramic under the strain rate of 500 s-1. It should be stressed here that the present model predicts that the quasi-static and dynamic strength surfaces are parallel to each other,which has been confirmed/verified by the experimental data. It leads to further support for the accuracy and validity of the present constitutive model for ceramics.

    To demonstrate the quasi-static behavior of the present constitutive model, numerical tests are performed to evaluate stress-strain relationships for ceramics under various loading conditions, which includes: (a) triaxial compression with different confining pressures, (b) uniaxial tension, (c) biaxial tension and (d) triaxial tension. The numerical tests are carried out using single element simulation approach.Table 1 lists the values of various parameters in the present constitutive model for BeO ceramic. Table 2 and Table 3 list the values of various parameters for AlN ceramic employed in the present model and JH-2 model, respectively. Parameters in the present model are clearly defined in the previous paragraphs, and in JH-2 model. K1, K2, K3are bulk moduli, and ρcis the density for ceramic material; a, b, C, m, n are strength surface parameters; pHEL, σHELand μHELare respectively the pressure, the equivalent stress and the volumetric strain at HEL (Hugoniot elastic limit); T is the maximum tensile hydrostatic pressure the material can withstand; β is strain rate parameter; d1, d2are damage parameters.

    Fig. 5 Comparison between the experimental data[25] and the predictions by the present model of strength varies with pressure at different strain rates of AlN

    Table 2 Values of parameters for AlN in the present model

    Table 3 Values of various parameters for AlN ceramic (JH-2 model)

    Fig.6 shows the comparison of the numerically predicted stress-strain curves and the experimental data for BeO under triaxial compression with confinement pressures ranging from 0.1 GPa up to 1.0 GPa, as reported by Heard and Cline[26]. It is clear from Fig.6 that the numerical results are in reasonable agreement with the experimental observations.

    Fig.7 shows variations of pressure and effective stress with maximum principal strain of AlN under quasistatic uniaxial tension. It is evident from Fig.7 that the numerical results from the present model give an elasticbrittle softening response of AlN under uniaxial tension with a principal tensile strength of 0.3 GPa for AlN. It is also evident from the figure that the mechanic behavior of the ceramic under uniaxial tension predicted numerically by the JH-2 model is elastic-perfectly plastic with the minimum pressure of 0.31 GPa and the maximum effective stress of 0.93 GPa, which are obviously not in compliance with the actual tensile behavior of the ceramic.

    Fig. 6 Comparison of stress-strain curves for BeO under triaxial compression between the present model and experimental data[22]

    Fig. 7 Variation of pressure, effective stress with maximum principal strain for AlN under quasi-static uniaxial tension

    Fig.8 shows variations of pressure and effective stress with maximum principal strain of AlN under quasistatic biaxial tension. Elastic-brittle softening response of the ceramic is predicted numerically using the present model under biaxial tension with a principal tensile strength of 0.3 GPa. On the other hand, an elastic-perfectly plastic response of the ceramic under biaxial tension predicted numerically by the JH-2 model have the minimum pressure of 0.31 GPa and the maximum effective stress of 0.48 GPa.

    Fig.9 shows numerically predicted relationship between pressure and the maximum principal strain of AlN under both quasi-static triaxial tension. It can be seen from the figure that the present model predicts the elasticbrittle softening response of AlN under triaxial tension with quasi-static principal tensile strength of 0.3 GPa.Whilst the material is no longer able to withstand any loads after the maximum pressure reached according to the JH-2 model predictions. Furthermore, no strain rate effect is found under hydrostatic tension in the JH-2 model since it hasn’t taken into account the strain rate effect in tension.

    Fig. 8 Variation of pressure and effective stress with maximum principal strain for AlN under quasi-static biaxial tension

    Fig. 9 Numerically predicted relationship between pressure and maximum principal strain of AlN under both quasi-static triaxial tension

    3 Penetration of AD99.7/RHA Target

    Numerical simulations are conducted in this section for the penetration of AD99.7/RHA target struck by flatnosed projectiles as reported by Lundberg[35]. In the experiments, long tungsten projectiles with length-todiameter ratio 15 were fired against the unconfined alumina with steel backing. The tests were carried out in three different scales with projectile lengths 30, 75 and 150 mm (corresponding diameters 2, 5 and 10 mm), respectively. The impact velocities were 1 500 m/s and 2 500 m/s. Fig.10 shows the schematic diagrams of the geometric dimensions of the projectiletarget combination. Table 4, Table 5 and Table 6 list the values of various parameters for AD99.7 ceramic material in the present model, tungsten alloy and RHA materials in the JC model. Parameters A1in the JC model is the initial yield strength under reference strain rate and reference temperature; B1, N1are respectively the strain hardening modulus and index; C1is strain rate hardening parameter; M1is temperature softening index;is the reference strain rate; cpis heat capacity; Tmand Trare the ambient temperature and the reference temperature(melting point), respectively; D1, D2, D3, D4and D5are failure criteria parameters; Csis the intercept of shock wave velocity-particle velocity (us-up) curve; S1, S2, S3are us-upcurve slope coefficient; γ0is Grüneisen parameter,A0is the first order volume correction of γ0.

    Fig. 10 Schematic diagrams of the geometric dimensions of the projectile-target combination under the impact velocity of 1 500 m/s (Same materials used for all target configurations,and all configuration are axisymmetric.)

    Table 4 Values of various parameters for AD99.7 ceramic[35] (The present model)

    Table 5 Values of various parameters for tungsten alloy[35] (JC model)

    Fig.11 shows the comparison of total penetration depth between the numerical predictions and the experimental data[35]. PTrepresents the sum of thickness of the ceramic and penetration depth in the RHA back plate, and Lpis the length of the projectile. In the figure, the solid symbols indicate the experimental data and the hollow symbols represent the numerical results by the present model proposed in this paper. The data of differentscales under the impact velocity of 1 500 m/s and 2 500 m/s are designated by square and triangle,respectively. For comparison, the numerical results obtained by Lundberg[35]with JH-2 model are also shown in Fig.11. The solid and broken lines represent the numerical results by JH-2 model at 1 500 m/s and 2 500 m/s respectively. It can be seen from Fig.11 that the numerical results from the present model are in good agreement with the experimental data. As can be seen from the figure that the numerical results for impact velocity of 1 500 m/s are in good agreement with the test data, whilst the results for impact velocity of 2 500 m/s are below the experimental observations[35].Thus, the JH-2 model has failed to produce consistent results as compared to the experiments.

    Table 6 Values of various parameters for RHA[35] (JC model)

    Fig. 11 Comparison between the numerical results and the test data for the depth of penetration in AD99.7/RHA targets by flat-nosed tungsten alloy penetrators[35]

    4 Conclusions

    A dynamic macroscopic constitutive model for ceramic materials has been developed by closely following the previous work on concrete. The model captures the basic features of the mechanical response of ceramic materials including pressure hardening behavior, strain rate effects, strain softening behavior, path dependent behavior (Lode angle), and failure in both low and high confining pressures. In particular, a new function is used to characterize the pressure dependent shear strength surface of ceramic materials which levels out at very high pressures, and strain rate effect is taken into consideration by dynamic increase factor which excludes inertial effect.

    The present model has been compared with some available experimental data for ceramic materials. It transpires that the present model predictions are in good agreement with the experimental observations in terms of pressure-volumetric response, triaxial compression, quasi-static strength surface, dynamic strength surface, strain rate effect and depth of penetration. It also transpires that the present model is much more improved than the JH-2 model.

    亚洲av中文av极速乱| 国产熟女午夜一区二区三区| 久久精品国产自在天天线| 最近最新中文字幕免费大全7| 色哟哟·www| 最近中文字幕高清免费大全6| 人人妻人人添人人爽欧美一区卜| 精品卡一卡二卡四卡免费| 国产成人a∨麻豆精品| 日本欧美国产在线视频| 韩国av在线不卡| 大香蕉97超碰在线| videossex国产| 久久国内精品自在自线图片| 99热6这里只有精品| a 毛片基地| 婷婷色av中文字幕| 内地一区二区视频在线| 黑人巨大精品欧美一区二区蜜桃 | 91午夜精品亚洲一区二区三区| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 国产一区二区在线观看av| 免费观看a级毛片全部| 2018国产大陆天天弄谢| 免费av中文字幕在线| av国产精品久久久久影院| 咕卡用的链子| 亚洲国产色片| 久久久久网色| 亚洲av在线观看美女高潮| 久久久久久久久久成人| 一二三四在线观看免费中文在 | 国产欧美亚洲国产| 丝袜人妻中文字幕| 亚洲综合色网址| 久久午夜福利片| 欧美成人精品欧美一级黄| 黄色 视频免费看| 国产老妇伦熟女老妇高清| 久久99热6这里只有精品| 黄色 视频免费看| 乱码一卡2卡4卡精品| 国产亚洲精品第一综合不卡 | 日韩av免费高清视频| 国产精品免费大片| 天堂8中文在线网| 国产精品99久久99久久久不卡 | 五月玫瑰六月丁香| 桃花免费在线播放| 国产高清国产精品国产三级| 精品第一国产精品| 久久久久久久精品精品| 国产老妇伦熟女老妇高清| 婷婷成人精品国产| 女人被躁到高潮嗷嗷叫费观| 丁香六月天网| 少妇的逼水好多| 精品视频人人做人人爽| 日本欧美视频一区| 亚洲精品一二三| 五月开心婷婷网| 欧美精品人与动牲交sv欧美| 亚洲精品,欧美精品| 国产精品国产三级专区第一集| 日本wwww免费看| 国产精品女同一区二区软件| 亚洲,一卡二卡三卡| 最后的刺客免费高清国语| 下体分泌物呈黄色| 久久久久久久大尺度免费视频| av在线app专区| 十八禁网站网址无遮挡| 久久女婷五月综合色啪小说| 一级,二级,三级黄色视频| 日韩大片免费观看网站| 国产精品欧美亚洲77777| 国产成人a∨麻豆精品| 下体分泌物呈黄色| 男人舔女人的私密视频| 精品亚洲成a人片在线观看| 两个人免费观看高清视频| 亚洲国产日韩一区二区| 午夜福利网站1000一区二区三区| 国产一区二区三区av在线| 搡女人真爽免费视频火全软件| 丰满乱子伦码专区| 久久精品国产综合久久久 | av有码第一页| 亚洲av日韩在线播放| 久久久久久久久久久久大奶| 五月伊人婷婷丁香| 一边亲一边摸免费视频| 制服人妻中文乱码| xxxhd国产人妻xxx| 91精品国产国语对白视频| 国产精品熟女久久久久浪| 婷婷色av中文字幕| 自线自在国产av| 国产又色又爽无遮挡免| 国产成人精品福利久久| 交换朋友夫妻互换小说| 街头女战士在线观看网站| 国产成人91sexporn| 国产激情久久老熟女| 亚洲成人手机| 婷婷成人精品国产| 国产深夜福利视频在线观看| 人妻一区二区av| 国产av码专区亚洲av| 亚洲欧美精品自产自拍| 汤姆久久久久久久影院中文字幕| 精品一区二区三区四区五区乱码 | 国产成人av激情在线播放| 欧美国产精品va在线观看不卡| av黄色大香蕉| 国产精品麻豆人妻色哟哟久久| 亚洲久久久国产精品| 一级毛片黄色毛片免费观看视频| 国产成人91sexporn| 人妻人人澡人人爽人人| 91成人精品电影| 欧美激情国产日韩精品一区| 国产一区二区激情短视频 | 新久久久久国产一级毛片| 免费在线观看完整版高清| 国产av码专区亚洲av| 免费高清在线观看视频在线观看| 国产熟女午夜一区二区三区| 久久久国产一区二区| 国产国拍精品亚洲av在线观看| 天堂8中文在线网| 国产 精品1| 亚洲欧美色中文字幕在线| 久久久久精品人妻al黑| xxxhd国产人妻xxx| 一区二区三区四区激情视频| 狂野欧美激情性bbbbbb| 久久精品国产a三级三级三级| 亚洲人成网站在线观看播放| 人成视频在线观看免费观看| 草草在线视频免费看| 99热网站在线观看| 亚洲美女视频黄频| 精品一区二区三区四区五区乱码 | 国产国语露脸激情在线看| 亚洲 欧美一区二区三区| 免费看av在线观看网站| 午夜影院在线不卡| 97超碰精品成人国产| 永久网站在线| 91国产中文字幕| √禁漫天堂资源中文www| 欧美日韩国产mv在线观看视频| 高清在线视频一区二区三区| 十八禁网站网址无遮挡| 国产精品一国产av| 一级毛片电影观看| av女优亚洲男人天堂| 97在线人人人人妻| 欧美+日韩+精品| 久久免费观看电影| 免费久久久久久久精品成人欧美视频 | 国产精品一国产av| 在线观看三级黄色| 国产成人免费无遮挡视频| 大香蕉97超碰在线| 亚洲精品456在线播放app| 亚洲欧美成人精品一区二区| 免费观看在线日韩| 亚洲国产av影院在线观看| 中文字幕av电影在线播放| 亚洲人与动物交配视频| 日韩电影二区| 女人久久www免费人成看片| 成人手机av| 国产成人av激情在线播放| 九色亚洲精品在线播放| 亚洲欧美色中文字幕在线| 九九在线视频观看精品| 国产一区二区在线观看日韩| 青青草视频在线视频观看| 欧美亚洲日本最大视频资源| 久久久精品免费免费高清| 国产永久视频网站| 人人妻人人澡人人看| 在线观看免费高清a一片| 国产精品国产三级国产专区5o| 国产乱人偷精品视频| 亚洲在久久综合| 制服诱惑二区| 精品少妇久久久久久888优播| 国内精品宾馆在线| 精品亚洲成国产av| 国产白丝娇喘喷水9色精品| 1024视频免费在线观看| 久久久久精品久久久久真实原创| 亚洲av电影在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲精品中文字幕在线视频| 97超碰精品成人国产| 伊人亚洲综合成人网| 人人妻人人澡人人看| 男女边吃奶边做爰视频| www日本在线高清视频| 九九爱精品视频在线观看| 精品人妻在线不人妻| av网站免费在线观看视频| 日韩中文字幕视频在线看片| 最近中文字幕高清免费大全6| 少妇 在线观看| 国产免费又黄又爽又色| 免费看光身美女| 国产精品一国产av| 久久热在线av| 夜夜骑夜夜射夜夜干| 亚洲美女搞黄在线观看| 国产探花极品一区二区| 只有这里有精品99| 男女边吃奶边做爰视频| 一级毛片我不卡| 欧美3d第一页| 美女中出高潮动态图| 精品国产露脸久久av麻豆| 日韩中字成人| 男女边吃奶边做爰视频| 美女国产高潮福利片在线看| 国产日韩欧美亚洲二区| 老司机影院毛片| 国产极品天堂在线| 在线观看三级黄色| 久久韩国三级中文字幕| 人妻系列 视频| 两个人免费观看高清视频| 亚洲中文av在线| 亚洲国产av影院在线观看| 少妇 在线观看| 亚洲成人av在线免费| 欧美精品av麻豆av| videos熟女内射| 大香蕉久久成人网| 丝袜脚勾引网站| 成年人免费黄色播放视频| 一级片'在线观看视频| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片| 久久久久精品性色| 精品国产露脸久久av麻豆| 视频中文字幕在线观看| 国产精品人妻久久久久久| 一级毛片 在线播放| 超碰97精品在线观看| 久久99一区二区三区| 中文字幕av电影在线播放| 少妇的逼水好多| 桃花免费在线播放| 韩国精品一区二区三区 | 亚洲精品乱码久久久久久按摩| 久久久久人妻精品一区果冻| 如何舔出高潮| 夫妻性生交免费视频一级片| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 少妇的逼水好多| 一级,二级,三级黄色视频| 国产高清国产精品国产三级| 成人二区视频| av有码第一页| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 制服丝袜香蕉在线| 春色校园在线视频观看| 色网站视频免费| 国产精品女同一区二区软件| 两个人免费观看高清视频| 亚洲伊人久久精品综合| 超碰97精品在线观看| 伊人亚洲综合成人网| 精品久久久精品久久久| 女人久久www免费人成看片| 成人漫画全彩无遮挡| 精品视频人人做人人爽| 亚洲综合色网址| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 激情视频va一区二区三区| 亚洲av日韩在线播放| 好男人视频免费观看在线| 亚洲在久久综合| av一本久久久久| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 国产亚洲av片在线观看秒播厂| 男人操女人黄网站| 青春草国产在线视频| 午夜福利网站1000一区二区三区| 热99国产精品久久久久久7| 国产白丝娇喘喷水9色精品| 国产成人av激情在线播放| 国产午夜精品一二区理论片| 在线观看三级黄色| 国产成人精品一,二区| 日本wwww免费看| 如何舔出高潮| 美女主播在线视频| 成人二区视频| 亚洲精品久久久久久婷婷小说| 男人爽女人下面视频在线观看| 色网站视频免费| 国产1区2区3区精品| 在线精品无人区一区二区三| 午夜免费鲁丝| 久久久久久久久久成人| 人人妻人人添人人爽欧美一区卜| 欧美激情国产日韩精品一区| 人人妻人人添人人爽欧美一区卜| 在线精品无人区一区二区三| 观看美女的网站| kizo精华| 精品第一国产精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品婷婷| 涩涩av久久男人的天堂| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 精品亚洲成国产av| 亚洲精品乱久久久久久| 国产成人精品一,二区| 一级毛片 在线播放| 乱人伦中国视频| 最黄视频免费看| 久久精品久久久久久久性| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 亚洲丝袜综合中文字幕| 视频区图区小说| 人妻少妇偷人精品九色| 满18在线观看网站| 老司机亚洲免费影院| av.在线天堂| 一本久久精品| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频| av片东京热男人的天堂| 国产高清三级在线| 亚洲av福利一区| 新久久久久国产一级毛片| 日本wwww免费看| 久久人人97超碰香蕉20202| 国产一区二区在线观看日韩| 亚洲美女搞黄在线观看| 日韩精品有码人妻一区| 高清毛片免费看| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| 日本午夜av视频| 亚洲国产欧美日韩在线播放| 欧美人与性动交α欧美精品济南到 | 2021少妇久久久久久久久久久| 全区人妻精品视频| 热99国产精品久久久久久7| 免费观看av网站的网址| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站| 免费日韩欧美在线观看| 亚洲一码二码三码区别大吗| 久久久久精品性色| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 超色免费av| 韩国高清视频一区二区三区| 成人黄色视频免费在线看| 亚洲精品456在线播放app| 一区在线观看完整版| 国产精品久久久久久久久免| 少妇人妻 视频| 久久久久久久大尺度免费视频| 99香蕉大伊视频| 18禁动态无遮挡网站| 国产极品粉嫩免费观看在线| av线在线观看网站| 日日撸夜夜添| 欧美97在线视频| 国产男女内射视频| 国产精品国产av在线观看| 欧美另类一区| 久久亚洲国产成人精品v| 久久热在线av| 欧美激情极品国产一区二区三区 | 满18在线观看网站| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 妹子高潮喷水视频| 国产国语露脸激情在线看| av线在线观看网站| 桃花免费在线播放| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级| 深夜精品福利| 日日爽夜夜爽网站| 精品国产露脸久久av麻豆| 99久久精品国产国产毛片| 最近最新中文字幕大全免费视频 | 欧美bdsm另类| 亚洲av在线观看美女高潮| 桃花免费在线播放| 精品一区二区三卡| 男女国产视频网站| 捣出白浆h1v1| 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站| 欧美精品亚洲一区二区| 只有这里有精品99| 中文字幕免费在线视频6| 亚洲欧美成人综合另类久久久| 99久久人妻综合| 亚洲综合色惰| 成年动漫av网址| 久久ye,这里只有精品| 伦精品一区二区三区| 日本av手机在线免费观看| 看免费成人av毛片| 精品久久久精品久久久| 成人毛片a级毛片在线播放| 熟女人妻精品中文字幕| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 高清av免费在线| 久久毛片免费看一区二区三区| 久久影院123| 看免费成人av毛片| 夜夜骑夜夜射夜夜干| 交换朋友夫妻互换小说| 欧美丝袜亚洲另类| 精品一区二区免费观看| 精品国产一区二区三区四区第35| 国产日韩一区二区三区精品不卡| 女性生殖器流出的白浆| 在现免费观看毛片| 只有这里有精品99| 熟妇人妻不卡中文字幕| 国产男人的电影天堂91| 国产伦理片在线播放av一区| 中国三级夫妇交换| 午夜视频国产福利| 久久久久人妻精品一区果冻| 激情五月婷婷亚洲| 建设人人有责人人尽责人人享有的| 国产熟女欧美一区二区| 黄色毛片三级朝国网站| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 中文字幕制服av| 在线观看免费日韩欧美大片| 免费黄色在线免费观看| 大陆偷拍与自拍| 亚洲色图综合在线观看| 熟女av电影| 又黄又爽又刺激的免费视频.| 咕卡用的链子| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 亚洲精品乱码久久久久久按摩| 99久国产av精品国产电影| 亚洲精品日韩在线中文字幕| 18禁观看日本| 国产精品人妻久久久影院| 免费看不卡的av| 日本爱情动作片www.在线观看| 成人亚洲欧美一区二区av| 日本欧美国产在线视频| 免费人妻精品一区二区三区视频| 亚洲图色成人| 国产亚洲午夜精品一区二区久久| 亚洲国产日韩一区二区| 99久国产av精品国产电影| 欧美日韩成人在线一区二区| 亚洲av在线观看美女高潮| 高清av免费在线| 亚洲久久久国产精品| 丝袜美足系列| 久久久久久久久久久久大奶| 18禁动态无遮挡网站| 黑人高潮一二区| 97超碰精品成人国产| 日日爽夜夜爽网站| 在线看a的网站| 韩国高清视频一区二区三区| 日日撸夜夜添| 18禁国产床啪视频网站| 精品国产国语对白av| 精品人妻偷拍中文字幕| 国产精品蜜桃在线观看| 亚洲av福利一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91久久精品国产一区二区三区| www.av在线官网国产| 国产精品久久久久成人av| 亚洲一区二区三区欧美精品| 亚洲精品国产av蜜桃| 黑人高潮一二区| 色5月婷婷丁香| 最后的刺客免费高清国语| 午夜日本视频在线| 久久久久久人妻| 亚洲内射少妇av| 免费看光身美女| 国产亚洲精品久久久com| 婷婷色麻豆天堂久久| 欧美成人午夜免费资源| 黑人猛操日本美女一级片| 黄色一级大片看看| 成年人午夜在线观看视频| 国产一区二区三区av在线| 国产亚洲av片在线观看秒播厂| 亚洲欧洲精品一区二区精品久久久 | 咕卡用的链子| 汤姆久久久久久久影院中文字幕| 精品人妻一区二区三区麻豆| 中国国产av一级| 国产av精品麻豆| 一边摸一边做爽爽视频免费| 亚洲国产av影院在线观看| av视频免费观看在线观看| 亚洲成人手机| 婷婷色麻豆天堂久久| 亚洲国产精品国产精品| 亚洲欧洲精品一区二区精品久久久 | 在线 av 中文字幕| 日韩中字成人| 久久婷婷青草| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 内地一区二区视频在线| av一本久久久久| 国产男女超爽视频在线观看| 三级国产精品片| 桃花免费在线播放| 高清视频免费观看一区二区| 夜夜骑夜夜射夜夜干| 亚洲美女黄色视频免费看| 少妇精品久久久久久久| 久久热在线av| 亚洲欧美一区二区三区黑人 | 国产成人精品福利久久| 国产精品99久久99久久久不卡 | 一区在线观看完整版| 日韩视频在线欧美| 免费观看无遮挡的男女| 男女啪啪激烈高潮av片| 久久精品国产a三级三级三级| 亚洲欧洲精品一区二区精品久久久 | 国产老妇伦熟女老妇高清| 中文字幕人妻熟女乱码| 人妻 亚洲 视频| 久久韩国三级中文字幕| 亚洲av国产av综合av卡| 久久久国产欧美日韩av| 校园人妻丝袜中文字幕| 人体艺术视频欧美日本| 另类精品久久| 日韩av免费高清视频| 看十八女毛片水多多多| 少妇熟女欧美另类| 一本色道久久久久久精品综合| 久久av网站| 免费日韩欧美在线观看| 久久久久精品久久久久真实原创| 少妇被粗大的猛进出69影院 | av有码第一页| 亚洲五月色婷婷综合| 最近最新中文字幕免费大全7| 国产探花极品一区二区| 国产精品一区www在线观看| 亚洲国产av影院在线观看| 欧美激情 高清一区二区三区| 国内精品宾馆在线| 久久久久精品久久久久真实原创| 国产精品国产av在线观看| 国产在视频线精品| 五月伊人婷婷丁香| 另类亚洲欧美激情| 人妻人人澡人人爽人人| 免费观看a级毛片全部| 日韩欧美一区视频在线观看| 国产成人a∨麻豆精品| 日产精品乱码卡一卡2卡三| 国产精品久久久av美女十八| 久久 成人 亚洲| 亚洲激情五月婷婷啪啪| 午夜福利视频在线观看免费| 亚洲 欧美一区二区三区| 母亲3免费完整高清在线观看 | 80岁老熟妇乱子伦牲交| 咕卡用的链子| av免费观看日本| 亚洲人成网站在线观看播放| 中文字幕精品免费在线观看视频 | 日韩视频在线欧美| 亚洲成人手机| 成人手机av| 午夜福利乱码中文字幕| 免费观看性生交大片5| 九九在线视频观看精品| 亚洲人与动物交配视频| 日韩伦理黄色片| 男人添女人高潮全过程视频| 日本爱情动作片www.在线观看| 肉色欧美久久久久久久蜜桃| 欧美成人午夜精品| 精品一区二区三区四区五区乱码 | 纵有疾风起免费观看全集完整版|