• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Point matching algorithm based on machine learning method*

    2020-07-13 07:13:06TANGSiqiHANCongyingGUOTiande
    中國科學院大學學報 2020年4期

    TANG Siqi, HAN Congying, GUO Tiande

    (School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Big Data Mining and Knowledge Management of Chinese Academy of Sciences, Beijing 100190, China) (Received 24 November 2018; Revised 15 January 2019) Tang S Q, Han C Y, Guo T D. Point matching algorithm based on machine learning method[J]. Journal of University of Chinese Academy of Sciences, 2020,37(4):450- 457.

    Abstract Point matching is an important issue of computer vision and pattern recognition, and it is widely used in target recognition, medical image, pose estimation, etc. In this study, we propose a novel end-to-end model (multi-pointer network) based on machine learning method to solve this problem. We capitalize on the idea of multi-label classification to ameliorate the pointer network. Instead of outputting a member of input sequence, our model selects a set of input elements as output. Considering matching problem as a sequential manner, our model takes the coordinates of points as input and outputs correspondences directly. Using this new method, we can effectively solve the translation of the whole space and other large-scale rigid transformations. Furthermore, experiment results show that our model can be generalized to other combinatorial optimization problems in which the output is a subset of input, like Delaunay triangulation.

    Keywords multi-pointer network; point matching; recurrent neural network (RNN); long short-term memory (LSTM) network; multi-label classification

    Point matching plays a central role on computer vision such as action recognition[1], multi-target tracking[2], image retrieval[3], etc. The purpose of point matching is to determine correspondence between two point sets. There are some traditional algorithms to handle it, such as random sample and consensus (RANSAC)[4], graph-based point pattern matching[5], etc. Most of the traditional algorithms are alternated between calculating parameters of transformation and getting correspondence to obtain the optimal solution. This means that different models need to learn different transformation parameters. Meanwhile, as the number of points increases, execution time of system increases notably. If we can directly get accurate correspondence, we will be able to enhance the efficiency of matching problem. Actually, the point set is a sequence of feature vectors and the correspondence can be seen as a special form of permutation. Inspired by these facts, we propose a genetic model based on recurrent neural network (RNN)[6]to solve the problem.

    RNN has become a popular choice for modeling variable-length sequences for more than three decades. Long short-term memory (LSTM)[7]with the ability of analyzing data with long range temporal dependencies makes it possible to handle long sentences using RNN. RNN recently showed impressive performance on several sequence prediction problems including machine translation[8], contextual parsing[9], image captioning[10], and even video description[11]. In particular, Vinyals et al.[12], Milan et al.[13], and Bello et al.[14]used RNN to tackle combinatorial optimation problem.

    Most of models to approach sequential problem belong to a family of encoder-decoder[8,15]that consists of two RNNs. One RNN encodes the source sentence into a fix-length vector, and the other decodes target sequences from the vector. The whole encoder-decoder system jointly maximizes the conditional probability of target sequence based on source sequence. However, compressing all necessary information of input sequence into a fixed-length vector is a bottleneck problem that limits the performance of encoder-decoder architecture. In order to address this issue, Bahdanau et al.[16]proposed a content-based attentional mechanism which encodes input sentence into a sequence of vectors and chooses a subset of these vectors adaptively while decoding the translation. Nonetheless, the size of output dictionary needs to be fixed before designing model. So we can not directly apply this to combinatorial problem where the size of output dictionary depends on the length of input sequence. Pointer network (Ptr-Net)[12]provides a new architecture which addresses this limitation by repurposing the attention mechanism to create pointer to input elements.

    Point matching is also a special kind of combinatorial optimization problem that is to obtain the optimal corresponding references, which can be modeled by Ptr-Net. However, Ptr-Net does not take full advantage of the correspondences between two point sets owing to the fact that output is a member of input elements at each time series. We propose multi-pointer network (MPN), which draws idea from multi-label classification[17-18], to address this limitation by pointing out a set of input elements.

    To our knowledge, the present study is the first study to empirically evaluate the ability of RNN to output correspondences of two sets in a purely data driven fashion (i.e., when we only have examples of inputs and desired outputs). Experiments show that MPN can address matching problem with large-scale transformation efficiently and simply. On the other hand, MPN can also be extended to other combinatorial optimization problem.

    This paper is organized as follows. In section 2, we briefly introduce the encoder-decoder framework, Ptr-Net, and multi-label classification. Our model based on the combination of multi-label classification and Ptr-Net is described in details in section 3. To test the effectiveness of our model, we run and analyze experiment results, including extensive comparisons with multiple rigid transformation and computing Delaunay Triangulation in section 4. Finally, we summarize the main contribution of our work and discuss the future direction.

    1 Background

    (1)

    In this case, it is reasonable to model each example using the chain rule to decompose it as follows (for the sake of brevity, we omit the indexi):

    (2)

    1.1 Encoder-decoder model

    The strategy of the encoder-decoder model is to map input sequence to a fixed-length vectorcwith one RNN, and then to map the vector to target sequence with another RNN. We call the former RNN the encoder and the latter the decoder. The most common encoder approach is to use one RNN such that

    et=f1(xt,et-1),

    (3)

    wheref1is the activation function of encoder RNN,et-1andetare the states of encoder at timet-1 andt, respectively. Generally, we choose LSTM architecture as activation functionf1which is suitable for long range temporal dependencies. Then we get the vector

    c=q(e1,e2,…eTx),

    (4)

    whereqis another nonlinear function. In Ref.[8], the fixed-dimensional representationcis the last hidden state of LSTM. Then we use another standard LSTM formulationf2whose initial hidden state isc, to obtain hidden state of the decoderdtat timet,

    dt=f2(dt-1,yt-1,c).

    (5)

    The conditional distribution of the next symbol is

    P(yt|c,y1,…yt-1;θ)=g(dt,yt-1,c),

    (6)

    wheregis an activation function. Generally, the function is represented with a softmax over all words in the dictionary. Thus, we need to train different models which correspond to different sizes of dictionary. So we can not straightforwardly extend this model to problem for which the size of output dictionary depends on the length of input sequence.

    1.2 Pointer network

    Pointer network (Ptr-Net) is an effective model repurposing a recently proposed mechanism of neural attention[16]to solve combinatorial optimization problem where output dictionary size is equal to the length of input sequence. It differs from previous attention attempt in using attention as a pointer to select a member of source sequence as target, instead of using attention to compute the weighted sum of these encoder hidden units at each decoder step.

    (7)

    P(yt|y1,y2,…,yt-1,X;θ)=soft max(ui),

    (8)

    where softmax normalizes the vectorui(of lengthTx) to be an output distribution over the dictionary of inputs, andv,W1, andW2are learnable parameters of the output model.

    In Ref.[12], authors trained Ptr-Net to output satisfactory solutions to three challenging geometric problems, computing planar convex hulls, Delaunay Triangulation, and symmetric planar travelling salesman problem (TSP). Ptr-Net is a new architecture to provide novel methods for complex combinatorial optimization where the output sequence corresponds to positions in an input sequence. For the point matching problem that requires to assign labels to elements of the input, it is necessary to simultaneously output corresponding points at decoding time.

    1.3 Multi-label classification

    Multi-label classification is the supervised learning problem where each object is represented by a single instance while associated with a set of labels instead of a single label. The task is to predict the label sets of unseen instances through analyzing training instances with known label sets. It helps to address the problem which has a certain degree of correlation between labels. This characteristic provides us an important theoreticed gist which can preferably improve Ptr-Net to solve point matching. At the present, researches that apply LSTMs to multi-label classification tasks are quite limited. Liu and Ramakrishnan[19]formulated music composition as a multi-label classification task, using sigmoidal output units. Yeung et al.[20]used LSTM network with multi-label method to recognize actions in videos. Recently, Lipton et al.[21]recognized patterns in multivariate time series of clinical measurements using replicated targets at each sequence step in the medical domain. However, we could not locate any reported works using LSTMs with multi-label classification on combinatorial optimization domain, especially the point matching problem.

    2 The proposed model

    Matching problem is to determine correspondence between the reference setA:{pi=(xi,yi):i=1,2,…,m} and the sensed setB:{qi=(xi,yi):i=1,2,…,n}. We can simply add a special end-of-set symbol ? at the end of reference set, which connects two sets as a sequence. An ordered set of vertices replace the related correspondences between point sets. In this way, we can make use of the encoder-decoder framework to solve point matching problem. Figure 1 shows a simple example that how we turn the matching problem to sequential problem. SetA={p1,p2,p3} and setB={q1,q2,q3} is shown in the left of Fig.1. Let the correspondence of two sets is (p1,q2), (p2,q3), (p3,q1). In the right part, we show the target vector of each time series. The dotted circle of each vector represents the end of setA.

    Fig.1 The schematic diagram showing how to turn the matching problem into the sequential problem

    In this paper, we propose a novel model named as multi-pointer network. The model can generate a set of elements simultaneously at each series time by introducing multi-label classification idea into the Ptr-Net. Figure 2 is a schematic of the multi-pointer Network. We use the symbol ? to represent the end of setA, symbol ? to represent the end of encoder and symbol 〈ɡ〉 to represent input of the first decoder step. In the following article of this section, we will describe the model in detail.

    Fig.2 A depiction of the multi-pointer network

    2.1 Encoder-bidirectional RNN

    The regular RNN reads the sequence in left-to-right order. However, future input information coming up later is also important for prediction. To overcome the limitation, we use the bidirectional recurrent neural network (Bi-RNN)[22]that can be trained using all available input information in the past and future of a specific time frame.

    (9)

    Note that there are no interactions between the two types of state neurons.

    With both time directions taken care of in the same network, input sequence can directly include future information without the need for delays. So we can summarize not only the preceding point, but also the following point to adapt point matching problem. In experiments, we use LSTM as the activation function of the positive and negative RNN. In Fig.2, the two dashed rectangle boxes in the bigger boxes represents the process of the bidirectional RNN.

    2.2 Decoder-multi-pointer network

    For point matching, we define matching point-pair as the target output of each time series in training process. After sorting the points of two sets, we construct a series of objective vectors that elements of each one are zero besides the position of the matching point-pair (see Fig.1). Hence, we need to output a set of the input sequences simultaneously at the decoder part. Drawing the idea on multi-label classification, we present a simple modification of the Ptr-Net. Now let us go through the details of the new model.

    Firstly, we still use equation (7) to calculate the vectoruito be “attention” mask over the inputs. Then a different approach is adapted to obtain the conditional distribution at each time step.

    P(yt|y1,y2,…,yt-1,X;θ)=sigmoid(ui).

    (10)

    What makes our model different from Ptr-Net is that we use sigmoid function instead of softmax function to fit the multi-label classification loss function. This allows us to maintain that the output of every time series is the matching point-pair or points of other geometry structure.

    We generate outputs in chronological order at each sequence step. Then we adapt cross entropy method to calculate the loss function,

    (11)

    (12)

    Our model is specifically aiming at problems whose outputs of every time series are high correlation. Ptr-Net tends to solve problems where outputs are discrete and dependent on its location in the input sequences. Our model mines the underlying information between two point sets. In this manner, information can be spread throughout two point sets which greatly improves the accuracy of matching problems. Besides, the multi-pointer network can also be applied to the problem of combined structural optimization, like Delaunay triangulation.

    3 Experiments

    In this section, we take a brief introduction of experimental details and analyze the results. Firstly, contrast experiment is done to test the impact of using Bi-RNN. Then, in order to verify whether our model could handle point matching and be more efficient than the Ptr-Net, we run the following experiments on artificial data for tasks. Finally, to confirm the model’s generalization, we compare our model with the typical Ptr-Net on Delaunay Triangulation.

    3.1 Experimental details

    Across all experiments, we use mini-batches of 128 point set sequences and embed the two coordinates of each point in a 256-dimensional space. At encoder step, the Bi-RNN we used consists of the forward and the backward LSTM cells with 128 hidden units. At decoder step, we utilize LSTM cells with 256 hidden units and one attention glimpse[23]to aggregate the contributions of different parts of the input sequence. According to the experimental results of Ref. [14],we also adopt only one glimpse to reach the trade-off between performance and cost latency in our experiments. We initialize all of the LSTM’s parameters with the uniform distribution between -0.08 and 0.08. And we clip theL2norm of our gradients to 2.0 to avoid exploding gradient problem. We train our model with the Adam optimizer and decay every 5 000 steps by a factor of 0.96 with an initial learning rate of 10-3. The layer of the encoder and the decoder LSTM is one. Even though there are likely higher accuracy to be obtained by tuning the model, we consider that using the same model hyperparameters on all rigid transformations makes the paper stronger. Our model is trained in Tensorflow framework[24].

    3.2 Data description

    To fully exploit the performance of multi-pointer network, we set up different types of rigid transformation and different sizes of point sets for comparative experiment. First, a random point setAsamples from a uniform distribution in [1,2]×[1,2]. Then, another point setBis generated from rigid transformation onA. To avoid the vertex coordinates of point is less than zero, some correction is made on setB. The impact of network on point matching problem is discussed at different sizes and different kinds of transformation in more detail below.

    3.2.1 Database

    We set two different fixed-size of sets 6-to-6 (the point number of setAis 6, and the point number of setBis 6), 10-to-10 and one random number size of sets 5-10-to-5-10 (the number of setAis a random number of 5-10, and the number of setBis a random number of 5-10, |A|=|B|).

    3.2.2 Translation

    We adapt a different translation approach from a traditional enterprise deployment. First, we sample from uniform distribution [0,1] to generatedxanddyrespectively. Then, we apply a linear function to ensure the length of translation vector equal to 1 and leave the orientation of vector unchanged. In this way, the translation is no longer the pixel level which has a more extensive adaptability.

    3.2.3 Rotation

    Three different dynamic intervals, [0,45°], [0,90°], [0,135°] are built to evaluate the intervals on the rotation performance of the new model in this paper. We also verify the fact that the number of sets has great impact on experiment results.

    3.2.4 Scaling

    To verify the similarity transformation, the scaling parameters we adopted is from 50% to 150%.

    3.3 Results and analyses

    To measure the accuracy we use average correct point pair ratio (ACPPR). The correct point pair ratio is defined as follows:

    (13)

    In this paper, all ACPPR values are calculated from at least 500 experiments. This section is mainly divided into two parts. The first part we verify the effectiveness of the bidirectional-LSTM. The second part is an analytical and comparative study of different version of transformations.

    3.3.1 Bidirectional RNN

    We test the impact of using bidirectional RNN (Bi-RNN) on transformation and rotation. The database we adopted is the set with random number size 5-10-to-5-10 and the interval of rotation angles is [0°,45°]. Figure 3 shows the importance of Bi-RNN in the process of training. Through observation we find that using Bi-RNN has faster convergence ability and smaller loss than the model without it.

    Fig.3 Comparison of the experimental results in translation and rotation with and without Bi-RNN

    3.3.2 Various transformation

    The results of experiments verify that our new method can effectively solve matching problem with various transformations and different sizes of data set. Firstly, we verify the effect on various rotation angle interval. The results are presented in Table 1. Then, comparison between Ptr-Net (P) with our multi-pointer network (M) is carried out. Table 2 shows the comparing experimental results on different transformation with the fixed angleθ=30°. By leveraging the constraint of the multi-label classification, the network can be better to reinforce the connection between two sets, thus the accuracy rate is improved significantly.

    Table 1 Matching results with various rotation angles θ

    Table 2 Comparison between Ptr-Net (P) with our MPN (M) of different transformations %

    3.4 Generalization to Delaunay triangulation

    In this section, we consider the Delaunay triangulation, which is another intensively studied problem in computer science and mathematics. Given a setPwith points in a plane, Delaunay triangulation is a triangulation such that there is no point from the setPin its interior. During the training phase, the labels of the outputSp={S1,S2,…,Sm(P)} is the corresponding sequences representing the triangulation of point set. EachSirepresents the vertices of theitriangle, the integers of triple which is from 1 toncorresponding to the position of setP.

    In experiments, we sample from a uniform distribution in [0,1]×[0,1] to create the training data. Ref.[23] shows the order of the sequence to impact the experiment performance. Therefore, we order the triangulations by their incenter coordinats in experiments. Compared to the Ptr-Net, we do not have to consider the problem as a consequence, any permutation of its elements will represent the same triangulation. Our experiment is about 5 points of the set to achieves in average 0.45% improvement.

    4 Conclusion

    In this paper we present empirical study using RNN to solve point matching problem. By analyzing the matching problem using mathematical method, we transform it into sequential manner. We propose a new end-to-end network, which is based on multi-label classification, to improve the Ptr-Net. Experimental results show that the proposed method effectively solves translation and other rigid transformation with large-scale. In this way, we can rapidly gain the corresponding relations of point sets in the inference. Moreover, our method can be extend to solve other problems of combined structural optimization.

    In future, we will try to design a more effective model to raise accuracy. Through the trained model we can obtain correspondences directly. On this foundation, we can calculate parameters of transformation much more quickly based on the traditional method like RANSAC. In the meantime, the network model proposed in this paper can be generalized to the problem of multi-dimension point sets matching. We are also excited about the possibility of using this method to other combinatorial optimization problem which requires to assign labels to elements of the input.

    久久这里只有精品中国| 男的添女的下面高潮视频| 亚洲成人av在线免费| 在线观看免费视频日本深夜| 悠悠久久av| 丰满的人妻完整版| 亚洲精品国产成人久久av| 一个人免费在线观看电影| 插阴视频在线观看视频| 久久久a久久爽久久v久久| 三级经典国产精品| 男女下面进入的视频免费午夜| 国产成年人精品一区二区| 18禁在线播放成人免费| 又爽又黄无遮挡网站| 久久久久久久久中文| 免费观看在线日韩| АⅤ资源中文在线天堂| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 在线观看免费视频日本深夜| 国产精品一及| 插阴视频在线观看视频| 欧美一级a爱片免费观看看| 欧美区成人在线视频| avwww免费| 精品免费久久久久久久清纯| 99热这里只有是精品在线观看| 国产又黄又爽又无遮挡在线| 精品一区二区三区人妻视频| 亚洲欧洲日产国产| 日韩一区二区三区影片| 麻豆成人av视频| 91午夜精品亚洲一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 99热只有精品国产| 国产精品久久视频播放| 欧美极品一区二区三区四区| 人妻制服诱惑在线中文字幕| 深夜a级毛片| 美女xxoo啪啪120秒动态图| 99热全是精品| 国产精品99久久久久久久久| 色噜噜av男人的天堂激情| av在线天堂中文字幕| 午夜爱爱视频在线播放| 亚洲欧美成人精品一区二区| 中文欧美无线码| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 婷婷亚洲欧美| 国产精品一及| 97热精品久久久久久| 成熟少妇高潮喷水视频| 波野结衣二区三区在线| 午夜a级毛片| 成人漫画全彩无遮挡| 麻豆精品久久久久久蜜桃| 一级毛片aaaaaa免费看小| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| 99久久精品国产国产毛片| 国产在线精品亚洲第一网站| av天堂中文字幕网| 亚洲综合色惰| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 一区二区三区四区激情视频 | 边亲边吃奶的免费视频| 国产av不卡久久| 国产老妇伦熟女老妇高清| 国产大屁股一区二区在线视频| 波多野结衣高清无吗| 草草在线视频免费看| 欧美zozozo另类| 成人亚洲精品av一区二区| 国产成人午夜福利电影在线观看| 亚洲成人久久性| 在线免费观看的www视频| 亚洲七黄色美女视频| 久久草成人影院| 不卡视频在线观看欧美| 久久精品国产自在天天线| 99国产精品一区二区蜜桃av| 日韩欧美国产在线观看| 不卡一级毛片| 一级毛片久久久久久久久女| 亚洲精品456在线播放app| 欧美激情久久久久久爽电影| 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 天堂网av新在线| 午夜福利高清视频| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 亚洲精品久久久久久婷婷小说 | 国产精品三级大全| av在线播放精品| 男的添女的下面高潮视频| 免费观看在线日韩| 午夜a级毛片| 草草在线视频免费看| 国产精品三级大全| 免费人成视频x8x8入口观看| 久久久久久久久大av| 精品午夜福利在线看| a级毛片免费高清观看在线播放| 免费看美女性在线毛片视频| 18禁在线播放成人免费| 国产亚洲av嫩草精品影院| 中国美女看黄片| 午夜爱爱视频在线播放| 欧美xxxx性猛交bbbb| 国产日韩欧美在线精品| 欧美激情久久久久久爽电影| 久久精品人妻少妇| 久久久久久国产a免费观看| 性插视频无遮挡在线免费观看| 亚洲精品久久国产高清桃花| 免费观看的影片在线观看| 亚洲国产精品国产精品| av在线老鸭窝| 99视频精品全部免费 在线| 只有这里有精品99| 日韩欧美一区二区三区在线观看| 日韩一本色道免费dvd| 久久婷婷人人爽人人干人人爱| 国产一区亚洲一区在线观看| 深爱激情五月婷婷| 成人二区视频| 看片在线看免费视频| 看黄色毛片网站| 欧美一区二区精品小视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲色图av天堂| 波多野结衣高清无吗| 精品久久国产蜜桃| 亚洲国产精品成人久久小说 | 欧美精品国产亚洲| 在线免费十八禁| 看片在线看免费视频| 精品人妻偷拍中文字幕| 波多野结衣高清作品| 日本爱情动作片www.在线观看| 禁无遮挡网站| 亚洲精品456在线播放app| 日韩欧美在线乱码| 亚洲av中文av极速乱| 变态另类丝袜制服| 99久国产av精品国产电影| 成人综合一区亚洲| 日本-黄色视频高清免费观看| 国产精品无大码| 69人妻影院| 成人亚洲精品av一区二区| 成人午夜精彩视频在线观看| 亚洲经典国产精华液单| 国产精品免费一区二区三区在线| 搡老妇女老女人老熟妇| 日韩一区二区三区影片| 国内久久婷婷六月综合欲色啪| 国产午夜精品一二区理论片| 一进一出抽搐gif免费好疼| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩卡通动漫| 亚洲av电影不卡..在线观看| 成年版毛片免费区| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 国产伦精品一区二区三区四那| 日韩欧美在线乱码| 九草在线视频观看| 日本免费一区二区三区高清不卡| 国产高潮美女av| 日韩中字成人| 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 亚洲精品456在线播放app| 国产午夜精品论理片| 久久久午夜欧美精品| 爱豆传媒免费全集在线观看| 男女视频在线观看网站免费| 国产真实乱freesex| 蜜桃久久精品国产亚洲av| 国产av麻豆久久久久久久| av在线观看视频网站免费| 国产高潮美女av| 99九九线精品视频在线观看视频| 久久精品国产鲁丝片午夜精品| 国产成人精品久久久久久| 99九九线精品视频在线观看视频| 国产色爽女视频免费观看| 自拍偷自拍亚洲精品老妇| 性插视频无遮挡在线免费观看| 午夜精品一区二区三区免费看| 亚洲av中文av极速乱| 精品免费久久久久久久清纯| 亚洲三级黄色毛片| 日韩制服骚丝袜av| 国产一级毛片在线| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久 | 99精品在免费线老司机午夜| 午夜a级毛片| 国产精品嫩草影院av在线观看| 免费av观看视频| 草草在线视频免费看| 午夜激情福利司机影院| 夫妻性生交免费视频一级片| 精品免费久久久久久久清纯| 成人一区二区视频在线观看| 丰满的人妻完整版| 性欧美人与动物交配| av天堂中文字幕网| 校园人妻丝袜中文字幕| 国产在线男女| av又黄又爽大尺度在线免费看 | 亚洲精品乱码久久久v下载方式| 色哟哟哟哟哟哟| 我要搜黄色片| 久久久久久久久中文| 一区福利在线观看| 麻豆乱淫一区二区| 国产一级毛片七仙女欲春2| 超碰av人人做人人爽久久| 国产成人a区在线观看| 精华霜和精华液先用哪个| 简卡轻食公司| 国产午夜福利久久久久久| 美女xxoo啪啪120秒动态图| 日本一本二区三区精品| 一区福利在线观看| 少妇熟女欧美另类| 亚洲中文字幕日韩| 麻豆国产97在线/欧美| 中文字幕精品亚洲无线码一区| 成人永久免费在线观看视频| 亚洲自拍偷在线| 69av精品久久久久久| 午夜精品一区二区三区免费看| 国产真实伦视频高清在线观看| 最近手机中文字幕大全| 波野结衣二区三区在线| 日日干狠狠操夜夜爽| 十八禁国产超污无遮挡网站| 国产精品av视频在线免费观看| 亚洲欧美日韩高清专用| 国产老妇女一区| 天美传媒精品一区二区| 天堂av国产一区二区熟女人妻| 在线观看一区二区三区| 中文字幕精品亚洲无线码一区| 在线观看66精品国产| 久久久久久久午夜电影| 国产综合懂色| 丰满的人妻完整版| 亚洲欧美精品综合久久99| 中文亚洲av片在线观看爽| 久久久精品欧美日韩精品| 老师上课跳d突然被开到最大视频| 蜜臀久久99精品久久宅男| 午夜福利在线观看吧| 国产伦理片在线播放av一区 | 亚洲美女搞黄在线观看| 3wmmmm亚洲av在线观看| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区成人| 国产伦精品一区二区三区四那| 国产高清激情床上av| 亚洲成人久久爱视频| 九九在线视频观看精品| 国模一区二区三区四区视频| 久久久久久久久久久免费av| 嫩草影院新地址| 久久这里有精品视频免费| 亚洲综合色惰| 欧美成人免费av一区二区三区| 12—13女人毛片做爰片一| 欧美成人一区二区免费高清观看| 国产探花极品一区二区| 美女xxoo啪啪120秒动态图| 欧美潮喷喷水| 国产亚洲91精品色在线| 亚洲在线自拍视频| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲网站| 波多野结衣高清无吗| 欧美成人a在线观看| 日本免费一区二区三区高清不卡| 亚洲欧美成人综合另类久久久 | 欧美激情在线99| 欧美高清性xxxxhd video| 不卡一级毛片| 国产黄色小视频在线观看| 成人综合一区亚洲| 久久人人精品亚洲av| 国产视频首页在线观看| 晚上一个人看的免费电影| 在线a可以看的网站| 噜噜噜噜噜久久久久久91| 高清在线视频一区二区三区 | 国产免费男女视频| 久久精品国产亚洲av香蕉五月| 日本一二三区视频观看| 中文字幕av在线有码专区| 久久久久久伊人网av| 麻豆乱淫一区二区| 在线天堂最新版资源| 观看美女的网站| 九九爱精品视频在线观看| 又粗又爽又猛毛片免费看| 能在线免费看毛片的网站| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 舔av片在线| 内地一区二区视频在线| av天堂在线播放| 能在线免费看毛片的网站| 18+在线观看网站| 99热只有精品国产| 国产精品一区www在线观看| www.av在线官网国产| 男人舔女人下体高潮全视频| 日韩成人av中文字幕在线观看| 国产人妻一区二区三区在| 精品久久久久久久人妻蜜臀av| 大型黄色视频在线免费观看| 精品久久久久久久久av| 久久精品夜色国产| 亚洲无线观看免费| 美女大奶头视频| a级毛色黄片| 婷婷色av中文字幕| 亚洲国产高清在线一区二区三| 精品午夜福利在线看| 最近中文字幕高清免费大全6| 精品99又大又爽又粗少妇毛片| 寂寞人妻少妇视频99o| 欧美成人一区二区免费高清观看| 国语自产精品视频在线第100页| 午夜亚洲福利在线播放| 国产伦一二天堂av在线观看| 日韩强制内射视频| 91精品一卡2卡3卡4卡| 一边亲一边摸免费视频| 午夜精品一区二区三区免费看| 亚洲综合色惰| 十八禁国产超污无遮挡网站| 亚洲熟妇中文字幕五十中出| 亚洲av成人精品一区久久| 久久久久久久久久黄片| 大又大粗又爽又黄少妇毛片口| 久久中文看片网| 乱码一卡2卡4卡精品| 91麻豆精品激情在线观看国产| 中文字幕制服av| 成人三级黄色视频| 干丝袜人妻中文字幕| 亚洲真实伦在线观看| 三级毛片av免费| 大型黄色视频在线免费观看| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 麻豆乱淫一区二区| 国产 一区精品| 蜜桃亚洲精品一区二区三区| 欧美日韩精品成人综合77777| 青春草国产在线视频 | 最近中文字幕高清免费大全6| 欧美高清成人免费视频www| 国产一区二区三区在线臀色熟女| 亚洲成av人片在线播放无| or卡值多少钱| 久久久久免费精品人妻一区二区| 舔av片在线| 色5月婷婷丁香| 国产精品女同一区二区软件| 亚洲,欧美,日韩| 一级毛片久久久久久久久女| 大香蕉久久网| 嫩草影院入口| 在线天堂最新版资源| 久久国内精品自在自线图片| 成人毛片a级毛片在线播放| 亚洲国产色片| 欧美又色又爽又黄视频| 久久草成人影院| 久久国产乱子免费精品| 日本在线视频免费播放| 久久久久久久久大av| 亚洲天堂国产精品一区在线| 日韩三级伦理在线观看| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 欧美一级a爱片免费观看看| 一边亲一边摸免费视频| 中国美白少妇内射xxxbb| 偷拍熟女少妇极品色| 精品少妇黑人巨大在线播放 | 久久久国产成人精品二区| 亚洲精品久久久久久婷婷小说 | 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 99久久人妻综合| 国产精品国产三级国产av玫瑰| 尤物成人国产欧美一区二区三区| 99热网站在线观看| 国产精品电影一区二区三区| 亚洲无线在线观看| 欧美日韩国产亚洲二区| 欧美激情在线99| 成人亚洲欧美一区二区av| 亚洲四区av| 一区二区三区高清视频在线| 可以在线观看的亚洲视频| 久久久久久九九精品二区国产| 国产人妻一区二区三区在| 日日啪夜夜撸| 99久国产av精品| 婷婷六月久久综合丁香| 中文在线观看免费www的网站| 色吧在线观看| a级一级毛片免费在线观看| av在线天堂中文字幕| 日韩成人伦理影院| 一区二区三区四区激情视频 | 麻豆国产av国片精品| 国内少妇人妻偷人精品xxx网站| 日韩 亚洲 欧美在线| 在线观看av片永久免费下载| 性欧美人与动物交配| 亚洲成人中文字幕在线播放| 亚洲第一电影网av| 久久99热这里只有精品18| 国产又黄又爽又无遮挡在线| 一级毛片电影观看 | 亚洲成人久久爱视频| 久久热精品热| 国产精品伦人一区二区| 日日撸夜夜添| 国产在线男女| 亚洲欧美日韩卡通动漫| 在线观看免费视频日本深夜| 精品欧美国产一区二区三| 国产女主播在线喷水免费视频网站 | 最好的美女福利视频网| 一级av片app| 久久久成人免费电影| 亚洲三级黄色毛片| 亚洲av一区综合| 国产精品一区二区在线观看99 | 菩萨蛮人人尽说江南好唐韦庄 | 国产成人午夜福利电影在线观看| 观看美女的网站| av天堂中文字幕网| 精品人妻熟女av久视频| 亚洲成人中文字幕在线播放| 真实男女啪啪啪动态图| 欧美一区二区国产精品久久精品| 久久亚洲国产成人精品v| 99国产精品一区二区蜜桃av| 国产高清不卡午夜福利| 日韩 亚洲 欧美在线| 91av网一区二区| 午夜久久久久精精品| 国产男人的电影天堂91| 欧美日韩国产亚洲二区| 最后的刺客免费高清国语| 在线观看av片永久免费下载| 成熟少妇高潮喷水视频| www.色视频.com| 联通29元200g的流量卡| 搡老妇女老女人老熟妇| 日本成人三级电影网站| 国产麻豆成人av免费视频| 日产精品乱码卡一卡2卡三| 国产精品久久久久久久久免| 久久中文看片网| 久久久欧美国产精品| 69av精品久久久久久| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 日韩中字成人| 亚洲三级黄色毛片| 国产黄片视频在线免费观看| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 一区福利在线观看| 啦啦啦观看免费观看视频高清| 哪里可以看免费的av片| 日韩国内少妇激情av| 97热精品久久久久久| 日本免费一区二区三区高清不卡| 婷婷色av中文字幕| 亚州av有码| 97超碰精品成人国产| 亚洲婷婷狠狠爱综合网| 国产三级中文精品| 色尼玛亚洲综合影院| 高清日韩中文字幕在线| 欧美日本视频| 夜夜爽天天搞| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 我的女老师完整版在线观看| 久久亚洲国产成人精品v| videossex国产| 亚洲精品自拍成人| 别揉我奶头 嗯啊视频| 国产精品日韩av在线免费观看| 国产成人午夜福利电影在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美区成人在线视频| 韩国av在线不卡| 桃色一区二区三区在线观看| avwww免费| 精品久久久久久久久久免费视频| 亚洲无线在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看午夜福利视频| 日韩av不卡免费在线播放| 亚洲人成网站在线播| 亚洲精品色激情综合| 成人午夜精彩视频在线观看| 91在线精品国自产拍蜜月| 天堂中文最新版在线下载 | 久久久久久久久久成人| 亚洲va在线va天堂va国产| 亚洲av中文av极速乱| 成人亚洲精品av一区二区| 国产精品国产三级国产av玫瑰| 亚洲av中文字字幕乱码综合| av卡一久久| 国产三级中文精品| 精品久久久久久久久久久久久| 哪里可以看免费的av片| 少妇高潮的动态图| 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 啦啦啦观看免费观看视频高清| 成人特级av手机在线观看| 国内精品一区二区在线观看| 亚洲最大成人手机在线| 婷婷色综合大香蕉| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| 内射极品少妇av片p| 亚洲欧美日韩高清专用| 亚洲精品成人久久久久久| 可以在线观看毛片的网站| 欧美一区二区国产精品久久精品| 亚洲精华国产精华液的使用体验 | 欧美日韩综合久久久久久| 精品无人区乱码1区二区| 久久国产乱子免费精品| 欧美一级a爱片免费观看看| 欧美zozozo另类| 我的老师免费观看完整版| 国产91av在线免费观看| 久久久久久国产a免费观看| 内射极品少妇av片p| 亚洲精品国产av成人精品| 最好的美女福利视频网| 亚洲不卡免费看| 日韩强制内射视频| 九九在线视频观看精品| 成人二区视频| 长腿黑丝高跟| 麻豆成人av视频| 成人无遮挡网站| 亚洲成人精品中文字幕电影| 人妻久久中文字幕网| 精品久久久久久久久av| 婷婷亚洲欧美| 最近的中文字幕免费完整| 99久久中文字幕三级久久日本| 看片在线看免费视频| 欧美性猛交╳xxx乱大交人| 不卡一级毛片| 午夜福利成人在线免费观看| 久久中文看片网| av在线亚洲专区| 麻豆国产av国片精品| 婷婷六月久久综合丁香| 成人一区二区视频在线观看| 欧美成人一区二区免费高清观看| 男的添女的下面高潮视频| 高清在线视频一区二区三区 | av视频在线观看入口| 九九在线视频观看精品| 99久国产av精品| 91久久精品国产一区二区三区| 九草在线视频观看| 韩国av在线不卡| 久久久久久久久久黄片| 大香蕉久久网| 少妇熟女欧美另类| 国产男人的电影天堂91| 亚洲经典国产精华液单| 国产视频内射| 床上黄色一级片| 国产黄片美女视频| 亚洲一区高清亚洲精品| 国产成人精品婷婷| 一个人看的www免费观看视频| 在线免费十八禁|