• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on optimization design method of actuator parameters with stepless capacity control system for reciprocating compressor ①

    2020-07-12 02:34:16ZhouChaoZhangJinjieSunXuWangYao
    High Technology Letters 2020年2期

    Zhou Chao(周 超), Zhang Jinjie , Sun Xu, Wang Yao

    (*Compressor Health and Intelligent Monitoring Center of National Key Laboratory of Compressor Technology, Beijing University of Chemical Technology, Beijing 100029, P.R.China) (**State Key Laboratory of Compressor Technology, Anhui Provincial Laboratory of Compressor Technology, Hefei 230031, P.R.China) (***Beijing Key Laboratory of Health Monitoring Control and Fault Self-Recovery for High-End Machinery, Beijing University of Chemical Technology,Beijing 100029, P.R.China)

    Abstract

    Key words: reciprocating compressor, stepless capacity control system, non-dominated sorting genetic algorithm II (NSGA-II), fuzzy analytic hierarchy process (FAHP)

    0 Introduction

    In petroleum and chemical enterprises, many chemical or physical processes require high-pressure gases, and reciprocating compressors play an irreplaceable role because of their outstanding advantages in compression efficiency and compression ratio. Reciprocating compressor belongs to positive displacement compressor, the discharge is constant under normal working conditions, but the fluctuation of technological process makes the device not run at full load. Reciprocating compressor usually runs below the designed discharge, so it is usually equipped with capacity control system to meet the operating requirements. The capacity regulation by pressing-off suction valve during partial stroke can realize 0-100% stepless flow regulation theoretically by controlling the opening time of the unloading device in the compression process. At the same time, it also reduces energy consumption[1]. The capacity control system is installed on reciprocating compressor in a petrochemical refinery. When the load is 40%-60%, the power can be saved by 300 kW/h. Calculated at 0.5 yuan/kWh, running for one year (that is 8 000 h) can save about 1.2 million yuan of electricity, with obvious energy-saving effect.

    When the reciprocating compressor is installed with the stepless capacity control system[2-5], the actuator, control hardware and hydraulic system often fail because the design or control parameters are not optimized according to the actual situation in the field.The failure of hydraulic system is involved in Ref.[6]. The failure of control system is involved in Ref.[7]. The failure of actuator is involved in Refs[8-12]. Due to application problems, researchers begin to avoid problems in structure and parameter design. Wu et al.[13]analyzed the influence of inlet oil pressure on valve plate movement based on the mathematical model of valve plate movement and designed the optimal inlet oil pressure. Meanwhile, the speed buffer structure is designed to greatly reduce the impact of valve plate on valve seat and extend the life of valve plate. Li et al.[14]established a streamlined valve model and studied the relationship between inlet oil pressure and tilt angle and valve plate life, which provided theoretical basis for optimal design of actuator. Cao et al.[15]studied characteristics of hydraulic actuator and system modeling based on AMESim, and proposed an improved design. Li et al.[16]deduced an accurate calculation formula of discharge, and designed the GUI, which can quickly complete the design of the force of ejection. In conclusion, the researchers set single optimization goal and didn’t consider the diversity of parameters which have complex relationship of mutual dependence and contradiction, so, the design results have limitations, which can not make the system in an efficient operation state.

    The objectives are mutually restricted, and there are multiple groups of non-dominant solutions. Traditional multi-objective optimization methods can not be used to solve the above problems. The evolutionary multi-objective optimization method has achieved good results in practical application, and researchers have achieved rich research results. The non-dominated sorting genetic algorithm II (NSGA-II)[17,18]is currently one of the most popular multi-objective genetic algorithm (GA), which reduces the complexity of non-inferior sort genetic algorithm, and has the advantages of fast running speed and good convergence of solution set, and becomes the benchmark of other multi-objective optimization algorithms.

    In this paper, mathematical models of actuators and compressors are established. According to the mutual influence relationship and importance of parameters, the indicated power deviation, impact velocity of ejection, inlet oil pressure and spring stiffness are selected as objective functions. The Pareto frontier is obtained by NSGA-II. Finally, the optimal solution is selected by fuzzy analytic hierarchy process and compared with the traditional design value. The result obtained is significantly better than that obtained by the traditional design method, which verifies the feasibility and effectiveness of the method.

    1 Stepless capacity control system and mathematical model

    The stepless capacity control system principle of reciprocating compressor is shown in Fig.1. Under normal conditions, when the piston moves to the position of inner dead point (point A), it starts to reverse movement, the suction valve begins to close, and then the compressor compresses and exhausts. The area of the P-V diagram contains regions I and II. When the piston moves to the position of inner dead point (point A), it starts to move in the opposite direction. The hydraulic system provides a large hydraulic driving force to the unloader. The suction valve is forced to be pushed open by the unloader. The valve plate is at the lower limit and the gas returns to the suction chamber. When the piston moves to point B, the volume meets the production requirements. The hydraulic system provides the hydraulic driving force of the unloader to reduce, the spring force in the unloader overcomes the hydraulic driving force and friction, the unloader retracts, and the suction valve begins to close. The area of the P-V diagram contains region II. According to the area in the P-V diagram, the capacity control system can not only make the reciprocating compressor meet the volume requirements, but also save energy in region I. Nomenclature is listed in Table 1.

    Fig.1 Schematic diagram of valve and chamber

    1.1 Mathematical model of actuator

    The actuator is mainly composed of hydraulic cylinder, unloader including reset spring, executing fork, mandril and other components.The hydraulic system includes hydraulic stations and pipelines to provide the driving force for the actuator to overcome the spring force, gas force, friction force, etc.The suction valve is delayed in closing from open state. Part of the gas returns to the suction chamber in compression stroke to realize the purpose of capacity control.

    Table 1 Nomenclature

    In order to analyze the motion characteristics of the actuator with stepless capacity control system, several hypotheses are provided.

    (1) Don’t consider the rebound of actuator during impact.

    (2) Don’t consider time delay of hydraulic system oil supply or unloading, that is, the start time of ejection or withdrawal of the loader is consistent with the start time of oil supply or unloading in the hydraulic oil unit.

    i) Hydraulic driving force

    (1)

    where,Fhrepresents the hydraulic driving force,p1represents the oil pressure in the ejection process of the actuator,p2represents oil pressure in the withdrawal process of the actuator,Aunloaderrepresents transversal area of hydraulic piston,θ1represents start angle of ejection,θ2represents end angle of ejection,θ3represents start angle of withdrawal,θ4represents end angle of withdrawal.

    ii) Spring force of actuator

    Fs=kunloader(x0+x)

    (2)

    where,Fsrepresents spring force of actuator,kunloaderrepresents spring stiffness of actuator,x0represents pre-compression,xrepresents actuator displacement.

    iii) Differential equations of motion of ejection and withdrawal

    (3)

    where,mrepresents actuatormass,Firepresents gasforce of suction,αrepresents installation angle of actuator,frepresents total friction of actuator,Fcyrepresents gas force of cylinder,γrepresents gas force coefficient of valve plate, when executing fork contacts the valve plate,γ=1, instead,γ=0.

    iv) Initial condition

    where,x′(0) represents initial velocity in ejection or withdrawal of actuator,va(0) represents initial displacement in ejection or withdrawal of actuator,Lrepresents actuatortrip.

    1.2 Mathematical model of compressor with stepless capacity control system

    As shown in Fig.2 and Table 2, on account of changing opening and closing states by actuator under capacity control condition, many new processes are added compared with the compressor model under normal working conditions. As shown in Fig.2, the suction valve is forced open during compression stroke (crank angle isθs3-θ3). The movement state of valve plate is changed. In the closing process of suction valve, if the acceleration of the unloader is less than the suction valve plate acceleration (crank angle isθs5-θ4), the motion state of the valve plate closing process will also change.

    Table 2 Description of unloader and suction valve

    Fig.2 Displacement diagram of unloader and suction valve

    Based on the above analysis, a compressor mathematical model based on capacity control system is established.Before establishing the mathematical model, the following hypothesis is proposed.

    (1) The suction valve is an automatic valve, which

    is not affected by the actuator during the opening process.

    (2) The motion of the exhaust valve and suction valve plates is one-dimensional.

    (3) The flow of gas through the valve gap is a one-dimensional flow of ideal gas and an adiabatic process.

    (4) The cylinder transfers heat with the cooling water in outer wall, which is simulated as an inter-wall heat exchanger, and its heat transfer coefficient isB(J/(m2·s)).

    1.2.1 Expansion, suction and compression processes

    Under capacity control condition, the motion of the actuator doesn’t affect the expansion, suction and compression processes[19]. The motion differential equations of the suction valve plate in different processes are respectively:

    (4)

    (5)

    where,hrepresents valve plate displacement,θrepresents crank angle,αsvAsvrepresents instantaneous effective valve gap area of suction valve,Aprepresents area of valve plate,krepresents spring stiffness of valve plate,krepresents ratio of specific heat of gas,Vcyrepresents cylinder volume,V0represents relative clearance volume,βrepresents coefficient of heat transfer,C=B2πrcyrcrk,rcrkrepresents crank radius,trepresents time,H0represents precompression of valve plate spring,Mvrepresents the valve quality,Rrepresents gas constant,Tsrepresents suction temperature,βrepresents coefficient of applied force of gas,Zrepresents number of the spring,psrepresents inlet pressure,pcyrepresents cylinder pressure,Vhrepresents stroke volume,λrepresents ratio between the crankshaft radius and connecting rod length,rcyrepresents radius of the cylinder.

    Eq.(4) is the motion differential equations of the suction valve plate in the expansion and compression process, and Eq.(5) is the motion differential equations of the suction valve plate in the suction process.

    1.2.2 Backflow and suction valve closing process

    (1) Backflow process

    (2) Suction valve closing process

    θ3≤θ≤θ4(7)

    When the withdrawal speed of valve plate is less than the unloader, the equation is consistent with Eq.(5).

    2 Multi-objective optimization mathematical model of actuator based on NSGA-II

    2.1 Multi-objective optimization mathematical model

    The hydraulic pressure and the reset spring stiffness have great influence on the safety, reliability and performance of the capacity control system. The reduction of hydraulic pressure can decrease the design cost of hydraulic system, decrease the impact of ejection speed and increase the safety of the system, but the actuator can not meet the requirements of ejecting when the hydraulic pressure is small. The decrease of spring stiffness can reduce the design value of hydraulic pressure, but when the spring stiffness decreases, the impact speed of ejection will increase, which is not conducive to system reliability. On the other hand, on account of the valve plate retracts with the actuator, the reduction of spring stiffness will lead to the reduction of the actuator’s retract acceleration, so the valve plate closing time increases, the quantity of reflux increases, and the load deviation increases. Therefore, it is necessary to consider the mutual inhibition and contradictory relationship among multiple parameters and objectives, such as hydraulic pressure, spring stiffness, impact velocity of ejection, and regulating effect, as shown in Fig.3. Based on the mathematical model of actuator and compressor in Section 2, the multi-objective optimization study of load deviation, impact velocity of ejection, hydraulic pressure and spring stiffness is carried out. The multi-objective mathematical model of the unloader is shown in Eqs(8,9):

    Fig.3 Parameter relational graph

    minf(X)=[f1f2…fm]

    (8)

    subX=(x1x2…xn)

    xlower≤xi≤xupper(i=1,2,…,n)

    (9)

    where,f(X) is the objective equation ofX;m,nis the number of objective function and decision variables respectively;xloweris the lower limit of the decision variable;xupperis the upper limit of the decision variable.

    Therefore, the objective function is to minimize the spring stiffness, oil inlet pressure, impact velocity of ejection and load adjustment deviation. The objective function is described as follows.

    (1)Spring stiffness and oil inlet pressure

    The design of reducing the system hydraulic pressure and the spring stiffness of unloader can reduce the processing requirements and costs of the actuator and hydraulic system, and increase the safety coefficient of the system.

    f1=k

    f2=p1

    (2)Load adjustment deviation

    Under normal condition, the suction valve plate retracts automatically. Through numerical calculation of Eqs(4) and (5), the withdrawal time of the suction valve plate is 1.56 ms. Actuator parameters are shown in Table 3. Reciprocating compressor parameters are shown in Table 4. Ultimate withdrawal time of unloader is 4 ms with capacity control system. Since the mass of the valve plate is small relative to the unloader, the acceleration of the valve plate is large relative to the unloader. Therefore, under the capacity control condition, the valve plate is withdrawn together with the unloading device, namely, Eq.(7) is adopted as the differential equations of valve plate withdrawal process.

    Table 3 Actuator parameters

    Table 4 Reciprocating compressor parameters

    Through numerical calculation, the indicated power of compressor with different stiffness is obtained. The load adjustment deviation can be obtained by subtracting the indicated power of the compressor with different stiffness under the normal condition from the indicated power of the compressor under the capacity control condition, that isΔη. The relationship betweenΔηandkis obtained as shown in Fig.4, and through rational fitting, when the numerator degree is 1, denominator degree is 2, fitting degree is high, the relationship betweenΔηandkis shown in Eq.(10).

    Fig.4 Fitted curve and simulation curve

    (10)

    (3) Impact velocity of ejection

    When the angle isθ1≤θ≤θ2, it is the ejection process of the actuator, the initial conditions are substituted into the ejection motion differential equation of the actuator, and the velocity at the lower limit of the actuator namely the impact velocity of ejection, can be obtained:

    (11)

    2.2 Analysis of optimization results based on NSGA-II

    Fig.5 shows the flow of multi-objective optimization algorithm, which is divided into 3 parts. The first part constructs mathematical equations according to the structure and characteristics of the actuator and compressor, the second part analyzes the mutual influence of various parameters and obtains the relational expression according to the mathematical model, and the third part completes the multi-objective optimization calculation with NSGA-II.

    The setting parameters of non-dominant sorting multi-objective optimization is shown in Table 5. Figs 6-7 show the feasible solution set graph among the 4 targets. As can be seen from Fig.6, with the decrease of inlet oil pressure or spring stiffness, the impact velocity decreases, but the deviation of indicated power increases. Fig.6 shows the Pareto front of spring stiffness and oil inlet pressure when Gen=50, 500, 1 000 and 2 000. As the number of iterations increases, the region of feasible solution gradually decreases and is close to the Pareto front.

    Every solution in the NSGA-II solution set is a nondominant solution, and every solution cannot dominate the others. For practical engineering problem of application, the solution of multi-objective problem is not only an optimization problem. When Pareto front is found, the final optimal solution needs to be selected according to the relative importance of the optimization target. Although the deviation of indicated power affects the adjustment accuracy, it can be compensated by the control method. Therefore, the weight of the inlet oil pressure, spring stiffness, impact speed and deviation of indicated power is 0.3: 0.3: 0.3: 0.1. The relationship betweenrijand the weight of factorswiandwjisrij=0.5+(wi-wj)β, 0<β≤0.5, takingβ=0.3, therefore precedence relation matrix is:

    Table 5 Parameter of NSGA-II

    ParameterValuePopulation size100Maximum generation1000Mutation fraction0.7Crossover fraction0.4Variation ratio0.02Crossover ratio0.02

    Fig.5 Multi-objective optimization design algorithm flow chart

    Fig.6 Spring stiffness and hydraulic pressure Pareto front

    Fig.7 k-p1-v-Δη Pareto front

    Fuzzy consistency matrix is

    Therefore,

    =(0.2533, 0.2533, 0.2533, 0.24)

    According to the weight coefficient, the optimal solution can be obtained:

    Take the first 3 groups of solutions, as shown in Table 6.

    The optimized result of NSGA-II is compared with the traditional design parameters. The traditional design parameters are selected and calculated based on feasibility without considering the optimized design. Therefore, it can be seen from Table 7, the parameters decrease after the optimized design that could reach at least 17% and the maximum could reach 201%.

    3 Conclusion

    In this work, the key parameters of reciprocating compressor actuator and hydraulic system are optimized under capacity control system. Due to the mutual influence of spring stiffness, inlet oil pressure, impact velocity of ejection and deviation of indicated power, the improvement of any parameter will lead to the deterioration of other parameters. In order to solve the multi-parameter optimal design effectively, NSGA-II is used to solve the problem and compared with the traditional results.

    Table 6 Optimal solution of actuator parameters

    Table 7 Optimal solution of actuator parameters

    (1) The differential equation of actuator motion is established to analyze the relationship between spring stiffness, inlet oil pressure, impact velocity of ejection,which lays a theoretical foundation for multi-objective optimization.

    (2) The mathematical model of compressor under the capacity control system is established. On normal condition, the automatic withdrawal time of the valve plate is about 1.56 ms, while the minimum withdrawal time of the unloader on capacity control condition is 4 ms, so the valve plate and the unloader are withdrawn to the top limit together.The motion equation of the valve plate on capacity control system is related to the motion of the actuator. Therefore, the influence of spring stiffness on the indicated power and the displacement of the valve plate is analyzed by combining the motion differential equation of the actuator with the mathematical model of the compressor. The influence of spring stiffness on indicated power and displacement of valve plate on capacity control system is analyzed. It can be seen from the results that with the increase of spring stiffness, the closing time of valve plate decreases and the backflow decreases. Therefore, the deviation of indicated power of capacity control system decreases, but the increase of stiffness will lead to the increase of inlet oil pressure, and the relationship curve between spring stiffness and indicating power deviation is obtained through rational fitting.The above research lays a theoretical foundation for multi-objective optimization.

    (3) The optimal design is carried out by using NSGA-II to get Pareto front, and the optimal parameters of actuator and hydraulic system are obtained by adopting fuzzy analytic hierarchy process. The spring stiffness is 33 214 N/m, the inlet oil force is 310.63 N, the impact velocity of ejection is 0.2372 m/s, and the deviation of indicated power is 7.2523 kW. Compared with the traditional design parameters, the optimized design can reduce the spring stiffness or inlet oil pressure by at least 17% and the maximum by 201%.

    老女人水多毛片| 超碰97精品在线观看| 大话2 男鬼变身卡| 亚洲三区欧美一区| 伦理电影免费视频| 2018国产大陆天天弄谢| 自拍欧美九色日韩亚洲蝌蚪91| 日韩av在线免费看完整版不卡| 亚洲精品美女久久av网站| www.av在线官网国产| 人人妻人人澡人人爽人人夜夜| 另类亚洲欧美激情| 三级国产精品片| 久久ye,这里只有精品| 精品一区二区三区四区五区乱码 | 一个人免费看片子| 久久久亚洲精品成人影院| 精品国产一区二区三区久久久樱花| 丁香六月天网| 狂野欧美激情性bbbbbb| 国语对白做爰xxxⅹ性视频网站| 老鸭窝网址在线观看| 人妻一区二区av| 丁香六月天网| 欧美日韩精品网址| 精品少妇内射三级| av国产精品久久久久影院| 一边亲一边摸免费视频| 亚洲色图 男人天堂 中文字幕| 熟女少妇亚洲综合色aaa.| a级毛片黄视频| 美女福利国产在线| 日韩成人av中文字幕在线观看| 日韩一卡2卡3卡4卡2021年| 男女免费视频国产| 久久毛片免费看一区二区三区| 亚洲三区欧美一区| 久久 成人 亚洲| av天堂久久9| 色哟哟·www| 日韩在线高清观看一区二区三区| 免费观看无遮挡的男女| 女人精品久久久久毛片| 午夜激情久久久久久久| 亚洲国产精品一区三区| 免费在线观看视频国产中文字幕亚洲 | 日韩一区二区视频免费看| 在线观看免费视频网站a站| 天天躁狠狠躁夜夜躁狠狠躁| 春色校园在线视频观看| 精品久久蜜臀av无| 国产熟女午夜一区二区三区| 亚洲久久久国产精品| 黄色配什么色好看| 久久久久精品人妻al黑| 免费观看av网站的网址| 这个男人来自地球电影免费观看 | 久久精品国产自在天天线| 爱豆传媒免费全集在线观看| 久久热在线av| 美国免费a级毛片| 精品少妇一区二区三区视频日本电影 | 菩萨蛮人人尽说江南好唐韦庄| 国产激情久久老熟女| 国产日韩一区二区三区精品不卡| 婷婷色av中文字幕| 老汉色av国产亚洲站长工具| 久久精品久久久久久噜噜老黄| 国产综合精华液| 国产一级毛片在线| 日韩熟女老妇一区二区性免费视频| 又大又黄又爽视频免费| 春色校园在线视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 天天操日日干夜夜撸| 各种免费的搞黄视频| 99久国产av精品国产电影| 在线亚洲精品国产二区图片欧美| 精品酒店卫生间| 香蕉国产在线看| 黄片播放在线免费| 中文字幕制服av| 国产探花极品一区二区| 国产国语露脸激情在线看| 夫妻午夜视频| 亚洲国产最新在线播放| 久久久久网色| 精品少妇久久久久久888优播| 这个男人来自地球电影免费观看 | 成年美女黄网站色视频大全免费| 亚洲第一青青草原| 精品人妻在线不人妻| 国产乱人偷精品视频| 黄网站色视频无遮挡免费观看| 免费在线观看视频国产中文字幕亚洲 | 在线天堂中文资源库| 国产成人一区二区在线| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 人人澡人人妻人| 飞空精品影院首页| 中文字幕人妻丝袜制服| 亚洲av电影在线观看一区二区三区| 国产乱来视频区| 99国产精品免费福利视频| av福利片在线| 国产精品熟女久久久久浪| 国产精品香港三级国产av潘金莲 | 免费观看在线日韩| 欧美精品av麻豆av| 老熟女久久久| 中文字幕人妻丝袜制服| 国产一区二区 视频在线| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 亚洲av男天堂| 久久久久网色| 黄色配什么色好看| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 免费高清在线观看日韩| 男女国产视频网站| 亚洲成人一二三区av| 精品酒店卫生间| 成人国产av品久久久| 999精品在线视频| 精品酒店卫生间| av免费在线看不卡| 欧美日韩精品网址| 成人免费观看视频高清| 免费av中文字幕在线| 黄网站色视频无遮挡免费观看| 黄色配什么色好看| 国产激情久久老熟女| 韩国高清视频一区二区三区| 国产高清不卡午夜福利| 搡老乐熟女国产| 热re99久久国产66热| 三级国产精品片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av电影中文网址| 午夜福利乱码中文字幕| 欧美日韩一级在线毛片| a级毛片黄视频| 人妻一区二区av| 久久这里只有精品19| 超碰成人久久| 人人妻人人爽人人添夜夜欢视频| 女人精品久久久久毛片| 三级国产精品片| 日韩熟女老妇一区二区性免费视频| 中文字幕色久视频| 免费看av在线观看网站| 久久精品人人爽人人爽视色| 欧美另类一区| 高清在线视频一区二区三区| 国产精品国产三级专区第一集| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡| 亚洲人成电影观看| 久久国产亚洲av麻豆专区| 国产亚洲av片在线观看秒播厂| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 国产一区有黄有色的免费视频| 天天躁夜夜躁狠狠久久av| 黄色怎么调成土黄色| 999久久久国产精品视频| 国产成人精品久久久久久| www.熟女人妻精品国产| 侵犯人妻中文字幕一二三四区| 在线观看一区二区三区激情| 大香蕉久久成人网| 一级片'在线观看视频| 国产 精品1| 国产探花极品一区二区| 欧美中文综合在线视频| 老熟女久久久| 两性夫妻黄色片| av国产久精品久网站免费入址| 日韩电影二区| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 满18在线观看网站| 久久韩国三级中文字幕| 18+在线观看网站| 成人国产麻豆网| 欧美日韩av久久| 久久鲁丝午夜福利片| 各种免费的搞黄视频| 一区二区三区激情视频| 亚洲成人av在线免费| 一级毛片电影观看| 国产亚洲精品第一综合不卡| 哪个播放器可以免费观看大片| 精品久久久精品久久久| 国产又色又爽无遮挡免| av片东京热男人的天堂| 妹子高潮喷水视频| 男女下面插进去视频免费观看| 黑人欧美特级aaaaaa片| 久久狼人影院| 日韩制服骚丝袜av| 日韩一区二区三区影片| 成人毛片60女人毛片免费| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 欧美国产精品一级二级三级| 亚洲av在线观看美女高潮| 天天躁夜夜躁狠狠久久av| 在线观看免费高清a一片| 日韩电影二区| 最近最新中文字幕免费大全7| 99热全是精品| 天天操日日干夜夜撸| 亚洲情色 制服丝袜| 国产乱人偷精品视频| 婷婷色麻豆天堂久久| 亚洲国产欧美网| 午夜免费男女啪啪视频观看| 99热网站在线观看| 国产欧美日韩一区二区三区在线| 伊人亚洲综合成人网| 99久久综合免费| 国产成人午夜福利电影在线观看| 一级片'在线观看视频| 久久久久久久国产电影| 只有这里有精品99| 亚洲欧美一区二区三区国产| 一级毛片黄色毛片免费观看视频| 日韩成人av中文字幕在线观看| 精品一区二区三卡| 色婷婷av一区二区三区视频| 精品国产超薄肉色丝袜足j| 一级毛片黄色毛片免费观看视频| 美女福利国产在线| 亚洲精品美女久久久久99蜜臀 | 性少妇av在线| 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 久久精品国产综合久久久| 亚洲精品一二三| 少妇人妻 视频| 少妇 在线观看| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 老汉色av国产亚洲站长工具| 9色porny在线观看| 国产av一区二区精品久久| av片东京热男人的天堂| 自线自在国产av| 久久99精品国语久久久| 黄色视频在线播放观看不卡| av.在线天堂| 国精品久久久久久国模美| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品国产av蜜桃| 1024视频免费在线观看| 美国免费a级毛片| 国产一区二区三区综合在线观看| 中国国产av一级| 欧美在线黄色| 色吧在线观看| 亚洲图色成人| 久久久久精品久久久久真实原创| 亚洲欧美日韩另类电影网站| a级毛片在线看网站| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜| 美女xxoo啪啪120秒动态图| 精品国产一区二区三区四区第35| 亚洲伊人久久精品综合| 成年av动漫网址| 在线观看免费日韩欧美大片| 一级a爱视频在线免费观看| 欧美日韩综合久久久久久| 最近中文字幕高清免费大全6| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 老熟女久久久| 日韩中字成人| 成人二区视频| 国产黄频视频在线观看| 秋霞在线观看毛片| 电影成人av| 欧美人与性动交α欧美软件| 成人亚洲欧美一区二区av| 久久青草综合色| 亚洲人成网站在线观看播放| 国产精品欧美亚洲77777| 91成人精品电影| 久久精品国产自在天天线| 天堂俺去俺来也www色官网| 美女大奶头黄色视频| 美国免费a级毛片| 五月开心婷婷网| 欧美国产精品一级二级三级| 亚洲三区欧美一区| 国产色婷婷99| av视频免费观看在线观看| 亚洲国产毛片av蜜桃av| 一本大道久久a久久精品| 99久久人妻综合| 亚洲经典国产精华液单| 欧美日韩精品成人综合77777| 黄色毛片三级朝国网站| www.自偷自拍.com| 男的添女的下面高潮视频| 在线观看三级黄色| 国产黄色视频一区二区在线观看| 国产一区二区激情短视频 | 香蕉国产在线看| 亚洲美女黄色视频免费看| 国产精品无大码| 中文字幕最新亚洲高清| 国产免费一区二区三区四区乱码| 三级国产精品片| 日本91视频免费播放| 国产不卡av网站在线观看| 男的添女的下面高潮视频| 免费av中文字幕在线| 97人妻天天添夜夜摸| 女人久久www免费人成看片| 黄色怎么调成土黄色| 美女中出高潮动态图| 91国产中文字幕| 亚洲精品日本国产第一区| 久久女婷五月综合色啪小说| 久久ye,这里只有精品| 十八禁高潮呻吟视频| 少妇人妻 视频| 国产欧美日韩一区二区三区在线| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 美女主播在线视频| 国产精品蜜桃在线观看| 午夜av观看不卡| 麻豆精品久久久久久蜜桃| 午夜日本视频在线| 欧美日韩精品网址| 亚洲精品视频女| a级毛片黄视频| 男女免费视频国产| 丝袜脚勾引网站| 制服丝袜香蕉在线| 五月天丁香电影| 大话2 男鬼变身卡| 性色avwww在线观看| 亚洲成色77777| 国产精品久久久久久av不卡| 大陆偷拍与自拍| 久久午夜福利片| av有码第一页| 99九九在线精品视频| 五月开心婷婷网| 久久 成人 亚洲| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 在线天堂中文资源库| 最近中文字幕高清免费大全6| 精品少妇黑人巨大在线播放| 久久 成人 亚洲| 五月开心婷婷网| 国产免费视频播放在线视频| 久久久久久久久久人人人人人人| 人妻人人澡人人爽人人| 免费女性裸体啪啪无遮挡网站| 国产精品蜜桃在线观看| 欧美亚洲 丝袜 人妻 在线| 99热全是精品| 亚洲色图 男人天堂 中文字幕| 婷婷色av中文字幕| 26uuu在线亚洲综合色| 欧美日韩亚洲高清精品| 国产麻豆69| 亚洲精品一区蜜桃| 看非洲黑人一级黄片| 飞空精品影院首页| 精品一区二区三区四区五区乱码 | 精品国产国语对白av| 黑丝袜美女国产一区| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 美国免费a级毛片| 日本免费在线观看一区| 久久韩国三级中文字幕| 99精国产麻豆久久婷婷| 色婷婷久久久亚洲欧美| 精品人妻偷拍中文字幕| 国产亚洲一区二区精品| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| 国产有黄有色有爽视频| 国产综合精华液| 亚洲美女搞黄在线观看| 中文字幕人妻丝袜制服| 两个人看的免费小视频| 伊人久久国产一区二区| 欧美精品一区二区大全| 欧美日韩av久久| 1024视频免费在线观看| 老汉色∧v一级毛片| 哪个播放器可以免费观看大片| 亚洲国产成人一精品久久久| 亚洲av男天堂| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 不卡视频在线观看欧美| 热re99久久国产66热| 国产av码专区亚洲av| 欧美国产精品va在线观看不卡| 亚洲av欧美aⅴ国产| 一级黄片播放器| 香蕉国产在线看| 纯流量卡能插随身wifi吗| 日本wwww免费看| 久久久a久久爽久久v久久| 日韩中文字幕视频在线看片| av视频免费观看在线观看| 亚洲国产精品一区三区| 伦理电影大哥的女人| 亚洲婷婷狠狠爱综合网| 亚洲一码二码三码区别大吗| 麻豆乱淫一区二区| 免费在线观看黄色视频的| 国产乱人偷精品视频| 大码成人一级视频| av视频免费观看在线观看| 久久综合国产亚洲精品| 亚洲成色77777| 亚洲婷婷狠狠爱综合网| 国产一区二区激情短视频 | 叶爱在线成人免费视频播放| www.熟女人妻精品国产| 日韩电影二区| 亚洲精品久久久久久婷婷小说| 日本欧美国产在线视频| 日本免费在线观看一区| 久久97久久精品| 不卡视频在线观看欧美| 国产一区二区 视频在线| 日韩在线高清观看一区二区三区| 免费在线观看黄色视频的| 99热全是精品| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 免费大片黄手机在线观看| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 可以免费在线观看a视频的电影网站 | 国产av国产精品国产| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产乱人偷精品视频| 欧美bdsm另类| 亚洲精品中文字幕在线视频| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 你懂的网址亚洲精品在线观看| 精品少妇内射三级| 国产一区二区激情短视频 | 晚上一个人看的免费电影| 五月开心婷婷网| 久久99热这里只频精品6学生| 看十八女毛片水多多多| 美女国产高潮福利片在线看| 国产精品一国产av| av在线app专区| 大片电影免费在线观看免费| 99re6热这里在线精品视频| 亚洲婷婷狠狠爱综合网| 伊人亚洲综合成人网| 亚洲成人一二三区av| 色婷婷av一区二区三区视频| 午夜福利一区二区在线看| 久久精品久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 欧美精品亚洲一区二区| av福利片在线| 国产免费又黄又爽又色| 国产一区二区 视频在线| 国产精品一区二区在线观看99| 男人爽女人下面视频在线观看| 国产黄频视频在线观看| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 精品酒店卫生间| 色婷婷久久久亚洲欧美| 制服诱惑二区| 国产一区有黄有色的免费视频| 国产精品一区二区在线不卡| 亚洲av电影在线进入| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 国产日韩欧美在线精品| 精品第一国产精品| 叶爱在线成人免费视频播放| 一边摸一边做爽爽视频免费| 性少妇av在线| 亚洲欧美成人精品一区二区| av卡一久久| 中文天堂在线官网| 国产精品蜜桃在线观看| 国产成人精品婷婷| 十八禁网站网址无遮挡| 亚洲四区av| 两性夫妻黄色片| 午夜福利视频在线观看免费| 亚洲情色 制服丝袜| 99精国产麻豆久久婷婷| 国产日韩欧美视频二区| 国产成人91sexporn| 热99久久久久精品小说推荐| 亚洲婷婷狠狠爱综合网| 视频在线观看一区二区三区| 久久精品国产a三级三级三级| 国产精品三级大全| 性高湖久久久久久久久免费观看| 黄色视频在线播放观看不卡| 视频区图区小说| 男女无遮挡免费网站观看| 免费观看性生交大片5| 免费女性裸体啪啪无遮挡网站| 性色av一级| 亚洲av.av天堂| 国产精品国产av在线观看| 丝袜美足系列| freevideosex欧美| 亚洲图色成人| av天堂久久9| 人人妻人人澡人人爽人人夜夜| 最近2019中文字幕mv第一页| av福利片在线| 精品人妻在线不人妻| 毛片一级片免费看久久久久| 亚洲精品自拍成人| av线在线观看网站| 欧美另类一区| 国产av精品麻豆| 日韩中文字幕欧美一区二区 | 不卡视频在线观看欧美| www日本在线高清视频| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区激情| 看免费av毛片| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 国产亚洲午夜精品一区二区久久| 国产免费现黄频在线看| 韩国av在线不卡| 成人国产av品久久久| 亚洲国产精品一区二区三区在线| 丰满饥渴人妻一区二区三| 搡女人真爽免费视频火全软件| 午夜免费观看性视频| 嫩草影院入口| 只有这里有精品99| 在线观看一区二区三区激情| 国产av国产精品国产| 欧美精品人与动牲交sv欧美| 久久精品国产a三级三级三级| 在线观看国产h片| 在线天堂最新版资源| 国产无遮挡羞羞视频在线观看| 可以免费在线观看a视频的电影网站 | 叶爱在线成人免费视频播放| 国产精品免费视频内射| 亚洲av男天堂| 亚洲在久久综合| 美女国产高潮福利片在线看| 久久这里只有精品19| a级片在线免费高清观看视频| 亚洲成人手机| 一区二区三区精品91| 精品亚洲成国产av| 亚洲精品久久午夜乱码| 永久免费av网站大全| 亚洲图色成人| 亚洲情色 制服丝袜| 最近最新中文字幕大全免费视频 | 欧美亚洲日本最大视频资源| 日本猛色少妇xxxxx猛交久久| 90打野战视频偷拍视频| 欧美成人午夜精品| 久久久久国产一级毛片高清牌| 黄色一级大片看看| 最近的中文字幕免费完整| 性少妇av在线| 不卡视频在线观看欧美| 狂野欧美激情性bbbbbb| 99久久中文字幕三级久久日本| 欧美人与善性xxx| www日本在线高清视频| 搡女人真爽免费视频火全软件| 黄片小视频在线播放| 99久国产av精品国产电影| 成人国产麻豆网| 午夜福利,免费看| 亚洲国产色片| 久久久久久伊人网av| 不卡视频在线观看欧美| 最近的中文字幕免费完整| 亚洲成国产人片在线观看| 亚洲精品美女久久av网站| 少妇人妻精品综合一区二区| 可以免费在线观看a视频的电影网站 | 欧美xxⅹ黑人| 伊人久久大香线蕉亚洲五| 久久久久人妻精品一区果冻| 亚洲国产精品一区二区三区在线| 欧美成人午夜免费资源| 人人澡人人妻人| a级毛片在线看网站| 一级爰片在线观看|