• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical layer security transmission algorithm based on cooperative beamforming in SWIPT system ①

    2020-07-12 02:38:00WuGuodong武國(guó)棟HuZhentaoJinYong
    High Technology Letters 2020年2期

    Wu Guodong(武國(guó)棟), Hu Zhentao , Jin Yong

    (School of Computer and Information Engineering, Henan University, Kaifeng 475004, P.R.China )

    Abstract

    Key words: simultaneous wireless information and power transfer (SWIPT), beamforming, cooperative jamming (CJ), zero-forcing (ZF), secrecy communication

    0 Introduction

    Today, with the popularization of smart terminals and the increasing growth of wireless multimedia services, the information and communication industry is rapidly developing while its huge energy demand has become an urgent problem[1]. Traditional energy harvesting (EH) technologies (such as solar energy and wind energy) had many defects, and their EH efficiency was easily affected by weather, season and geographical condition, then they could not be a stable energy source for wireless devices. At present, a technique called simultaneous wireless information and power transfer (SWIPT) has been proposed, which can provide stable and controllable energy for wireless devices while transmitting the required information for them[2,3]. In addition, the application of SWIPT technology can reduce the hardware cost of the system and extend the service life of energy-constrained devices[4-6].

    However, due to the openness of its communication mode, the transmission information of SWIPT is easily intercepted and monitored by illegal devices, so that the privacy of the information is difficult to guarantee[7]. The traditional security technology relies on the cryptography system, which mainly includes technologies such as identity authentication and key generation[8]. The effectiveness of the encryption algorithm is guaranteed by the extremely high computational complexity required to crack the key. But, with increasing computing power of computer, decoding efficiency of illegal user is gradually enhancing. Traditional encryption algorithm is facing new challenge.

    Recently, physical layer security (PLS) technology has provided new ideas for researchers and gradually become a research hotspot[9,10]. Hoang et al.[11]considered a cooperative wireless network scene in which a source, a destination, and multiple intermediate energy harvesting nodes coexist with multiple eavesdroppers. By selecting a pair of intermediate nodes as a relay node and a jammer, confidential and jamming signals are respectively sent to the destination and eavesdroppers. Xing and Wong[12]explored information security transmission in SWIPT multi-relay network scene, and designed a cooperative beamforming scheme based on multi-relay cooperative jamming (CJ), and then gave a global optimal solution. Although the scheme can achieve excellent secrecy rate, the computational complexity of the algorithm is high.So, Xing’s algorithm is unsuitable in real-time engineering scene. Yang et al.[13]and Goel et al.[14]discussed the information security transmission problem of relay networks in single eavesdropping and multi-eavesdropping scenarios, and designed the corresponding low-complexity suboptimal schemes based on zero-forcing (ZF) criteria. The schemes transform the original non-convex problem into a convex problem by imposing a zero-forcing constraint on the eavesdropper, which significantly reduces the complexity of the algorithm. However, as the number of eavesdropper increases, the performance achieved by algorithm will deteriorate dramatically, and it will be difficult to meet the receiver’s need for secrecy rate. In addition, the algorithm is only suitable for the system in which the number of eavesdroppers is less than the number of relays.

    In some practical engineering application scenarios, due to hardware limitations, algorithms are required to make reasonable compromise between computational complexity and performance. For this reason, a cooperative beamforming algorithm based on CJ and ZF is proposed in this paper. The core idea of the algorithm is to impose zero-forcing constraints on the capable eavesdroppers while suppressing the remaining weak eavesdropper using CJ method. Compared with CJ method, the proposed algorithm reduces the dimension of the target vector to be optimized, which leads to low computational complexity. Compared with ZF method, the proposed algorithm increases the spatial freedom of the target vector to be optimized and obtains high secrecy rate. The proposed algorithm has 2 advantages:

    (1) Since the number of eavesdroppers who are imposed zero-forcing constraints in the algorithm is controllable, the computational complexity and performance of the algorithm implemented in this paper is also controllable, which is obviously more suitable for practical engineering applications.

    (2) In addition, different from the work of Yang and Goel, the proposed algorithm does not limit the number of eavesdroppers, which is allowed to exceed the number of relays.

    The rest of the paper includes 4 sections. Section 1 introduces the system model of the multi-AF (amplify and forward) relaying networks with SWIPT, and defines the secrecy rate of the relay wiretap channel. Next, through joint CJ method and ZF criteria, the secrecy rate maximization problem is formulated in Section 2, and an algorithm is designed to solve it. Then, Section 3 analyzes and evaluates the performance of the proposed method with others. Finally, conclusion is presented in Section 4.

    1 System model and problem formulation

    This work considers the secrecy transmission of information in a multi-relay wireless sensor network with SWIPT as shown in Fig.1, which includes a source node S, a destination node D,Keavesdropper nodes Ek,k=1,…,KandNamplify and forward (AF) relay nodes Ri,i=1,…,N. And all nodes in the network are only equipped with a single antenna. In this network, the source node S hopes to establish stable secure communication with the destination node D by means of the relay nodes R. In addition, assume that there is no direct link between S and D, E for the simplicity of exposition.

    Fig.1 System model

    Assume that each AF relay node lacks external power, it need to use the power split (PS) protocol to harvest energy and receive information simultaneously.Specifically, as shown in Fig.2, after the received signal of each relay passes through the power splitter, which split a portion ofρi,of the received power for EH, and the rest 1-ρifor information receiving.After that, the havested power is subdivided into 2 parts, whereγiof the power used for generating the artificial noise (AN) versus the rest 1-γiis temporarily stored in a capacitor and used to forward information later. Meanwhile, 0≤η<1 is defined as the conversion efficiency of energy harvesting.

    According to the AF protocol, the cooperative process is divided into 2 stages.

    1.1 Transmission stage

    In the first stage,the received signal of each relay can be expressed as

    (1)

    (2)

    (3)

    where ∠αiis defined as the phase of the AF coefficient of the relay Ri.

    1.2 Cooperative forwarding stage

    (4)

    trace(VEi)≤ηγiρiPs|hsri|2,i∈{1,…,N}

    (5)

    where,Ei=diag(ei),eidenotes a unit vector withith element equal to 1 and the rest equal to 0.

    The received signal at the destination D is given by

    (6)

    (7)

    The received signal at the eavesdropper Ekis given by

    (8)

    Thus, their respective signal to interference plus noise ratios (SINRs) are defined as

    SINRS,D=

    (9)

    SINRS, E, k=

    (10)

    According to the SINRs, the mutual information for the destination D can be calculated asrS,D=0.5log(1+SINRS,D), and that for the eavesdropper EkisrS, E, k=0.5log(1+SINRS, E, k). In summary, the secrecy rate can be defined as

    rsec=(rS,D-maxrS, E, k)+

    (11)

    2 The design of cooperative beamforming algorithm

    2.1 The preparation of beamforming

    In order to analyze the problem conveniently, the Eq.(11) is transformed as:

    (12)

    (13)

    and

    i∈{1,…,N} (14)

    again, by defining

    (15)

    and

    i∈{1,…,N} (16)

    that

    rS,E, k=

    (17)

    Moreover, rewrite Eq.(5) as

    i∈{1,…,N} (18)

    2.2 The description of designed algorithm

    Based on the priori information of the eavesdropper’s channel, the study considers first obtaining the signal to noise ratios (SNRs) of all eavesdroppers by the traditional cooperative beamforming (CB) method. According to that, the channel-related variables will be reordered from strong to weak. Then, it constrains the confidential signal to the null space of theK0strong eavesdropper’s channel while adopting the CJ method in the relay for the remainingK-K0weak eavesdropper.Note that the size ofK0directly determines the computational complexity and reachable secrecy rate of the algorithm.To illustrate the realization of designed method, the framework of the proposed algorithm is given in Fig.3.

    Fig.3 The framework of the proposed algorithm

    The purpose of this paper is to maximize the secrecy rate of the destination D by jointly optimizing the beamforming vectorωand the AN covariance matrixV. The corresponding optimization problem can be expressed as

    (P1):

    The details of the algorithm are shown in Table 1.

    Remark: in Step 1, the traditional CB method is to makeK0=0 andV=0for the problem (P1).

    2.3 The solution to (P1)

    Since the objective function of (P1) is a non-convex function, a two-layer optimization method is introduced[11], and a slack variableφ∈(0,1] is added to recast (P1) into a joint problem of upper and lower layers. First, the lower-layer optimization problem can be seen as a quadratic programming (QP) problem with a given fixedφ, as follows.

    (P1.1):

    Table 1 The compromise algorithm

    On the other hand, the upper-layer optimization problem is not only related toφ, but also to the optimal solution that can be obtained by the lower-layer optimization problem. Therefore,f(φ) is defined as the optimal solution of (P1.1). Meanwhile, we denoteH(φ)=φf(shuō)(φ). The objective function of (P1) is expressed as

    (19)

    The above equation omits ()+in the original objective function. And we declare a zero secrecy rate when it is less than zero.

    Therefore, the upper-layer optimization problem is described as

    s.t.φmin,1≤φ≤1

    Since the physical meaning of 1/φ-1 in (P1.1) is the maximum allowable SINR of the best eavesdropper’s channel[12], the feasibility of a non-zero secrecy rate means

    (20)

    Since anyφin the feasible domain can calculate the correspondingH(φ), and then the optimal solution of the upper-layer problem (P1.2) via a one-dimensional linear search in the interval [φmin,1,1] can be obtained.

    Now, according to the zero-forcing criterion and the semi-definite relaxation (SDR) technique, we deal with the problem (P1.1).Specifically, letωCm, wherem∈CN-K0is an arbitrary vector,C∈CN×(N-K0)is a semi-unitary matrix consisting of an orthonormal basis for the null space ofk0∈{1,…,K0} which is arranged in rows. By introducingW=ωωH=CmmHCH=CMCHand ignoring the rank-one constraint ofW, (P1.1) is equivalent as follows:

    (P1.1-SDR):

    Note that the objective function has been multiplied byφto facilitate direct calculation compared with that of the optimization problem (P1.1).

    (P1.1-SDP) can be obtained:

    It can be found that (P1.1-SDP) is a standard convex optimization problem, which can be solved by some convex optimization toolboxes.

    3 Simulation and analysis

    In this section, some simulation results are shown to evaluate the performance of the proposed algorithm.ConsiderNrelay nodes andKeavesdropper nodes randomly distributed in a circular area of radiusR=2 m, the source node S is fixed at the edge with a coordinate (-2 m, 0 m), and the corresponding destination node D is located at the position with a coordinate (2 m, 0 m). Furthermore, it is assumed that the channel model includes large-scale path loss and small-scale multipath fading.The unified path loss model is given byPL=10-3d-α, wheredrepresents the Euclidean distance between any two nodes.α=2.5 is the path loss exponent.In addition,hsr,hrdandhre,kare independent Rayleigh fading with zero mean andPLvariance.Other simulation parameters are set as shown in Table 2.

    Table 2 Simulation parameters

    Fig.4 shows the secrecy rate versus the number of unconstrained eavesdroppers. It can be found that the secrecy rate of the proposed algorithm is gradually increasing with the number of unconstrained eavesdroppers. Meanwhile, from the perspective of algorithm efficiency, the dimension of the beamforming vector to be designed will also increase with the number of unrestricted eavesdroppers, which will increase the computational complexity of the algorithm. Essentially, the number of zero-forcing constraints directly affects the degree of freedom (DoF), more DoF mean higher secrecy rate and computational complexity. This implies that the proposed algorithm can achieve a tradeoff between computational complexity and secrecy rate.On the other hand, it can be observed from Fig. 4 that the curve of the proposed algorithm is gradually flat, which indicates that the method of selecting the strong eavesdroppers is effective.In addition, the CJ method and the ZF method are the upper and lower bounds of the performance for the proposed algorithm, respectively. And the proposed algorithm is always superior to the traditional CB method.

    Fig.4 The secrecy rate versus the number of unconstrained eavesdroppers

    Fig.5 shows the secrecy rate versus the number of relays. It can be seen that the proposed algorithm can always achieve a performance compromise. However, when the number of relays is large, the gap of the reachable secrecy rate of all 4 algorithms is not obvious. This shows that under the premise that the relay has more DoF, the system tends to suppress the eavesdroppers through CB instead of CJ. Therefore, if there are a large number of relays in the system, the number of constrained eavesdroppers should be increased. Obviously, avoiding these eavesdroppers with zero-forcing constraints can significantly reduce the computational complexity of the algorithm and have less impact on the secrecy rate.

    Fig.5 The secrecy rate versus the number of relays

    Fig.6 shows the secrecy rate versus the number of relays. It can be seen that the performance gap between the proposed algorithm and the CJ method remains approximately constant over the entire range of transmit power selection, which indicates that the proposed algorithm is stable to the change of transmit power. In addition, Fig.6 shows that in the low power phase, the secrecy rate of the algorithm is lower than that of the traditional CB method. Conversely, in the high power phase, the algorithm is superior to the traditional CB method. This is because when the transmission power of the source is low, the energy harvesting in the relay for CJ is too small, which makes the effect of the CJ not obvious, and the performance loss caused by the zero-forcing constraint cannot be compensated.

    Fig.6 The secrecy rate versus the transmit power of source

    4 Conclusion

    In this work, a novel cooperative beamforming algorithm is proposed to balance performance of cooperative jamming method and zero-forcing method in multi-relay network with SWIPT. Different from the pure CJ method and the pure ZF method, the proposed algorithm achieves a controllable compromise between computational complexity and confidentiality rate by controlling the number of zero-forcing constraints. Finally, the simulation results prove the rationality of the algorithm. In the next research work, an adaptive threshold selection beamforming algorithm can be designed for the number of constrained eavesdroppers by analyzing different application scenarios.

    黑人巨大精品欧美一区二区mp4| 亚洲免费av在线视频| 日韩欧美在线二视频| 中文字幕精品免费在线观看视频| 国产爱豆传媒在线观看 | 免费高清视频大片| 中亚洲国语对白在线视频| aaaaa片日本免费| 亚洲人成网站高清观看| 亚洲五月色婷婷综合| 欧美av亚洲av综合av国产av| 黄频高清免费视频| 成年女人毛片免费观看观看9| 久久久久久久久免费视频了| 国产黄片美女视频| 一a级毛片在线观看| 久久人妻福利社区极品人妻图片| 久久草成人影院| 亚洲av成人一区二区三| 欧美又色又爽又黄视频| 色综合站精品国产| 日本撒尿小便嘘嘘汇集6| 啦啦啦韩国在线观看视频| 久久国产精品影院| 1024香蕉在线观看| 午夜精品在线福利| 啦啦啦韩国在线观看视频| 亚洲精品在线美女| 日韩三级视频一区二区三区| 人人妻人人澡人人看| 精品国产乱子伦一区二区三区| 国产精品一区二区精品视频观看| 一区福利在线观看| 亚洲人成电影免费在线| 国产成人啪精品午夜网站| 国产伦在线观看视频一区| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出| 欧美乱妇无乱码| 中文字幕最新亚洲高清| 国产一区二区三区视频了| 亚洲,欧美精品.| 一边摸一边抽搐一进一小说| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| a级毛片a级免费在线| 中文字幕人妻熟女乱码| 人人妻人人看人人澡| 男人舔女人的私密视频| 亚洲狠狠婷婷综合久久图片| 老司机午夜福利在线观看视频| 怎么达到女性高潮| 久久久久久人人人人人| 亚洲国产欧洲综合997久久, | 18禁观看日本| 琪琪午夜伦伦电影理论片6080| 久久久国产成人免费| 91老司机精品| 国产高清视频在线播放一区| 黄片小视频在线播放| 麻豆av在线久日| 色尼玛亚洲综合影院| 国产黄片美女视频| 宅男免费午夜| 香蕉国产在线看| 两个人看的免费小视频| 欧美一区二区精品小视频在线| 天堂动漫精品| 久99久视频精品免费| 成人欧美大片| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影| 午夜福利成人在线免费观看| 曰老女人黄片| 国产私拍福利视频在线观看| 好男人在线观看高清免费视频 | 免费看美女性在线毛片视频| 久久久国产成人精品二区| 一本大道久久a久久精品| 国产精品久久久av美女十八| 男女视频在线观看网站免费 | 色老头精品视频在线观看| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 久久久久国产一级毛片高清牌| 久久久久免费精品人妻一区二区 | 欧美人与性动交α欧美精品济南到| 精品久久久久久久久久免费视频| 日韩免费av在线播放| 黄色视频不卡| x7x7x7水蜜桃| 在线观看舔阴道视频| 久久国产乱子伦精品免费另类| 91av网站免费观看| 欧美国产日韩亚洲一区| 亚洲电影在线观看av| 中文字幕人妻丝袜一区二区| 国产熟女午夜一区二区三区| 亚洲av片天天在线观看| 精华霜和精华液先用哪个| 大型av网站在线播放| 亚洲免费av在线视频| 99国产精品一区二区三区| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片 | 国产一区在线观看成人免费| 麻豆av在线久日| 精品第一国产精品| www.自偷自拍.com| 男女之事视频高清在线观看| 久久午夜综合久久蜜桃| 欧美+亚洲+日韩+国产| a级毛片a级免费在线| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 国产精品久久久人人做人人爽| 日韩高清综合在线| 一级毛片精品| 久久久国产欧美日韩av| 十八禁人妻一区二区| 精品久久久久久久久久免费视频| 国产av在哪里看| 午夜亚洲福利在线播放| 成人18禁高潮啪啪吃奶动态图| 日本黄色视频三级网站网址| 啦啦啦 在线观看视频| 国产极品粉嫩免费观看在线| 色综合婷婷激情| 国产亚洲精品第一综合不卡| 国产精品av久久久久免费| 久久久国产成人精品二区| 亚洲色图av天堂| 宅男免费午夜| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 黄网站色视频无遮挡免费观看| 深夜精品福利| 在线av久久热| 欧美三级亚洲精品| 久久久久久大精品| 国产v大片淫在线免费观看| av免费在线观看网站| 亚洲熟妇中文字幕五十中出| 午夜老司机福利片| 国产精品一区二区精品视频观看| 91成年电影在线观看| 免费看日本二区| 国产精品一区二区精品视频观看| 亚洲av成人av| 精品日产1卡2卡| 女同久久另类99精品国产91| 嫩草影院精品99| 欧美日韩亚洲国产一区二区在线观看| 少妇粗大呻吟视频| 欧美zozozo另类| 两个人看的免费小视频| 97人妻精品一区二区三区麻豆 | 老司机深夜福利视频在线观看| 久久精品aⅴ一区二区三区四区| 午夜精品在线福利| 韩国av一区二区三区四区| 一区福利在线观看| 很黄的视频免费| 又黄又爽又免费观看的视频| 黄色视频不卡| 欧美国产日韩亚洲一区| 午夜福利高清视频| 少妇裸体淫交视频免费看高清 | 此物有八面人人有两片| 大型av网站在线播放| 日本一本二区三区精品| 亚洲 国产 在线| 日本a在线网址| 最新美女视频免费是黄的| 午夜视频精品福利| 18禁美女被吸乳视频| 国产av一区在线观看免费| 99久久久亚洲精品蜜臀av| 午夜亚洲福利在线播放| 日日爽夜夜爽网站| 他把我摸到了高潮在线观看| 在线av久久热| 久久久久久九九精品二区国产 | 欧美中文日本在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看 | 91成年电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 免费观看精品视频网站| 一区二区日韩欧美中文字幕| 99久久国产精品久久久| 一边摸一边做爽爽视频免费| 日本a在线网址| 精品一区二区三区av网在线观看| av在线播放免费不卡| 久9热在线精品视频| 日韩国内少妇激情av| 岛国视频午夜一区免费看| 日本撒尿小便嘘嘘汇集6| 又紧又爽又黄一区二区| 免费女性裸体啪啪无遮挡网站| 久久热在线av| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 777久久人妻少妇嫩草av网站| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 国产精品影院久久| 丝袜人妻中文字幕| 国产成+人综合+亚洲专区| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 国产亚洲精品一区二区www| 午夜福利一区二区在线看| 亚洲人成电影免费在线| 成人特级黄色片久久久久久久| 欧美日韩亚洲综合一区二区三区_| 级片在线观看| 午夜福利18| 一本一本综合久久| 国产精品1区2区在线观看.| 琪琪午夜伦伦电影理论片6080| 成人18禁在线播放| www日本黄色视频网| 1024手机看黄色片| 婷婷亚洲欧美| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 草草在线视频免费看| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区三区在线臀色熟女| 人妻丰满熟妇av一区二区三区| 国产一区在线观看成人免费| xxxwww97欧美| 日韩免费av在线播放| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| 91成人精品电影| 给我免费播放毛片高清在线观看| 久久国产精品影院| 亚洲国产精品成人综合色| 久久国产亚洲av麻豆专区| 一进一出好大好爽视频| 国产成人啪精品午夜网站| 国产av在哪里看| 久久午夜亚洲精品久久| 国产精品免费视频内射| 人成视频在线观看免费观看| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 91大片在线观看| 巨乳人妻的诱惑在线观看| 在线观看免费午夜福利视频| 国产99白浆流出| 欧美在线一区亚洲| 国产免费男女视频| 国产精品av久久久久免费| 中文字幕久久专区| 日本精品一区二区三区蜜桃| 中文字幕最新亚洲高清| 午夜福利一区二区在线看| 少妇的丰满在线观看| 一进一出抽搐gif免费好疼| 欧美黑人巨大hd| 久久精品国产综合久久久| www.999成人在线观看| 99热这里只有精品一区 | 美国免费a级毛片| 美女高潮喷水抽搐中文字幕| 国内久久婷婷六月综合欲色啪| 午夜影院日韩av| 可以在线观看的亚洲视频| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 亚洲 欧美一区二区三区| 男女做爰动态图高潮gif福利片| 97超级碰碰碰精品色视频在线观看| 精品国产超薄肉色丝袜足j| 啪啪无遮挡十八禁网站| 欧美国产精品va在线观看不卡| 色综合站精品国产| 国产1区2区3区精品| 亚洲av美国av| 黑人欧美特级aaaaaa片| 亚洲片人在线观看| 亚洲精品国产一区二区精华液| 午夜免费成人在线视频| 国产麻豆成人av免费视频| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 精品福利观看| 一个人观看的视频www高清免费观看 | 又大又爽又粗| 麻豆成人av在线观看| 51午夜福利影视在线观看| netflix在线观看网站| 欧美激情极品国产一区二区三区| 久久青草综合色| 1024香蕉在线观看| 国产人伦9x9x在线观看| 亚洲片人在线观看| 亚洲国产精品久久男人天堂| av在线播放免费不卡| 久久久国产成人精品二区| 欧美又色又爽又黄视频| 日韩一卡2卡3卡4卡2021年| 欧美亚洲日本最大视频资源| 成年人黄色毛片网站| 国产精品免费视频内射| 国产精品 国内视频| 一本大道久久a久久精品| 亚洲av电影在线进入| 国产精品美女特级片免费视频播放器 | 国产久久久一区二区三区| 美女大奶头视频| 老司机午夜十八禁免费视频| 男人舔奶头视频| 免费在线观看黄色视频的| 丝袜在线中文字幕| 国产熟女午夜一区二区三区| 999精品在线视频| 国产成人影院久久av| 亚洲色图av天堂| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| 色综合站精品国产| 亚洲av成人一区二区三| 久久中文字幕人妻熟女| 女人爽到高潮嗷嗷叫在线视频| 久久久国产精品麻豆| 看免费av毛片| 琪琪午夜伦伦电影理论片6080| 亚洲 欧美一区二区三区| 国产精品二区激情视频| 国内精品久久久久精免费| 岛国视频午夜一区免费看| 制服人妻中文乱码| 黄片小视频在线播放| 天堂影院成人在线观看| 免费在线观看完整版高清| 正在播放国产对白刺激| 国产精品,欧美在线| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 成年免费大片在线观看| 国产精品久久久av美女十八| 亚洲av电影不卡..在线观看| 婷婷六月久久综合丁香| 久久久久精品国产欧美久久久| avwww免费| 欧美成人免费av一区二区三区| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免费看| 亚洲第一电影网av| 亚洲成人国产一区在线观看| 午夜免费鲁丝| av在线播放免费不卡| 国产真实乱freesex| 国产单亲对白刺激| 婷婷丁香在线五月| 一级黄色大片毛片| 黄色视频,在线免费观看| 最近最新中文字幕大全电影3 | 男女午夜视频在线观看| 又大又爽又粗| 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| e午夜精品久久久久久久| 一级黄色大片毛片| 国产精品av久久久久免费| 国产在线精品亚洲第一网站| 97碰自拍视频| 国产精品久久视频播放| 91在线观看av| 国产精品二区激情视频| 美女扒开内裤让男人捅视频| 97碰自拍视频| 一区二区三区精品91| 一本大道久久a久久精品| 一二三四社区在线视频社区8| 亚洲av电影不卡..在线观看| 男人舔奶头视频| 成人手机av| 欧美精品啪啪一区二区三区| 两个人视频免费观看高清| www日本在线高清视频| 最近最新中文字幕大全免费视频| 国产精品免费视频内射| 欧美乱妇无乱码| 99久久久亚洲精品蜜臀av| 18禁黄网站禁片午夜丰满| av天堂在线播放| e午夜精品久久久久久久| 成人三级黄色视频| svipshipincom国产片| 他把我摸到了高潮在线观看| 日韩大尺度精品在线看网址| 亚洲无线在线观看| 欧美国产精品va在线观看不卡| 人成视频在线观看免费观看| 黄网站色视频无遮挡免费观看| 精品欧美国产一区二区三| 国产成人欧美| 精品无人区乱码1区二区| 99国产极品粉嫩在线观看| 女人被狂操c到高潮| 国产又色又爽无遮挡免费看| 中文在线观看免费www的网站 | 日韩高清综合在线| 欧美精品亚洲一区二区| 亚洲精品中文字幕一二三四区| 欧美性长视频在线观看| 久久精品成人免费网站| 国产一区二区三区视频了| 国产精品美女特级片免费视频播放器 | 国产激情欧美一区二区| 免费高清在线观看日韩| 欧美日韩瑟瑟在线播放| 久久精品成人免费网站| 老熟妇仑乱视频hdxx| 美女 人体艺术 gogo| 久久婷婷人人爽人人干人人爱| 特大巨黑吊av在线直播 | 国产1区2区3区精品| 极品教师在线免费播放| 美女国产高潮福利片在线看| 1024视频免费在线观看| 悠悠久久av| 精品一区二区三区四区五区乱码| 亚洲第一av免费看| 午夜久久久久精精品| 亚洲av成人av| 在线观看舔阴道视频| 最近最新中文字幕大全免费视频| 国产精品亚洲一级av第二区| 久久性视频一级片| 成人国产一区最新在线观看| 国产单亲对白刺激| 一进一出好大好爽视频| 日日爽夜夜爽网站| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 在线观看免费日韩欧美大片| 亚洲 国产 在线| 成年女人毛片免费观看观看9| 午夜福利一区二区在线看| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 国产伦一二天堂av在线观看| 啪啪无遮挡十八禁网站| 999精品在线视频| 日本撒尿小便嘘嘘汇集6| 一a级毛片在线观看| 久久热在线av| 亚洲人成77777在线视频| 日韩精品中文字幕看吧| 在线观看免费日韩欧美大片| 欧美又色又爽又黄视频| 国产激情久久老熟女| 免费在线观看完整版高清| 精品高清国产在线一区| 日本a在线网址| 熟女电影av网| 国产国语露脸激情在线看| 91字幕亚洲| 欧美日韩福利视频一区二区| 亚洲一区二区三区色噜噜| 高清毛片免费观看视频网站| 午夜激情av网站| 国产精品久久视频播放| 欧美一区二区精品小视频在线| 性欧美人与动物交配| 日韩欧美一区二区三区在线观看| 啦啦啦韩国在线观看视频| 免费观看人在逋| 一级黄色大片毛片| 热99re8久久精品国产| 国产又爽黄色视频| 九色国产91popny在线| 一个人免费在线观看的高清视频| 老司机在亚洲福利影院| 在线观看日韩欧美| 久久国产精品男人的天堂亚洲| 国产人伦9x9x在线观看| 国产精品爽爽va在线观看网站 | 叶爱在线成人免费视频播放| 国产精品免费视频内射| 无人区码免费观看不卡| 午夜a级毛片| 高潮久久久久久久久久久不卡| 国产精品av久久久久免费| 侵犯人妻中文字幕一二三四区| 日韩有码中文字幕| av在线播放免费不卡| 日韩大尺度精品在线看网址| 51午夜福利影视在线观看| 亚洲 欧美 日韩 在线 免费| 最新在线观看一区二区三区| 黄片小视频在线播放| 国产麻豆成人av免费视频| 亚洲国产毛片av蜜桃av| 国产精品永久免费网站| 视频区欧美日本亚洲| 手机成人av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 在线视频色国产色| 两个人看的免费小视频| 中文字幕另类日韩欧美亚洲嫩草| 夜夜看夜夜爽夜夜摸| 日韩一卡2卡3卡4卡2021年| 日韩欧美一区二区三区在线观看| 久久久久久久久中文| av超薄肉色丝袜交足视频| 男人舔女人的私密视频| 国产久久久一区二区三区| 琪琪午夜伦伦电影理论片6080| 白带黄色成豆腐渣| 一进一出抽搐动态| 久久精品国产亚洲av香蕉五月| 成人欧美大片| 夜夜爽天天搞| 不卡一级毛片| 欧美一级毛片孕妇| АⅤ资源中文在线天堂| 亚洲午夜精品一区,二区,三区| 欧美色视频一区免费| 美女午夜性视频免费| 日日夜夜操网爽| 亚洲av熟女| 99久久久亚洲精品蜜臀av| 午夜福利成人在线免费观看| 亚洲中文av在线| 国产精品免费视频内射| 99久久精品国产亚洲精品| 国产精品久久久久久精品电影 | 中亚洲国语对白在线视频| 亚洲av成人不卡在线观看播放网| 国产片内射在线| 精品久久久久久久毛片微露脸| 久热爱精品视频在线9| 老司机午夜十八禁免费视频| 亚洲,欧美精品.| 搞女人的毛片| 国产成人影院久久av| 久久人人精品亚洲av| 精品一区二区三区av网在线观看| 日日干狠狠操夜夜爽| 日韩免费av在线播放| 国内久久婷婷六月综合欲色啪| 亚洲狠狠婷婷综合久久图片| 日本黄色视频三级网站网址| 中出人妻视频一区二区| 国产一区二区激情短视频| 一级a爱视频在线免费观看| 国内精品久久久久久久电影| 亚洲第一青青草原| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产成人免费| 国产高清激情床上av| 看黄色毛片网站| 久久精品成人免费网站| 久久久国产欧美日韩av| 免费在线观看日本一区| 亚洲国产欧美一区二区综合| av中文乱码字幕在线| 久久人妻av系列| 日本免费a在线| 黄色 视频免费看| 午夜成年电影在线免费观看| 淫秽高清视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久久久久亚洲精品国产蜜桃av| 老汉色av国产亚洲站长工具| 久久久久国产精品人妻aⅴ院| 亚洲人成电影免费在线| 欧美午夜高清在线| 国产成+人综合+亚洲专区| 麻豆成人午夜福利视频| 色综合亚洲欧美另类图片| 亚洲专区字幕在线| 欧美日韩福利视频一区二区| 免费av毛片视频| 99国产精品一区二区三区| 国产极品粉嫩免费观看在线| 国产一卡二卡三卡精品| 757午夜福利合集在线观看| 午夜老司机福利片| 深夜精品福利| 精品福利观看| 十分钟在线观看高清视频www| 中文字幕人妻丝袜一区二区| 777久久人妻少妇嫩草av网站| 国产视频内射| 久久久水蜜桃国产精品网| 日本成人三级电影网站| 精品欧美一区二区三区在线| 午夜福利免费观看在线| 国产一级毛片七仙女欲春2 | 啦啦啦 在线观看视频| 精品少妇一区二区三区视频日本电影| 免费看日本二区| 久久久国产精品麻豆| 亚洲中文字幕一区二区三区有码在线看 |