• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE STABILITY OF A PREDATOR-PREY MODEL WITH FEAR EFFECT IN PREY AND SQUARE ROOT FUNCTIONAL RESPONSE?

    2020-07-02 12:48:42YingHuangZhongLi
    Annals of Applied Mathematics 2020年2期

    Ying Huang,Zhong Li

    (College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,Fujian,PR China)

    Abstract

    Keywords predator-prey;fear effect;stability;Hopf bifurcation

    1 Introduction

    Based on some experimental studies,[1,2]showed that the cost of fear can change the anti-predator defences,thus can greatly reduce the reproduction of prey.Hence,Wang et al.[3]proposed a predator-prey model incorporating the cost of fear into prey reproduction as follows

    wherer0is the birth rate of prey;dis the natural death rate of prey;kis the level of fear.They studied the stability and Hopf bifurcation of the system,and showed that the existence of Hopf bifurcation is different from that of model (1.1) without fear effect.Duan et al.[4]discussed a diffusive predator-prey model by incorporating the fear effect into prey,and found that time delay makes the dynamics behaviour of the predator-prey system more complicated.Zhang et al.[5]investigated the stability of a predator-prey system with prey refuge and fear effect.Xiao and Li[6]showed that the fear effect has no influence on the stability of system.Pal et al.[7]studied the stability of a predator-prey model with fear effect in prey and hunting cooperation,and showed two different types of bi-stabilities behaviour.

    Different from the model in[3],Sasmal[8]proposed the following predator-prey model with fear effect and Allee effect in prey

    where 0<θ

    Braza[9]considered a predator-prey model with a modified Lotka-Volterra interaction term,which is proportional to the square root of the prey population.Since the square root term,the dynamic behavior of the origin is more subtle.N.Fakhry and R.Naji[10]investigated the following predator-prey system with fear effect and square root function response

    whereris the growth rate of the prey;αis the death rate of the predator in the absence of prey;βis the conversion rate of prey to predator;kis the level of fear.It is easy to deduce that there exist a trivial equilibriumE0(0,0) and a boundary equilibriumE1(1,0).Ifβ>α,there exists a positive equilibriumE?(x?,y?) ,where

    They obtained the following conclusions.

    Proposition A(1)E0is a saddle point.

    (2)If β<α,then the trivial equilibrium E1(1,0)is locally asymptotically stable.

    (3)If,then the positive equilibrium E?is locally asymptoticallystable.

    Theorem A(1)Assume that the trivial equilibrium E1is locally asymptoticallystable.If,then E1is globally asymptotically stable.

    (2)Assume that the trivial equilibrium E?is locally asymptotically stable.If,then E?is globally asymptotically stable.

    (3)If,then system(1.3)undergoes a Hopf bifurcationat E?.

    Here,we put forward to the following several interesting questions:

    (1) Due to the square root functional response,the origin cannot be linearized.WhetherE0in system (1.3) is still a saddle point?To answer this question,using the blow-up method,we give the singularity of the origin.

    (2) Whenβ=α,that is there exists a zero eigenvalue ofE1,[10]didn’t discuss the stability ofE1.This fact requires us to investigate the stability of the trivial equilibriumE1ifβ=α.

    (3) Since the origin is a singular equilibrium,whether the equilibriaE1andE?are globally asymptotically stable or not?The conditions for the Hopf bifurcation are too complicated.Hence,we expect to give some simple conditions to guarantee the Hopf bifurcation.

    The organization of this paper is as follows:In Section 2,the stability of the equilibria of system (1.3) is investigated.In Section 3,the impact of fear effect and numerical simulations are given.Finally,a briefly conclusion is illustrated in the last section.

    2 Main Results

    It follows from the N.Fakhry and R.Naji[10]that every positive solution of the system (1.3) is positively invariant and uniformly bounded.In this section,we study the stability and Hopf bifurcation of system (1.3) ,and obtain the following theorems.

    Theorem 2.1There exists a separatrix curve near the trivial equilibrium E0(0,0)in system(1.3),such that above the separatrix curve is the attracted parabolic field,below the separatrix curve is the hyperbolic field.

    ProofSince the singularity of matrixJE0,the stability ofE0fails to be studied by using Jacobian matrix.So,we introduce the following transformations

    The Jacobian matrix calculated at the origin is reduced to a zero matrix,that is

    Obviously, (0,0) is a nonhyperbolic equilibrium.Therefore,we use the blow-up method to eliminate the singularity of the origin and study the dynamics of this blow-up equilibrium point.The transformations is defined by

    System (2.2) has two equilibria points on the non-negativey-axis: (0,0) and (0,2α+r).The Jacobin matrix of system (2.2) at (0,0) is calculated as

    Then the eigenvaluesλ1=r>0 andλ2=?2α?r<0,that is the boundary equilibrium (0,0) is a saddle point.

    The Jacobin matrix of system (2.2) at (0,2α+r) is calculated as

    Hence,the eigenvaluesλ1=?2α<0 andλ2=2α+r>0.Then the boundary equilibrium (0,2α+r) is a saddle point.

    Therefore,the linex=0,including the equilibria points (0,0) and (0,2α+r) ,collapses to the originE0(0,0) in system (1.3).Notice that we omitted the blow-up in they-direction.Whenx=0,it follows from system (1.3) that we obtain

    Hence,there exists a separatrix curve near the trivial equilibriumE0(0,0) in system (1.3) ,such that above the separatrix curve is the attracted parabolic field,below the separatrix curve is the hyperbolic field.This completes the proof of Theorem 2.1.

    Theorem 2.2(1)If α<β,the boundary equilibrium E1(1,0)in system(1.3)is a saddle point.

    (2)If α≥β,the boundary equilibrium E1(1,0)in system(1.3)is stable.

    ProofIt follows from Proposition A that the boundary equilibriumE1(1,0) in system (1.3) is stable ifβ<α,and is a saddle point ifα<β.

    Now let’s focus onα=β.Then system (1.3) can be rewritten as

    The Jacobin matrix of system (2.3) atE1is calculated as

    that is the eigenvaluesλ1=?r<0 andλ2=0.

    We transform the equilibriumE1to the origin by making a transformation thatX=x?1,Y=y.Then we have a Taylor expansion at the origin as follows

    whereP1(X,Y) andQ1(X,Y) areC∞functions of at least order third of (X,Y).

    LettingX1=?rX?Y,Y1=Y,introducing a new time variableτbyτ=?rt,rewritingτast,we have

    whereP2(X1,Y1) andQ2(X1,Y1) areC∞functions of at least order third of (X1,Y1).

    Therefore,the coefficient of.According to Theorem 7.1 of[11],we can conclude thatE1(1,0) is an attracting saddle-node,which includes a stable parabolic sector.This completes the proof of Theorem 2.2.

    Theorem 2.3(1)If,the positive equilibrium E?(x?,y?)in system(1.3)is stable.

    (2)If,the positive equilibrium E?(x?,y?)in system(1.3)is unstable.

    ProofThe Jacobin matrix of system (1.3) atE?is calculated as

    Note thatx?<1,we obtain

    and

    Therefore,ifβ2?3α2>0,that is,then the boundary equilibriumE?in system (1.3) is unstable.Ifβ2?3α2<0,that is,then the boundary equilibriumE?in system (1.3) is stable.This completes the proof of Theorem 2.3.

    Theorem 2.4If,system(1.3)undergoes a supercritical Hopf bifurca-tion at positive equilibrium E?and exists a stable limit cycle around E?.

    ProofFrom the proof of Theorem 2.3,when,we have DetJE?>0 and TrJE?=0.The positive equilibriumE?beco mes a non-hyperbolic equilibrium,and the Jacobin matrix atE?has a pair of imaginary roots.To ensure the occurrenceof Hopf bifurcation,we must check the transversality condition for Hopf Bifurcation.By simple calculation,we have

    Hence,the positive equilibriumE?loses its stability through non-degenerate Hopf bifurcation.the limit cycle.Using,we first translatethe equilibriumE?ofsystem

    Now wewillcalculate the Lyapunovnumberl1atE?to determinethestability of (1.3) to the origin by employing the transformationsNote that.Thus,system (1.3) in a neighborhood of the origin can be written as

    where

    The first Lyapunov numberl1[12]to determine the stability of limit cycle for a planar system (2.6) is given by the following formula

    Obviouslyl1<0,system (1.3) undergoes a supercritical Hopf bifurcation at positive equilibriumE?and exists a stable limit cycle aroundE?.This completes the proof of Theorem 2.4.

    3 Discussion and Numerical Simulations

    In this section,we show the impacts of fear effect and square root functional response on the dynamics behavior of system (1.3).Noting that,the fear effect has no in fluence on the prey density.For convenience,let,so.By simple computation,we obtain

    which implies that the density of predators is a decreasing function with respect to fear effect.Hence,the fear effect reduces the predator density,but does not affect the prey density (Figure 1).

    Using blow-up method,we show thatE0is a singularity point,which is different from that of[10].That is there exists a separatrix curve near the trivial equilibriumE0(0,0) in system (1.3) ,such that above the separatrix curve is the attracted parabolic field,below the separatrix curve is the hyperbolic field.Since the singularity of the origin,the trivial equilibriumE1and the positive equilibriumE?cannot be globally asymptotically stable.Ifα=β,we show that the trivial equilibriumE1is stable.If,it follows from Theorem 2.4 that system (1.3) undergoes a supercritical Hopf bifurcation at positive equilibriumE?and exists a stable limit cycle aroundE?.Hence,we give a more simpler condition than that of[10]to guarantee the Hopf bifurcation.

    Figure 1:The influence of fear effect on y? with r=4,α=0. 8,β=1.

    Letr=1,k=6,β=1.The origin is always a singular equilibrium.Hence,we show the different stability of system (1.3) with the change ofα.Ifα=1.1>β,the trivial equilibriumE0(0,0) is locally asymptotically stable (Figure 2 (a)).Ifα=β=1,the trivial equilibriumE0 (0,0) is still locally asymptotically stable (Figure 2 (b)).If,the trivial equilibriumE0(0,0) becomes unstable,and the positive equilibriumE?(x?,y?) is locally asymptotically stable (Figure 2 (c)).If,the positive equilibriumE?(x?,y?) becomes unstable.System (1.3) undergoes a supercritical Hopf bifurcation and exists a stable limit cycle aroundE?(Figure 2 (d)).

    Figure 2:The dynamics behaviour of predator-prey model (1.3) with r=1,k=6,β=1.

    国产成人午夜福利电影在线观看| 99九九线精品视频在线观看视频| 亚洲国产精品sss在线观看| 亚洲精品日韩在线中文字幕| 日韩精品青青久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 在线观看美女被高潮喷水网站| 一本久久精品| 三级国产精品片| 成人欧美大片| 纵有疾风起免费观看全集完整版 | 欧美zozozo另类| 一级二级三级毛片免费看| 久久久精品免费免费高清| 人妻系列 视频| 99热这里只有精品一区| 精品久久久噜噜| 国产成人一区二区在线| 人体艺术视频欧美日本| 亚洲精品视频女| 亚洲av成人精品一二三区| 国产国拍精品亚洲av在线观看| 观看美女的网站| 一区二区三区免费毛片| 成人性生交大片免费视频hd| 麻豆av噜噜一区二区三区| av线在线观看网站| 啦啦啦韩国在线观看视频| 日韩成人伦理影院| 欧美三级亚洲精品| 欧美日韩在线观看h| 精品不卡国产一区二区三区| 我的老师免费观看完整版| 精品人妻视频免费看| 日韩制服骚丝袜av| 国产一区二区亚洲精品在线观看| 久久综合国产亚洲精品| 亚洲va在线va天堂va国产| 午夜爱爱视频在线播放| 成人鲁丝片一二三区免费| 超碰97精品在线观看| 免费看av在线观看网站| 老女人水多毛片| 大又大粗又爽又黄少妇毛片口| 尾随美女入室| 欧美激情国产日韩精品一区| 国产精品99久久久久久久久| 国产成人精品福利久久| 国产免费福利视频在线观看| 一区二区三区高清视频在线| 国产精品国产三级专区第一集| 婷婷六月久久综合丁香| 色综合站精品国产| 少妇猛男粗大的猛烈进出视频 | 六月丁香七月| 能在线免费观看的黄片| 亚洲久久久久久中文字幕| 日韩欧美一区视频在线观看 | 日产精品乱码卡一卡2卡三| 亚洲精品日韩av片在线观看| 色综合亚洲欧美另类图片| 日韩制服骚丝袜av| 日韩大片免费观看网站| 亚洲国产欧美在线一区| 我的女老师完整版在线观看| 亚洲av免费在线观看| 一级毛片电影观看| 听说在线观看完整版免费高清| 国产高清有码在线观看视频| 午夜老司机福利剧场| 国产精品熟女久久久久浪| 最近的中文字幕免费完整| 久久精品国产鲁丝片午夜精品| 色综合色国产| 国产亚洲5aaaaa淫片| 亚洲一级一片aⅴ在线观看| 久久久久久久久大av| 男人舔女人下体高潮全视频| 深夜a级毛片| 亚洲自拍偷在线| 草草在线视频免费看| 99久久精品热视频| 高清日韩中文字幕在线| 国产成人福利小说| 精品一区二区免费观看| 久久久久久国产a免费观看| 日韩大片免费观看网站| 夫妻午夜视频| videossex国产| 成人二区视频| 成人综合一区亚洲| 美女国产视频在线观看| 久久久久久久午夜电影| 97在线视频观看| 青青草视频在线视频观看| 嫩草影院新地址| 亚洲欧美清纯卡通| 亚洲欧美清纯卡通| 免费黄色在线免费观看| 国产亚洲一区二区精品| 精品久久久噜噜| 国产高清不卡午夜福利| 亚洲久久久久久中文字幕| 久久久久久久国产电影| 大又大粗又爽又黄少妇毛片口| 一级爰片在线观看| 九草在线视频观看| 精华霜和精华液先用哪个| 免费不卡的大黄色大毛片视频在线观看 | 中文欧美无线码| 日韩三级伦理在线观看| 综合色丁香网| 91在线精品国自产拍蜜月| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美中文字幕日韩二区| 一级av片app| 天堂影院成人在线观看| 国产在线男女| 国产黄片美女视频| 午夜福利网站1000一区二区三区| 3wmmmm亚洲av在线观看| 男女国产视频网站| 国产在视频线精品| 麻豆精品久久久久久蜜桃| 亚洲在久久综合| 国产伦精品一区二区三区视频9| 一本久久精品| 麻豆成人av视频| 欧美bdsm另类| 人妻少妇偷人精品九色| 99久久九九国产精品国产免费| 我的女老师完整版在线观看| 日本黄色片子视频| 精品熟女少妇av免费看| 视频中文字幕在线观看| 国产高清三级在线| 国产乱人视频| 亚洲av一区综合| 成人亚洲精品av一区二区| 老司机影院毛片| 777米奇影视久久| 国产成人aa在线观看| 欧美+日韩+精品| 又大又黄又爽视频免费| 在现免费观看毛片| 人妻制服诱惑在线中文字幕| 国产亚洲91精品色在线| 免费看av在线观看网站| 国产精品一区二区性色av| 激情 狠狠 欧美| 99久国产av精品| 欧美最新免费一区二区三区| 淫秽高清视频在线观看| 欧美日韩亚洲高清精品| 国产高潮美女av| 亚洲av电影在线观看一区二区三区 | 特大巨黑吊av在线直播| 夫妻性生交免费视频一级片| 狂野欧美激情性xxxx在线观看| 亚洲国产成人一精品久久久| 全区人妻精品视频| 免费观看性生交大片5| 国产乱人偷精品视频| 两个人的视频大全免费| 亚洲国产精品成人综合色| 乱码一卡2卡4卡精品| 亚洲精品aⅴ在线观看| 一级二级三级毛片免费看| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 日韩av在线大香蕉| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 久久草成人影院| 国产精品一区二区在线观看99 | 尤物成人国产欧美一区二区三区| 久久99精品国语久久久| 毛片女人毛片| 成年版毛片免费区| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 亚洲精品国产av蜜桃| 国内精品美女久久久久久| 18禁在线播放成人免费| 亚洲三级黄色毛片| 欧美bdsm另类| 国产视频内射| 国产高清不卡午夜福利| 欧美一区二区亚洲| 国产探花在线观看一区二区| 婷婷六月久久综合丁香| 成年免费大片在线观看| 最近中文字幕2019免费版| 97在线视频观看| 成年av动漫网址| 国产爱豆传媒在线观看| 91久久精品国产一区二区成人| 99热这里只有是精品50| 蜜臀久久99精品久久宅男| 能在线免费看毛片的网站| 午夜视频国产福利| 亚洲av男天堂| 国产单亲对白刺激| 一区二区三区高清视频在线| 欧美成人一区二区免费高清观看| 久久久欧美国产精品| 亚洲伊人久久精品综合| 亚洲精品第二区| 在线a可以看的网站| 男女边吃奶边做爰视频| 国产 一区 欧美 日韩| freevideosex欧美| 精品一区二区三区视频在线| 少妇熟女aⅴ在线视频| 欧美精品国产亚洲| 天堂影院成人在线观看| 精品久久久久久久久亚洲| 国产老妇伦熟女老妇高清| 免费大片黄手机在线观看| 床上黄色一级片| 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| 毛片一级片免费看久久久久| 特级一级黄色大片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人二区视频| 我的老师免费观看完整版| 精品人妻偷拍中文字幕| 91久久精品国产一区二区成人| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区视频9| 亚洲精品成人av观看孕妇| 人体艺术视频欧美日本| 免费看美女性在线毛片视频| 老师上课跳d突然被开到最大视频| freevideosex欧美| 亚洲精品国产av成人精品| 国产午夜精品论理片| 亚洲成人中文字幕在线播放| 啦啦啦中文免费视频观看日本| 如何舔出高潮| 国产激情偷乱视频一区二区| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 亚洲国产最新在线播放| 成人亚洲精品av一区二区| 人妻一区二区av| 日韩人妻高清精品专区| 久久久久久久久久黄片| 一个人观看的视频www高清免费观看| 干丝袜人妻中文字幕| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 激情五月婷婷亚洲| 国产视频内射| 亚洲,欧美,日韩| 久久精品国产自在天天线| 国产精品久久视频播放| 亚洲三级黄色毛片| 热99在线观看视频| 久久国内精品自在自线图片| 男女那种视频在线观看| 黄片无遮挡物在线观看| 国精品久久久久久国模美| 国产91av在线免费观看| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 国产精品人妻久久久影院| 免费黄网站久久成人精品| 婷婷色麻豆天堂久久| 好男人视频免费观看在线| 日日摸夜夜添夜夜添av毛片| 国产成人精品婷婷| 亚洲图色成人| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 成年版毛片免费区| 免费看美女性在线毛片视频| 美女被艹到高潮喷水动态| 国产 亚洲一区二区三区 | 人妻系列 视频| 亚洲精品aⅴ在线观看| 日韩欧美精品免费久久| 岛国毛片在线播放| 搡老乐熟女国产| 精品久久久噜噜| 亚洲国产精品专区欧美| 99久国产av精品| 亚洲真实伦在线观看| 午夜精品在线福利| 网址你懂的国产日韩在线| 久久综合国产亚洲精品| 日韩欧美一区视频在线观看 | av在线亚洲专区| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕| 男人舔女人下体高潮全视频| 国产亚洲一区二区精品| 中文字幕av成人在线电影| 日本欧美国产在线视频| 成人亚洲精品一区在线观看 | 精品久久久久久久久亚洲| 国产乱来视频区| 日韩欧美 国产精品| 亚洲欧美清纯卡通| 亚洲经典国产精华液单| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 老女人水多毛片| 搡女人真爽免费视频火全软件| 国产单亲对白刺激| 亚洲精品久久久久久婷婷小说| 男人爽女人下面视频在线观看| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 欧美人与善性xxx| 久久精品综合一区二区三区| 一级爰片在线观看| 我的女老师完整版在线观看| 别揉我奶头 嗯啊视频| 精华霜和精华液先用哪个| 色视频www国产| 日韩av在线免费看完整版不卡| 一本一本综合久久| 九九在线视频观看精品| 六月丁香七月| 精品酒店卫生间| 69人妻影院| 麻豆成人av视频| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 国产男人的电影天堂91| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 晚上一个人看的免费电影| 亚洲欧美日韩无卡精品| 色视频www国产| 亚洲四区av| 国产69精品久久久久777片| 久久精品国产亚洲av天美| 超碰97精品在线观看| 免费av观看视频| 日本与韩国留学比较| 欧美成人a在线观看| 精品久久久噜噜| 亚洲精品日韩在线中文字幕| 激情 狠狠 欧美| 久久精品国产鲁丝片午夜精品| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频 | 久热久热在线精品观看| 色网站视频免费| 国产精品精品国产色婷婷| 日韩欧美国产在线观看| 深夜a级毛片| 高清日韩中文字幕在线| 青青草视频在线视频观看| 国产 一区 欧美 日韩| 亚洲av中文av极速乱| videossex国产| 免费看不卡的av| 亚洲国产av新网站| 99热这里只有是精品在线观看| 熟女电影av网| 综合色av麻豆| 极品少妇高潮喷水抽搐| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久av不卡| 国产午夜精品一二区理论片| av免费在线看不卡| 免费看日本二区| 国产免费一级a男人的天堂| 丝袜美腿在线中文| 欧美高清成人免费视频www| 精品午夜福利在线看| 99久久人妻综合| 免费看a级黄色片| 免费av不卡在线播放| 97在线视频观看| 欧美极品一区二区三区四区| 老司机影院毛片| 欧美性感艳星| 日本一本二区三区精品| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 久久久久久久久久人人人人人人| 听说在线观看完整版免费高清| 又黄又爽又刺激的免费视频.| 美女大奶头视频| 国产片特级美女逼逼视频| 免费无遮挡裸体视频| 少妇的逼好多水| 亚洲不卡免费看| 街头女战士在线观看网站| 简卡轻食公司| 成人亚洲精品一区在线观看 | 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 亚洲国产色片| 高清视频免费观看一区二区 | 男女边吃奶边做爰视频| 最近视频中文字幕2019在线8| 欧美 日韩 精品 国产| 黄色日韩在线| 国产高清国产精品国产三级 | 淫秽高清视频在线观看| 国产一区有黄有色的免费视频 | 能在线免费看毛片的网站| 亚洲,欧美,日韩| 亚洲国产欧美人成| av黄色大香蕉| 在线观看一区二区三区| 久久久久性生活片| 我的老师免费观看完整版| 能在线免费看毛片的网站| www.av在线官网国产| 欧美性猛交╳xxx乱大交人| 精品久久久噜噜| 精品久久久久久电影网| 欧美 日韩 精品 国产| 日韩精品有码人妻一区| 日本三级黄在线观看| 丰满人妻一区二区三区视频av| av线在线观看网站| 亚洲av免费在线观看| 国产欧美日韩精品一区二区| 淫秽高清视频在线观看| 内射极品少妇av片p| 在线观看免费高清a一片| 三级男女做爰猛烈吃奶摸视频| 国产亚洲av嫩草精品影院| av网站免费在线观看视频 | 身体一侧抽搐| 午夜激情福利司机影院| 97人妻精品一区二区三区麻豆| 国产91av在线免费观看| 免费电影在线观看免费观看| 联通29元200g的流量卡| 淫秽高清视频在线观看| 国产成人freesex在线| 午夜福利视频精品| 欧美日韩一区二区视频在线观看视频在线 | 国产黄色小视频在线观看| 少妇高潮的动态图| 18禁裸乳无遮挡免费网站照片| 国内精品美女久久久久久| 97精品久久久久久久久久精品| 日本与韩国留学比较| 国产91av在线免费观看| 在线免费观看的www视频| 欧美潮喷喷水| 欧美性猛交╳xxx乱大交人| 国产成人精品福利久久| 禁无遮挡网站| 男人舔奶头视频| 亚洲精品456在线播放app| 天堂√8在线中文| 天堂网av新在线| 噜噜噜噜噜久久久久久91| 免费大片黄手机在线观看| 插阴视频在线观看视频| 亚洲精品日韩在线中文字幕| 国产91av在线免费观看| 天堂√8在线中文| 亚洲精品一二三| 国产免费视频播放在线视频 | 天堂俺去俺来也www色官网 | 久久久久久久大尺度免费视频| 久久久久久伊人网av| 99久久精品一区二区三区| 一个人免费在线观看电影| 在线a可以看的网站| 人妻少妇偷人精品九色| 亚洲精品成人久久久久久| 日韩欧美国产在线观看| 精品一区在线观看国产| 少妇高潮的动态图| 中文乱码字字幕精品一区二区三区 | 午夜老司机福利剧场| 国内少妇人妻偷人精品xxx网站| 成人二区视频| 免费不卡的大黄色大毛片视频在线观看 | 我的女老师完整版在线观看| 久久久久久久久中文| 亚洲aⅴ乱码一区二区在线播放| 成年女人看的毛片在线观看| 国产视频内射| 亚洲av男天堂| 少妇的逼水好多| 91久久精品国产一区二区成人| 国产成人精品久久久久久| 国产精品国产三级国产专区5o| 亚洲av成人精品一二三区| 联通29元200g的流量卡| 91在线精品国自产拍蜜月| 亚洲电影在线观看av| 麻豆乱淫一区二区| 国产精品久久久久久精品电影| a级一级毛片免费在线观看| 成人午夜高清在线视频| 亚洲第一区二区三区不卡| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 人人妻人人看人人澡| 国产精品久久久久久av不卡| 22中文网久久字幕| 内地一区二区视频在线| 少妇的逼好多水| 少妇熟女aⅴ在线视频| 日本欧美国产在线视频| 精品人妻视频免费看| 又黄又爽又刺激的免费视频.| 欧美性猛交╳xxx乱大交人| 久久久久久久久久人人人人人人| 亚洲精品第二区| 亚洲国产av新网站| 久久久欧美国产精品| 18禁在线无遮挡免费观看视频| 久久久久久九九精品二区国产| 中文字幕制服av| 亚洲18禁久久av| 精品少妇黑人巨大在线播放| 午夜精品在线福利| 日本色播在线视频| 中文字幕久久专区| 久久99热这里只频精品6学生| 日本-黄色视频高清免费观看| 人妻系列 视频| 七月丁香在线播放| 色5月婷婷丁香| 美女cb高潮喷水在线观看| 男女啪啪激烈高潮av片| 国产在线一区二区三区精| a级毛片免费高清观看在线播放| 成人亚洲精品一区在线观看 | 偷拍熟女少妇极品色| 一级毛片黄色毛片免费观看视频| 成人鲁丝片一二三区免费| 亚洲精品乱久久久久久| 一个人看视频在线观看www免费| 亚洲四区av| 亚洲成人中文字幕在线播放| 啦啦啦韩国在线观看视频| 一二三四中文在线观看免费高清| 中文字幕av成人在线电影| av线在线观看网站| 嫩草影院精品99| 全区人妻精品视频| 超碰97精品在线观看| 精品午夜福利在线看| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 秋霞伦理黄片| 在线观看免费高清a一片| 男女边摸边吃奶| 国产在视频线在精品| 久久综合国产亚洲精品| 国产精品一区二区性色av| 亚洲av电影不卡..在线观看| 久久精品综合一区二区三区| 欧美日韩综合久久久久久| 色视频www国产| 国产精品一区二区三区四区久久| 欧美激情久久久久久爽电影| 简卡轻食公司| 久久99热这里只有精品18| 日日摸夜夜添夜夜添av毛片| 午夜精品在线福利| 在线观看一区二区三区| 免费看不卡的av| 美女cb高潮喷水在线观看| 免费观看a级毛片全部| 大又大粗又爽又黄少妇毛片口| 亚洲aⅴ乱码一区二区在线播放| 国产免费福利视频在线观看| 国产麻豆成人av免费视频| 国产精品无大码| 直男gayav资源| xxx大片免费视频| a级一级毛片免费在线观看| 亚洲欧洲日产国产| 国产午夜精品论理片| 丝袜美腿在线中文| 免费观看av网站的网址| 国产精品一区www在线观看| 国产av在哪里看| 18禁裸乳无遮挡免费网站照片| 又爽又黄a免费视频| 99久久中文字幕三级久久日本| 亚洲三级黄色毛片| 亚洲最大成人av| 亚洲经典国产精华液单| 五月天丁香电影| 亚洲av中文av极速乱| 成人亚洲精品av一区二区| 在线免费观看的www视频| 精品人妻一区二区三区麻豆| 国产av不卡久久| 在线播放无遮挡| 在线观看免费高清a一片| 亚洲欧美一区二区三区黑人 | 视频中文字幕在线观看| 成人亚洲精品一区在线观看 | 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 亚洲精品视频女| 女的被弄到高潮叫床怎么办| 免费电影在线观看免费观看| 亚洲精华国产精华液的使用体验| 91精品伊人久久大香线蕉| 国产高清不卡午夜福利|