• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DIFFUSIVE LIMITS OF THE BOLTZMANN EQUATION IN BOUNDED DOMAIN??

    2020-07-02 12:48:24RaffaeleEsposito
    Annals of Applied Mathematics 2020年2期

    Raffaele Esposito

    (International Research Center M &MOCS,Univ.dell’Aquila,Cisterna di Latina, (LT) 04012 Italy)

    Yan Guo?

    (Division of Applied Mathematics,Brown University,Providence,RI 02812,U.S.A.)

    Chanwoo Kim

    (Department of Mathematics,University of Wisconsin,Madison,53706-1325 WI,U.S.A.)

    Rossana Marra

    (Dipartimento di Fisica and Unit INFN,Universit di Roma Tor Vergata,00133 Roma,Italy)

    Abstract

    Keywords steady and unsteady Boltzmann equation;hydrodynamics limits;boundary effects

    1 Introduction

    1.1 Hilbert Expansion with No Boundary Layer Approximations

    The hydrodynamic limit of the Boltzmann equation has been the subject of many studies since the pioneering work by Hilbert,who introduced his famous expansion in the Knudsen numberεin[37,38],realizing the first example of the program he proposed in the sixth of his famous questions[39].Mathematical results on the closeness of the Hilbert expansion of the Bolzmann equation to the solutions of the compressible Euler equations for small Knudsen numberε,were obtained by Caflisch[14],and Lachowicz[45],while Nishida[47],Asano and Ukai[4]proved this by different methods.

    On a longer time scaleε?1,where Diffusion effects become significant,the problem can be faced only in the low Mach numbers regime (Mach number of orderεor smaller) due to the lack of scaling invariance of the compressible Navier-Stokes equations.Hence the Boltzmann solution has been proved to be close to the incompressible Navier-Stokes-Fourier system.Mathematical results were given,among the others,in[11,18,31,33,34]for smooth solutions.For weak solutions (renormalized solutions) ,partial results were given,among the others,in[7–10],and the full result for the convergence of the renormalized solutions has been obtained by Golse and Saint-Raymond[27].

    Much less is known about the steady solutions.It is worth to notice that,even for fixed Knudsen numbers,the analog of DiPerna-Lions’renormalized solutions[19]is not available for the steady case,due to lack ofL1and entropy estimates.In[29,30],steady solutions were constructed in convex domains near Maxwellians,and their positivity was left open.The only other results are for special,essentially one dimensional geometry (see[3]for results at fixed Knudsen numbers and[1,2,22,23]for results at small Knudsen numbers in certain special 2D geometry).In a recent paper[20],via a newL2?L∞framework,we have constructed the steady solution to the Boltzmann equation close to Maxwellians,in 3D general domains,for a gas in contact with a boundary with a prescribed temperature profile modeled by the diffuse reflection boundary condition.The question about positivity of these steady solutions was resolved as a consequence of their dynamical stability.As pointed in[25],despite the importance of steady Navier-Stokes-Fourier equations in applications,it has been an outstanding open problem to derive them from the steady Boltzmann theory.

    The goal of our paper is to employ theL2?L∞framework developed in[20]to study the hydrodynamical limit of the solutions to the steady Boltzmann equation,in the low Mach numbers regime,in a general domain with boundary where a temperature profile is specified.We refer to[15,16,41–44]for the recent development ofL2?L∞framework in various directions.

    Let ? be a bounded open region of Rdfor eitherd=2 ord=3.We consider the Boltzmann equation for the distribution densityF(t,x,v) witht∈R+:=[0,∞) ,x∈?,v∈R3.In the diffusive regime,the time evolution of the gas,subject to the action of a fieldis described by the followingrescaledBoltzmann equation:

    where the Boltzmann collision operator is defined as

    withv′=v?[ (v?u)·ω]ω,u′=v+[ (v?u)·ω]ω.Here,Bis chosen asthe hard spheres cross sectionthroughout this paper,

    The interaction of gas with the boundary?? is given by the diffuse reflection boundary condition,defined as follows:Let

    be the local Maxwellian with densityρ,mean velocityu,and temperatureT.For a prescribed functionTwon??,we define

    We imposethe diffuse reflection boundary conditionas

    where

    Here,we denote byn(x) the outward normal to?? atx∈?? and decompose the phase boundaryγ:=??×R3as

    We remind that the boundary condition (1.1.4),(1.1.5) ensures the zero net mass flow at the boundary:

    The rescaled Boltzmann equation (1.1.1) is studied under the assumption of low Mach numbers,meaning that the average velocity is small compared to the sound speed.This can be achieved by looking for solutions

    withthe global Maxwellian

    Here,the number M is proportional to the Mach number.The case of M=εcorresponds to the incompressible Navier-Stokes-Fourier limit (INSF) that will be discussed in this paper.The case of M?εcorresponds to the incompressible Stokes-Fourier limit and the results of this paper also cover this case which will not be discussed explicitly.

    The condition (1.1.7) ,once assumed initially,needs to be checked at later times.By multiplying (1.1.1) byvand integrating on velocities,we see that the change of mean velocity is proportional toThus,we need to assume=MΦ with a bounded Φ.Moreover,to make (1.1.7) compatible with the boundary conditions,we need to assume thatTw=1+M?w.In particular,for the INSF case,we have

    The presence of the boundary represents a major issue in pursuing such a program.The usual approach is based on the representation of the solution by means of an Hilbert-like expansion in the bulk,suitably corrected at the boundary to satisfy the boundary conditions[1,2,22,23]:

    Here,the functionsfkare corrections in the bulk,whileare boundary layer corrections which solve Milne-like problems,andR=Rεdenotes the remainder.It is important to choose sufficiently largek≥1 so that the nonlinear collision term can be controlled.The corrections at the boundary are computed by means of a boundary layer expansion which,in a general domain,presents some issues hard to deal with.The usual strategy is to solve thek-th term of the boundary layer expansion by looking at it in terms of the rescaled distance from the boundary (see e.g.[48]).Using of such a variable,the problem looks like a half-space linear problem (Milne problem) [5]with a correction due to the geometry which can be interpreted as an external field of the order of the Knudsen number.The field,due to thek-th term of the boundary layer expansion,is usually included as source term in the equation for the (k+1) -th term[48],but the lack of regularity makes this hard to control.

    This strategy has been used in[12]in the much simpler case of the neutron transport equations,but recently in[51]it has been proved that the result in[12]breaks down exactly because of the lack of regularity (see the recent work in the Boltzmann case[50]).Therefore,the geometric field,even if of small size,has to be included in the equation for thek-term of the expansion,as in[2,24]for the case of the gravity and[51]for the geometrical field in the neutron transport equation in a disk:

    In this paper,weavoidthe boundary layer expansion to cope with a general geometry.This is possible because,in the incompressible regime,the first term of the bulk expansion in (1.1.10) which violates the boundary condition is of orderε2,while the main hydrodynamic contribution,is of orderε.We will discuss more about this in Section 1.3.

    1.2 Expansion with Remainder

    The Hilbert expansion suggests that the solution can be written as

    whereμis the standard Maxwellian in (1.1.8).

    To determinef1,f2andRs,we define the linearized collision operator as

    and the nonlinear collision operator as

    The null space ofL,NullLis a five-dimensional subspace ofL2(R3) spanned by

    We denote the orthogonal projection offonto NullLas

    and (I?P) the projection on the orthogonal complement of NullL.The inverse operatorL?1is defined as follows:L?1gis the unique solution ofL(L?1g)=g,and P (L?1g)=0.

    The first correctionf1is given by

    where (ρ,u,?) represents the density,velocity,and temperature fluctuations.The density and the temperature fluctuations satisfy the Boussinesq relation

    and the velocity and the temperature fluctuations satisfies the INSF system

    where v is the viscosity andκis the heat conductivity.

    The second correctionf2is given by

    whereAijandBiare given by

    Note that the only restriction onρ2,u2and?2turns out to be that?x[ρ?+ρ2+?2]=?xp.For simplicity we choose

    where

    These choices imply

    By choosing the reference Maxwellian,we can assume

    The equation forRis obtained by plugging (1.2.1) into (1.1.1) :

    with

    and

    It is important to observe the fact thatsolves (1.2.7).As a consequence,Ais given by

    which implies the crucial fact that PA=O(ε).This is the only but essential point of our expansion where the specific hydrodynamic equations play a role.We also remark that,by (1.2.10) ,

    It is well-known that (see[17])

    where the collision frequency is defined as

    For the hard sphere cross section (1.1.2) ,there are positive numbersC0andC1such that,for

    Moreover the compact operatorKis defined as

    The operatorLis symmetric onL2(R3) : (f,Lg)2=(g,Lf)2where (·,·)2is theL2inner product.

    The following spectral inequality holds forL:

    1.3 Boundary Conditions

    We assume that (ρ,u,?) satisfies the boundary conditions of (1.2.7) with (1.2.9).As a consequence,forx∈??,

    Moreover,by expandingM1+ερ,εu,1+ε?inε,we get

    1.4 Main Results

    We first focus on the steady case.The following (ps,us,?s) is a solution to the steady INSF with Dirichlet boundary conditions and subject to the external field Φ:

    Note that,if Φ is a potential field,us≡0 is a solution to the above system.Therefore,in order to have a stationary solution with non vanishing velocity field,we may assume that Φ is not a potential field,such that?x·Φ=0. (See[25])

    The steady solution to the Boltzmann equation is obtained with the same procedure discussed before for the unsteady case:

    wherefs,1andfs,2are given by (1.2.5) and (1.2.8) withρ,u,?,andpreplaced byρs,?s,usandps.The remainder has to satisfy the following equation

    with the boundary condition (1.3.7).HereAsis given by (1.2.14) withf1,f2replaced byfs,1,fs,2,and satisfies the mean zero condition (1.2.15).

    Theorem 1.1Assume?is an open bounded subset ofR3with C3boundary??.We also assume the hard sphere cross section(1.1.2).

    then,for0<ε?1,there is a unique positive solution Fs≥0,given by(1.4.2)with Rssatisfying(1.4.3)and the boundary condition(1.3.7).Here,f1,sand f2,sare given by(1.2.5)and(1.2.8)where(us,?s,ps)solves(1.4.1).

    Moreover,

    where w(v)=eβ|v|2with0<β?1.

    We remark that in the expansion (1.4.2) ,the remainderεRsis of higher order inLpfor 2≤p<6.On the other hand,is of orderε?1/2inL∞,so the expansionisnotproved to be valid inL∞.It is important to note that the key difficulty in this paper is to control the ‘strong’nonlinear terms,in the absence of boundary layer approximations.The hard spheres cross section is needed to control the termεv·Φfcoming from the external field.

    We use the quantitativeL2?L∞approach developed in[20],in the presence ofε.We start with the energy estimates to get

    The missing PRscan be estimated by the coercivity estimates in[20],with carefully chosen proper test functions in the weak formulation,such that (Proposition 2.2) :

    By using a double iteration of the Duhamel formula along the characteristics[20],we may bootstrap suchL2estimates toL∞estimate as

    where the dimension isd=3.

    We split

    Since we expectε?1∥(I?P)Rs∥ν.1,the second part of the nonlinear term is estimated as

    which is way out of control to close the estimates.

    The key observation is that in ourL∞estimate,higher integrability of PRshelps to reduceεsingularity in the estimate of∥Rs∥∞.Indeed,if we have

    then,ind=3,we are able to improve theL∞estimate as (Proposition 3.3) :

    Now with such an improvement,we haveand the nonlinearity isexactlycontrollable:

    In the absence of the external field and the boundary,Φ≡0 and ?=R3,such gain of integrability,∥PRs∥L3.1,is well-known from the Averaging Lemma[26]and the sharp Sobolev embeddingH1/2?L3(See also the case for a convex bounded domain with Φ≡0 in[26]).We need to extend this estimate properly to case of the bounded domain ? with the presence of the external field Φ?0.We first consider an extension ofRsto the whole space,denoted bys,such thats∈L2and

    We circumvent this difficulty via an extension lemma,Lemma 2.4,which asserts that,for the function cutoff from the grazing setγ0,

    We also remark that in the presence of an external field,even the construction of the solution to the linear problem is delicate.In fact,an extension similar to (1.4.6) must be used again to gain compactness from the averaging lemma.Moreover,as in[20],our construction cannot yield the positivity ofFsdirectly,which is left for the unsteady case.

    Next we investigate the stability properties of the stationary solution.To discuss this,we study the unsteady problem.The solution to (1.1.1) is written as

    From the choice of (1.2.9) ,we have

    Then the equation ofis given by

    The boundary condition ofis given by

    where

    Note that,sinceMwonly depends on?w,by taking the difference of (1.3.2) ,written for the unsteady and steady solutions respectively,we obtain

    We define the energy and the dissipation as

    Theorem 1.2We assume the same hypotheses of Theorem1.1.Suppose,andand

    and

    where w (v)=eβ|v|2with 0< β ? 1.

    Then there exists a unique global solution F≥0 given by (1.4.7) withsolving (1.4.9) and the boundary condition (1.4.11).Here,are given by (1.2.5) and (1.2.8) wheresolves (1.4.8).

    Moreover,for some 0<λ?1,

    Here,we recall that the notationmeans.

    We remark that such an asymptotical stability implies positivity of steady solutionFs(Section 3.7).Moreover,sincewe conclude that the expansion (1.4.7) is valid in.We use similar ideas as in the steady case,but the analysis is more intricate.

    We start with the energy estimates,as the steady case,to get

    Furthermore,as in the steady case,via a similar extension argument,Lemma 3.3 and Proposition 3.1,we establish a gain of integrability as

    Hence,the nonlinearity can be bounded by interpolations:

    Thanks to the good bound ofε?1∥(I?P)Rs∥2.1 and further by the interpolationL6?L2∩L∞,we bound the above by

    Similarly to the steady case,by using a double iteration of the Duhamel formula along the characteristics[20],we may bootstrap suchL2estimates to an improvedL∞estimate as

    where the dimension isd=3.Clearly,a new difficulty is to estimatewhich is not controllable from (1.4.15).

    The key new idea is to repeat energy estimatesestimates for the time derivative

    Fortunately,in order to close the estimates,we don’t need to improve,but only need to control the new nonlinear term

    which can be exactly closed.

    We remark that our method works also for a general 2D domain.Now the gain of integrability is expected as,and it is notcriticaland analysis is much less delicate than the 3D case.

    2 Steady Problems

    2.1 Domain,Trace,and Green Identity

    Assume?? isC3.Then for anyx0∈??,there exist 0

    Assume dist (x,??)?1 andx0∈?? such that dist (x,x0)=dist (x,??).Then there exists anηwhich is a parametrization of?? aroundx0.Clearly

    On the other hand,if|η(x∥)?x|?1,

    Then,by the implicit function theorem,there exists a uniquex∥(x)∈C2satisfying (2.1.1).Moreover,

    whereη=η(x∥).Then we definex⊥∈C2for dist (x,??)?1,

    Note that dist (x,??)=|x⊥(x)|if dist (x,??)?1.

    By the compactness of??,we conclude that if dist (x,??)<4rfor some 0

    Finally we define theC2functionξ:R3→R as

    where

    Then ?={x∈R3:ξ(x)<0}.If|ξ(x)|?1 thenξ(x)=x⊥(x).

    We use this new coordinate (2.1.2) to extend Φ on the whole space,and denote

    Therefore without loss of generality we assume that Φ is defined on the whole space R3.

    Definition 2.1Assume Φ=Φ (x)∈C1.Consider the steady linear transport equation

    The equations of the characteristics for (2.1.6) are

    IfX(τ;t,x,v)∈? for allτin betweensandtthen

    Note that the ODE (2.1.7) is autonomous since Φ is time-independent.

    Define

    and

    Clearly (xb(x,v),vb(x,v))∈γ?and (xf(x,v),vf(x,v))∈γ+.

    Lemma 2.1For any open subset??R3,B???,and f∈L1(?×R3),

    and

    For the proof we refer to Lemma 2.2 in[21].From (2.1.7) ,for?∈{?x,?v},

    Next lemma extends the Ukai’s Lemma ([17]) to the case with external fields.

    Lemma 2.2Assume?is an open bounded subset ofR3with??is C3.We define

    Then

    For the proof we refer to Lemma 2.3 in[21].

    Lemma 2.3LetΦ∈C1.Assume that f(x,v),g(x,v)∈L2(?×R3),{v·?x+ε2Φ·?v}f,{v·?x+ε2Φ·?v}g∈L2(?×R3)and fγ,gγ∈L2(??×R3).Then

    ProofIt is easy to check that the proof in Chapter 9 of[17],equation (2.18) ,still holds in the presence ofC1field.

    2.2 Gain of Integrability: Estimate

    In this section,we prove the crucial result on the gain of integrability for velocity averages of the solution to the transport equation.

    First,we definefδwhich represents either the interior,or the non-grazing parts offnear the boundary.

    Definition 2.2We define,for (x,v)∈×R3and 0<δ?1,

    wheren(x) is defined in (2.1.5).

    At the boundary (x,v)∈γ=??×R3,

    The main goal of this section is the following:

    Proposition 2.1AssumeΦ=Φ (x)∈C1.Let f(x,v)solve(2.1.6)in the sense of distribution and f(x,v)|γ=fγ(x,v)∈L2(γ).Then

    where fδis defined in(2.2.1)and(a,b,c)in(1.2.4).

    Moreover,

    forwith0<β?1.

    Lemma 2.4Let f∈L2(?×R3)solve(2.1.6)in the sense of distribution andg∈L2(?×R3),and f(x,v)|γ=fγ(x,v)∈L2(γ).Then there exists an,such that.Moreover,in the sense of distributions,

    where

    and

    ProofStep 1Considerfδin (2.2.1).In the sense of distributions on ?×R3,

    Note that,

    This proves the second line of (2.2.8).Since

    we prove the first line of (2.2.8) directly.The third line of (2.2.8) will be proved in Step 5.

    Ifv·n(x)≥δ,we takes>0,while ifv·n(x)≤?δthen we takes<0.From (2.1.8) ,

    Fromξ(x)≥0,

    By the intermediate value theorem,we prove our claim.

    Step 3We definefE(x,v) for:

    We check thatfEis well-defined.It suffices to prove the following:

    2.3 Steady L2? Coercivity

    The main purpose of this section is to prove the following:

    Proposition 2.2SupposeΦ∈L∞,g∈L2(?×R3),and r∈L2(γ?)such that

    Then,for sufficiently small ε>0,there exists a unique solution to

    such that

    and

    For the proof we refer to the proof in[21]for the details.As the first step of the proof of Proposition 2.3,we consider the following penalized problem:

    Lemma 2.6Assume that g∈L2(?×R3)and r∈L2(γ?)satisfy(2.3.1).Moreover,letΦ∈L∞(?)and λ>0.Then,if ε>0is sufficiently small,the solution to(2.3.5)exists and is unique.Moreover it satisfies the bounds

    We remark that Lemma 2.6 implies that,forεsufficiently small,the operatorL?1is well-defined and bounded as a map fromL2toL2.For the proof we refer to Lemma 2.10 in[21].

    Lemma 2.7For any λ,ε>0,the operator KL?1is compact in L2.Explicitly,if gn∈L2andsupn∥gn∥2<∞then there exist subsequence nksuch that Kfnk→Kf in L2,where fnsolve

    For the proof we refer to Lemma 2.11 in[21].

    Next we prove the essential bound for Pf,wherefsolves

    We denote

    Lemma 2.8Assume(2.3.1).Let f be a solution to(2.3.7)in the sense of distribution.Then,for all λ≥0and all θ∈[0,1],

    and

    For the proof we refer to Lemma 2.12 in[21].

    2.4 L∞ Estimate

    The main goal of this section is to prove the following lemma.

    Proposition 2.3Let f satisfy

    where,forand

    Then,forwith0<β′?β,

    For the proof we refer to the proof in[21]page 27.

    We define the stochastic cycles for the steady case.

    Definition 2.3Define,for free variablesvk∈R3,from (2.1.9)

    The following lemma is a generalized version of Lemma 23 of[32].

    Lemma 2.9[32]AssumeΦ=Φ (x)∈C1.For sufficiently large T0>0,there exist constants C1,C2>0,independent of T0,such that for k=C1T05/4,

    ProofFor 0<δ?1,we define

    From|v|>δandxb=x+tbv+O(ε2) (tb)2,

    For fixedδ>0 andε<ε0?δ1,

    Therefore we prove our claim.The rest of proof of (2.4.6) is identical to the proof of Lemma 23 on[32].

    Now we are ready to prove the main result of this section:

    Proof of Proposition 2.3Define,forw(v)=eβ′|v|2,

    From Lemma 3 of[32],there exists asuch that

    Then,from (2.4.1) ,

    From (2.4.1) ,on (x,v)∈γ?,

    2.5 Validity of the Steady Problem

    The main purpose of this section is to prove Theorem 1.1.We need several estimates before the proof of the main theorem.

    Lemma 2.10Assume

    3 Unsteady Problems

    3.1 Trace and Green’s Identity

    Definition 3.1Assume Φ=Φ (x)∈C1.Consider a unsteady linear transport equation

    The equations of the characteristics for (3.1.1) are

    By the uniqueness of ODE

    where (X,V) is defined in (2.1.7).

    Define

    Moreover

    Lemma 3.1For f∈L1([0,T]×?×R3),

    We refer to the proof of Lemma 3.2 in[21].

    Lemma 3.2AssumeΦ∈C1.Assume that f(t,x,v),g(t,x,v)∈L2(R+×?×R3),{?t+ε?1v·?x+εΦ·?v}f,{?t+ε?1v·?x+εΦ·?v}g∈L2(R+×?×R3)and fγ,gγ∈L2(R+×γ).Then

    ProofThe proof is from Chapter 9 of[17]with the same modification as Lemma 2.3.

    3.2 Gain of Integrability: Estimate

    Definition 3.2We define,forand for 0<δ?1,

    Heren(x) is defined in (2.1.5).

    We extendfδto the negative time so that we are able to take the time-derivative.Clearly,

    Note that,at the boundary (x,v)∈γ:=??×R3,

    The main goal of this section is the following:

    Proposition 3.1Assume g∈L2(R+×?×R3),f0∈L2(?×R3),and fγ∈L2(R+×γ).Let f∈L∞(R+;L2(?×R3))solves(3.1.1)in the sense of distribution and satisfies f(t,x,v)=fγ(t,x,v)onR+×γand f(0,x,v)=f0(x,v)on?×R3.Then

    where fδis defined in(3.2.1).

    Moreover

    for w=eβ|v|2with0<β?1.

    We need several lemmas to prove Proposition 3.1.

    Lemma 3.3Assume the same hypothesis of Proposition3.1.Then there existanand an extension of fδin(3.2.1),such that

    Moreover,in the sense of distributions onR×R3×R3,

    where

    Clearly,we can conclude the second estimate of (3.2.4).

    Now we focus on the first estimate of (3.2.4).From Lemma 3.3,

    From (3.2.15) and (3.2.16) withFinally,from Lemma 3.4 and (3.2.17),(3.2.6) ,we conclude the first estimate in (3.2.4).The proof is completed.

    3.3 Unsteady L2? Coercivity Estimate

    The main purpose of this section is to prove the following:

    Proposition 3.2SupposeΦ=Φ (x)∈C1,g∈L2(R+×?×R3),and r∈L2(R+×γ?)such that,for all t>0,

    Then,for any sufficiently small ε,there exists a unique solution to the problem

    with f|t=0=f0and f?=Pγf+r onR+× γ?such that

    Moreover,there is0<λ?1such that for0≤s≤t,

    We refer to Proposition 3.8 in[21].

    3.4 L∞ Estimate

    The main goal of this section is to prove the following:

    Proposition 3.3Let f satisfy

    Then,for w(v)=eβ′|v|2with0<β′?β,

    We define the stochastic cycles for the unsteady case.Note that from (3.1.5),

    Definition 3.4Define,for free variablesvk∈R3,from (3.1.5)

    The following lemma is a generalized version of Lemma 23 of[32].

    Lemma 3.5[32]AssumeΦ=Φ (x)∈C1.For sufficiently large T0>0,thereexist constants C1,C2>0,independent of T0,such that for,

    We refer to Lemma 3.12 in[21]for the proof.

    Now we are ready to prove the main result of this section.We refer to the proof of Proposition 3.10 in[21]in page 80.

    Lemma 3.6For g(t,x),g(t,x)|t=0=g0(x),for0<δ?1,and for all T∈[0,∞],

    Note that this crucial estimate follows essentially by Sobolev imbedding in

    ProofNote that

    We prove the first estimate of (3.5.1) :Takingand taking{···}1/2,

    Now we prove the second estimate of (3.5.1) :From (3.5.2) ,for allt∈[0,T],

    Taking the integration overxand taking{···}1/p,for allt∈[0,T],

    Finally takingL∞?norm int∈[0,T],

    The proof is completed.

    Lemma 3.7Assume

    where ai(f)and ai(g)are defined in(2.2.33).Then

    and

    ProofFirst we prove (3.5.3).We decompose

    and|g(t,x,v)|in the same way.We use the same decomposition of (2.5.3) replacing thenorm with thenorm.

    The first two lines of the RHS of (2.5.3) are bounded by

    From (2.5.4),(2.5.5),(2.5.6) ,and (2.5.7) ,the third and fourth line of the RHS of (2.5.3) are bounded by

    The last line of (2.5.3) is bounded by,from,

    From (3.5.1) ,

    We only need to show?t[S1f].S1?tffort≥0.From the Definition of S1f(t,x) in (3.2.3) ,

    Now from the Definition offδin (3.2.1) ,fort≥0

    Therefore,fort≥0,

    All together we prove (3.5.3).

    Now we prove (3.5.4).Using (3.5.6) ,we again decompose

    We use the same upper bound as in the proof of (3.5.3) except the first line of RHS in (2.5.3) and the first term of the third and fourth lines of RHS in (2.5.3) :

    First we focus on the first line of the RHS of (2.5.3).Using the decomposition ofgin (3.5.6) ,these terms are bounded by

    and

    From the above estimate and (2.5.4) ,the last two lines of (3.5.7) are bounded by

    Focus on the first line of (3.5.7).For 0

    Now by the change of variables (v,u)?(v′,u′) for the first term, (v,u)?(u′,v′) for the third term,the above terms are bounded by

    Here,for 0

    Hence the first line of (3.5.7) is bounded by

    Therefore,altogether,the first line of RHS of (2.5.3) is bounded by

    Similarly the first term of the third and fourth lines of RHS in (2.5.3) is bounded as

    All together we prove (3.5.4).

    Now we prove (3.5.5).Using the decomposition ofg,

    3.6 Global-in-Time Validity

    The main purpose of this section is to prove Theorem 1.2.To that we need the following:

    Moreover,

    ProofFrom (1.3.3),(1.3.4) ,and our choice (1.2.9) ,

    Then from (.1) we conclude (3.6.1).

    From (1.2.14) and (1.2.9) ,

    By the standard Sobolev embedding and the trace theorem,we prove (3.6.4).The proof is completed.

    Proof of Theorem 1.2For the construction of the solution and the energy estimate,we considersolving,for?∈N,

    Note that Proposition 3.2 guarantees the solvability of such linear problems (3.6.6) and (3.6.7).

    Note that from the assumption (1.4.12),(.1) ,and (3.6.1) ,

    For 0<η0?1 and 0<η1<∞,we assume (induction hypothesis) that

    3.7 Positivity of Solutions

    In this section,we prove the non-negativity ofFsin the main theorem.The proof is based on the asymptotical stability ofFs(Proposition 3.1) and the non-negativity of unsteady solution.

    Proof of the non-negativity ofF(t,x,v) in Theorem 1.2 andFs(x,v) in Theorem 1.1 We use the positivity-preserving sequence as in[20,32].SetF0(t,x,v)=F0(x,v)≥0 and for?≥0

    Appendix A Basic Estimates of the Fluid Equations

    In this Appendix,to simplify the formulas,we set v=1 andκ=1,since they do not play any role in the estimates.

    Lemma A.1Let(us,?s)be the H2?solution to the steady INSF(1.4.1).Assume(1.4.4).Then

    If we further assumeandthen.

    Lemma A.2Let(u,?,p)be Hksolution to(1.2.7).Set,,wheresolves(1.4.8).Assume

    Then,for any k≥0and for0<λ?1,

    whenever the RHS is finite for some polynomial P.

    Moreover,for some0<λ?1and polynomial P0with P0(s)=O(s),

    whenever the RHS of(A.1)is finite and

    Furthermore,

    日韩人妻高清精品专区| 欧美日韩视频精品一区| 免费高清在线观看视频在线观看| 亚洲精品久久久久久婷婷小说| 国产精品偷伦视频观看了| 如日韩欧美国产精品一区二区三区 | 黄色欧美视频在线观看| 免费av中文字幕在线| 成人特级av手机在线观看| 中国国产av一级| 日本爱情动作片www.在线观看| 久久午夜福利片| 国产中年淑女户外野战色| 成人美女网站在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 各种免费的搞黄视频| av国产久精品久网站免费入址| 久热久热在线精品观看| 自线自在国产av| 午夜精品国产一区二区电影| 内地一区二区视频在线| 国产深夜福利视频在线观看| 国产成人精品一,二区| 久久久精品免费免费高清| 国产精品99久久久久久久久| 大陆偷拍与自拍| 成人毛片60女人毛片免费| 有码 亚洲区| 天天操日日干夜夜撸| 亚洲欧美精品自产自拍| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 国产成人免费观看mmmm| 国产精品秋霞免费鲁丝片| 爱豆传媒免费全集在线观看| 国产精品国产三级国产av玫瑰| 亚洲精品aⅴ在线观看| 99视频精品全部免费 在线| 午夜福利,免费看| 久久国产精品男人的天堂亚洲 | 美女脱内裤让男人舔精品视频| 国产成人freesex在线| 久久鲁丝午夜福利片| 不卡视频在线观看欧美| 国产午夜精品久久久久久一区二区三区| 国产亚洲午夜精品一区二区久久| 在线免费观看不下载黄p国产| 欧美一级a爱片免费观看看| 你懂的网址亚洲精品在线观看| 又大又黄又爽视频免费| 毛片一级片免费看久久久久| 少妇精品久久久久久久| 国内少妇人妻偷人精品xxx网站| 国产精品免费大片| 99热这里只有是精品在线观看| 熟女av电影| 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 特大巨黑吊av在线直播| av天堂中文字幕网| 高清av免费在线| 曰老女人黄片| 中国美白少妇内射xxxbb| 汤姆久久久久久久影院中文字幕| av天堂久久9| 一级黄片播放器| 国产午夜精品一二区理论片| 深夜a级毛片| 精品少妇久久久久久888优播| 国产精品久久久久久久久免| 亚洲成人av在线免费| 99久久中文字幕三级久久日本| 人妻人人澡人人爽人人| 日韩欧美一区视频在线观看 | 国产中年淑女户外野战色| 少妇的逼水好多| 最新的欧美精品一区二区| 日韩强制内射视频| 国产乱来视频区| 伦精品一区二区三区| 91aial.com中文字幕在线观看| 在线观看美女被高潮喷水网站| 婷婷色av中文字幕| 精品视频人人做人人爽| 不卡视频在线观看欧美| 99久久综合免费| 中文字幕av电影在线播放| 久久国内精品自在自线图片| 午夜福利影视在线免费观看| 97精品久久久久久久久久精品| 午夜精品国产一区二区电影| 国产在线一区二区三区精| 国产精品嫩草影院av在线观看| 午夜老司机福利剧场| 啦啦啦中文免费视频观看日本| 亚洲国产最新在线播放| 国产中年淑女户外野战色| videos熟女内射| 国产探花极品一区二区| 国产白丝娇喘喷水9色精品| 色94色欧美一区二区| 精品少妇黑人巨大在线播放| 久久久久国产网址| 99视频精品全部免费 在线| 2022亚洲国产成人精品| 少妇被粗大猛烈的视频| 中文精品一卡2卡3卡4更新| 大香蕉97超碰在线| 国产av一区二区精品久久| 交换朋友夫妻互换小说| 亚洲av欧美aⅴ国产| av一本久久久久| 少妇人妻 视频| 日韩制服骚丝袜av| 亚洲美女黄色视频免费看| 欧美亚洲 丝袜 人妻 在线| 美女国产视频在线观看| 国产高清国产精品国产三级| 亚洲成人手机| 韩国av在线不卡| 亚洲无线观看免费| 最近最新中文字幕免费大全7| 日韩亚洲欧美综合| 人人妻人人爽人人添夜夜欢视频 | 久久影院123| 美女视频免费永久观看网站| 亚洲电影在线观看av| 国产精品免费大片| 丰满饥渴人妻一区二区三| 日韩,欧美,国产一区二区三区| 日韩不卡一区二区三区视频在线| a 毛片基地| 97超碰精品成人国产| 久久国产乱子免费精品| 久久韩国三级中文字幕| 午夜免费观看性视频| 欧美日韩在线观看h| 国产成人免费无遮挡视频| 欧美精品高潮呻吟av久久| 久久久亚洲精品成人影院| 国产日韩一区二区三区精品不卡 | 免费黄频网站在线观看国产| av在线观看视频网站免费| 久久精品久久精品一区二区三区| 国产日韩欧美在线精品| 日本色播在线视频| 亚洲婷婷狠狠爱综合网| 国产午夜精品一二区理论片| 少妇人妻久久综合中文| 乱系列少妇在线播放| 国产成人午夜福利电影在线观看| 久久女婷五月综合色啪小说| 插逼视频在线观看| 免费观看在线日韩| 午夜福利网站1000一区二区三区| 久久99蜜桃精品久久| 国产精品国产三级国产av玫瑰| 久久6这里有精品| 精品亚洲成国产av| 大话2 男鬼变身卡| 狂野欧美激情性xxxx在线观看| 婷婷色av中文字幕| 亚洲欧美一区二区三区黑人 | 欧美激情国产日韩精品一区| 亚洲av福利一区| 天堂俺去俺来也www色官网| 欧美日本中文国产一区发布| 国产精品三级大全| 久久精品国产鲁丝片午夜精品| 日韩欧美 国产精品| 成人影院久久| 99热这里只有是精品50| av在线观看视频网站免费| 嫩草影院入口| 欧美变态另类bdsm刘玥| 亚洲熟女精品中文字幕| 一区二区三区免费毛片| 久久精品国产a三级三级三级| 99热这里只有是精品50| 久久毛片免费看一区二区三区| 色5月婷婷丁香| 久久久久久久久久人人人人人人| 日本黄色日本黄色录像| 久久人妻熟女aⅴ| 日本av免费视频播放| 99久久精品热视频| 天美传媒精品一区二区| 成人二区视频| 亚洲人成网站在线观看播放| 国产毛片在线视频| 99热6这里只有精品| 秋霞在线观看毛片| 新久久久久国产一级毛片| 97超碰精品成人国产| 一级,二级,三级黄色视频| 国产精品国产三级国产av玫瑰| 91精品伊人久久大香线蕉| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久精品电影小说| 麻豆乱淫一区二区| 蜜桃久久精品国产亚洲av| videos熟女内射| 国产av一区二区精品久久| 亚洲国产精品一区二区三区在线| 丰满人妻一区二区三区视频av| 美女内射精品一级片tv| 亚洲精品456在线播放app| 国产毛片在线视频| 如日韩欧美国产精品一区二区三区 | 大香蕉久久网| 伊人亚洲综合成人网| 亚洲伊人久久精品综合| 日日摸夜夜添夜夜爱| 麻豆精品久久久久久蜜桃| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 国产一级毛片在线| 日韩av不卡免费在线播放| 国产免费视频播放在线视频| 人妻一区二区av| 亚洲欧美成人综合另类久久久| 日本爱情动作片www.在线观看| 婷婷色综合www| 啦啦啦啦在线视频资源| av黄色大香蕉| 亚洲欧美成人精品一区二区| 国产黄色免费在线视频| 国产欧美另类精品又又久久亚洲欧美| 一级毛片我不卡| 日日啪夜夜爽| 久久久国产精品麻豆| 免费观看a级毛片全部| 免费大片18禁| 韩国av在线不卡| 国产成人一区二区在线| 欧美精品一区二区免费开放| 午夜激情久久久久久久| 久久国产亚洲av麻豆专区| 建设人人有责人人尽责人人享有的| 精品一品国产午夜福利视频| 久久99一区二区三区| 亚洲精品色激情综合| 最后的刺客免费高清国语| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 国产探花极品一区二区| 成人18禁高潮啪啪吃奶动态图 | 热re99久久国产66热| 男人爽女人下面视频在线观看| 又爽又黄a免费视频| 日本黄色日本黄色录像| 久久久午夜欧美精品| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜爱| 三上悠亚av全集在线观看 | 最近最新中文字幕免费大全7| 一级二级三级毛片免费看| 亚洲人与动物交配视频| 亚洲不卡免费看| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 亚洲精品国产av成人精品| 欧美人与善性xxx| 亚洲av男天堂| 97精品久久久久久久久久精品| 国产成人一区二区在线| 亚洲av国产av综合av卡| 夫妻午夜视频| 超碰97精品在线观看| 九草在线视频观看| 少妇被粗大猛烈的视频| 午夜免费鲁丝| 热re99久久精品国产66热6| 人体艺术视频欧美日本| 伦理电影免费视频| 精品99又大又爽又粗少妇毛片| 蜜桃久久精品国产亚洲av| 国产午夜精品一二区理论片| 美女脱内裤让男人舔精品视频| 国产白丝娇喘喷水9色精品| 一级a做视频免费观看| 狠狠精品人妻久久久久久综合| 色94色欧美一区二区| h日本视频在线播放| 精品久久久久久电影网| 精品人妻熟女av久视频| 免费大片黄手机在线观看| 十分钟在线观看高清视频www | 99久久人妻综合| 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 男的添女的下面高潮视频| 日韩伦理黄色片| 校园人妻丝袜中文字幕| 久久精品国产鲁丝片午夜精品| 精品酒店卫生间| 成人国产av品久久久| 人人妻人人添人人爽欧美一区卜| 在线亚洲精品国产二区图片欧美 | 亚洲av国产av综合av卡| 免费观看性生交大片5| 一个人免费看片子| 全区人妻精品视频| 亚洲精品国产成人久久av| 狠狠精品人妻久久久久久综合| 国产精品久久久久久久电影| 成人18禁高潮啪啪吃奶动态图 | 美女xxoo啪啪120秒动态图| 国产精品一二三区在线看| 欧美日本中文国产一区发布| 色婷婷av一区二区三区视频| 中文字幕精品免费在线观看视频 | 成人国产麻豆网| 少妇 在线观看| 伊人久久精品亚洲午夜| xxx大片免费视频| 亚洲精品一区蜜桃| www.色视频.com| 99热这里只有精品一区| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 久久久久精品久久久久真实原创| 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 亚洲精品中文字幕在线视频 | 亚洲精品日本国产第一区| av福利片在线观看| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 高清午夜精品一区二区三区| 国产成人免费观看mmmm| 老司机影院成人| 久久国产精品男人的天堂亚洲 | 亚洲人与动物交配视频| 亚洲精华国产精华液的使用体验| 亚洲真实伦在线观看| 欧美性感艳星| 免费黄网站久久成人精品| 亚洲成色77777| 丰满人妻一区二区三区视频av| 国产精品一区www在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲第一区二区三区不卡| 一边亲一边摸免费视频| av女优亚洲男人天堂| 久久久a久久爽久久v久久| av在线观看视频网站免费| 一级二级三级毛片免费看| 超碰97精品在线观看| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片| 午夜激情福利司机影院| 国产伦在线观看视频一区| 99热网站在线观看| 老司机影院成人| 日本黄色日本黄色录像| 各种免费的搞黄视频| 又爽又黄a免费视频| 一区二区三区精品91| 国模一区二区三区四区视频| 亚洲av成人精品一区久久| 欧美精品人与动牲交sv欧美| 久久久精品94久久精品| 久久99热6这里只有精品| 黄色配什么色好看| 国产精品人妻久久久影院| 在线免费观看不下载黄p国产| 伊人久久精品亚洲午夜| 五月玫瑰六月丁香| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在| 男女边吃奶边做爰视频| 少妇熟女欧美另类| 日本免费在线观看一区| 在线观看三级黄色| 三级国产精品片| 日本黄大片高清| 最近中文字幕高清免费大全6| 老女人水多毛片| 欧美日韩一区二区视频在线观看视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 老司机影院毛片| 亚洲欧洲日产国产| 性色av一级| 国产精品一区二区在线观看99| 在线观看三级黄色| 热re99久久精品国产66热6| 午夜日本视频在线| 亚洲成人一二三区av| 成人黄色视频免费在线看| 欧美日韩亚洲高清精品| www.色视频.com| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 久久精品熟女亚洲av麻豆精品| 免费久久久久久久精品成人欧美视频 | 欧美日韩精品成人综合77777| 亚洲成人一二三区av| 日本午夜av视频| 99热这里只有精品一区| 色吧在线观看| 在线观看免费视频网站a站| 丰满乱子伦码专区| 国产伦在线观看视频一区| 日本爱情动作片www.在线观看| 国产成人精品福利久久| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 秋霞在线观看毛片| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 久久热精品热| 毛片一级片免费看久久久久| h视频一区二区三区| 黄片无遮挡物在线观看| 五月天丁香电影| 国产在线视频一区二区| 日日撸夜夜添| 亚洲欧美日韩另类电影网站| 插逼视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠久久av| 亚洲综合精品二区| 色94色欧美一区二区| 久久青草综合色| 亚洲精品一二三| 国产亚洲午夜精品一区二区久久| 精品亚洲成国产av| 亚洲欧美精品专区久久| 王馨瑶露胸无遮挡在线观看| 日日摸夜夜添夜夜添av毛片| 免费观看无遮挡的男女| 免费观看av网站的网址| 欧美xxxx性猛交bbbb| 街头女战士在线观看网站| 国产欧美日韩一区二区三区在线 | av国产精品久久久久影院| 国产男女超爽视频在线观看| 成年人午夜在线观看视频| 最新的欧美精品一区二区| 丝袜在线中文字幕| 亚洲国产精品专区欧美| 免费人成在线观看视频色| 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 亚洲精品自拍成人| 日本色播在线视频| 国产片特级美女逼逼视频| .国产精品久久| 成人漫画全彩无遮挡| 国产淫语在线视频| 精品国产一区二区久久| 亚洲人与动物交配视频| 久久鲁丝午夜福利片| 噜噜噜噜噜久久久久久91| 久热这里只有精品99| 久久人人爽人人爽人人片va| 国产毛片在线视频| 99九九在线精品视频 | 亚洲精品国产av成人精品| 国内少妇人妻偷人精品xxx网站| 色视频www国产| 国产精品秋霞免费鲁丝片| 夜夜爽夜夜爽视频| 欧美日韩视频高清一区二区三区二| 亚洲成色77777| 久久久久网色| 91aial.com中文字幕在线观看| 国产在线一区二区三区精| 在线观看三级黄色| 亚洲,欧美,日韩| 精品少妇内射三级| 日韩欧美 国产精品| 亚洲精品中文字幕在线视频 | 晚上一个人看的免费电影| 女人精品久久久久毛片| 18+在线观看网站| 91在线精品国自产拍蜜月| 人体艺术视频欧美日本| 亚洲精品第二区| 26uuu在线亚洲综合色| 国产色爽女视频免费观看| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 女性被躁到高潮视频| 街头女战士在线观看网站| 国产乱人偷精品视频| 国产精品欧美亚洲77777| 国产一区二区三区综合在线观看 | 国产av国产精品国产| 熟女电影av网| 麻豆乱淫一区二区| 亚洲综合色惰| 18+在线观看网站| 热re99久久国产66热| 中文天堂在线官网| 亚洲av不卡在线观看| 亚洲精品色激情综合| 国产毛片在线视频| 亚洲精品国产av成人精品| 2022亚洲国产成人精品| 十八禁高潮呻吟视频 | 国产精品.久久久| 热99国产精品久久久久久7| 黄片无遮挡物在线观看| 久久久a久久爽久久v久久| 中国国产av一级| 黑丝袜美女国产一区| 狂野欧美激情性bbbbbb| 精品国产一区二区久久| 赤兔流量卡办理| 免费观看无遮挡的男女| 纵有疾风起免费观看全集完整版| 丝袜在线中文字幕| 久久人人爽人人爽人人片va| 亚洲国产日韩一区二区| 国产淫片久久久久久久久| 免费观看a级毛片全部| 亚洲av成人精品一区久久| 在线观看美女被高潮喷水网站| 国产精品久久久久久久电影| 国产69精品久久久久777片| 色吧在线观看| 伦精品一区二区三区| 美女cb高潮喷水在线观看| 国产精品偷伦视频观看了| 在线观看人妻少妇| 欧美日韩视频高清一区二区三区二| 中文字幕人妻丝袜制服| 婷婷色av中文字幕| 自拍欧美九色日韩亚洲蝌蚪91 | av不卡在线播放| 欧美日韩在线观看h| 国产日韩欧美在线精品| 免费观看性生交大片5| 我的老师免费观看完整版| 亚洲国产成人一精品久久久| 一级a做视频免费观看| 成人免费观看视频高清| 在线免费观看不下载黄p国产| 九九久久精品国产亚洲av麻豆| 久久久欧美国产精品| 日韩欧美精品免费久久| 久久99蜜桃精品久久| 一级爰片在线观看| 日韩成人av中文字幕在线观看| 日本黄大片高清| 中文字幕制服av| 夫妻午夜视频| 大陆偷拍与自拍| 久久精品久久久久久久性| 国产精品人妻久久久影院| 成年人免费黄色播放视频 | 精品国产一区二区三区久久久樱花| 国产精品国产三级国产专区5o| 亚洲一级一片aⅴ在线观看| 国产精品99久久久久久久久| 成年人午夜在线观看视频| 国内揄拍国产精品人妻在线| 国产精品国产av在线观看| 插阴视频在线观看视频| 成人黄色视频免费在线看| 国产淫语在线视频| 大片免费播放器 马上看| 亚洲真实伦在线观看| 99热这里只有是精品50| 高清不卡的av网站| a级毛片在线看网站| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品视频女| 欧美3d第一页| 精品久久久久久久久亚洲| 丝袜在线中文字幕| 国产熟女午夜一区二区三区 | 欧美日韩亚洲高清精品| 国产伦精品一区二区三区视频9| 中文字幕人妻熟人妻熟丝袜美| 自拍欧美九色日韩亚洲蝌蚪91 | 91久久精品国产一区二区三区| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 免费观看在线日韩| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| videos熟女内射| 免费观看性生交大片5| 男女啪啪激烈高潮av片| 日本91视频免费播放| av在线播放精品| 男人舔奶头视频| 国产一区有黄有色的免费视频| 日日摸夜夜添夜夜爱| 2022亚洲国产成人精品| 久久国产精品男人的天堂亚洲 | 日韩成人av中文字幕在线观看| 成人毛片a级毛片在线播放| 黑人巨大精品欧美一区二区蜜桃 | 精品久久国产蜜桃| 最近中文字幕2019免费版| 国产精品久久久久久久久免| 久久久久精品性色| 菩萨蛮人人尽说江南好唐韦庄| 麻豆成人av视频| 欧美日韩av久久| 亚洲伊人久久精品综合| 十八禁网站网址无遮挡 | 少妇丰满av| 亚洲精品一二三| 男人爽女人下面视频在线观看|