• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel approach for active vibration control of a flexible missile

    2020-07-02 03:18:00ChenglongPnJiliRongTinfuXulinXing
    Defence Technology 2020年4期

    Cheng-long Pn , Ji-li Rong ,*, Tin-fu Xu , D-lin Xing

    a School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

    b Norinco Group Aviation Ammunition Research Institute, Harbin 150030, China

    c Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

    Keywords:Flexible missile PID controller Active dynamic vibration absorber Genetic algorithms

    ABSTRACT This paper investigates the feasibility of using an active dynamic vibration absorber (ADVA) for active vibration control of a flexible missile system through simulation. Based on the principles of a dynamic vibration absorber (DVA), a ring-type ADVA is first designed to attenuate the elastic vibration of the flexible missile, and the design of the active controller adopts the proportional-integral-derivative (PID)control algorithm. The motion equations of a flexible missile with an ADVA, which is subjected to follower thrust at its aft end, are derived using the Lagrangian approach. Taking the minimum of the root mean square(RMS)of the lateral displacement response of the center of mass as the objective function,a genetic algorithm (GA) is used to optimize the parameter of the DVA and PID controller. The numerical calculations show that the ADVA and DVA are effective in suppressing the vibration and provide approximately 41.2%and 17.6%improvement,respectively,compared with the case of no DVA.The ADVA has better performance than the DVA. When the missile is subjected to follower thrust, the effect of vibration reduction is more effective than the case without follower thrust. It is feasible to reduce vibration and improve the stability of flexible missiles by means of the ADVA.

    1. Introduction

    To achieve the tactical and technical requirements of long range,high precision and high maneuverability, missiles are slender and long.The use of a light composite material and a thin wall structure impart these missiles obvious with prominent elasticity. The rigid body model does not satisfy the needs of technology development.Beal [1] investigated the stability of a flexible missile under constant and pulsating aft thrusts and then analyzed the influence of the control system on the critical thrust. Platus [2] idealized an elastic missile as a simple beam model and derived the equations of motion and the aeroelastic stability equation of a flexible spinning missile. Xie et al. [3,4] derived the aeroelastic equation of a nonspinning and nonuniform beam under follower thrust. The transverse vibration, dynamic stability and flutter characteristics of a flexible missile with constant thrust are discussed. Li et al. [5]calculated the trajectory and vibration characteristics of a spinning flexible launch vehicle. Xu and Rong et al. [6,7] considered the effects of spin, thrust, and aeroelasticity to idealize an elastic spinning missile as an unconstrained flexible rotor model and analyzed the stability and dynamic response of the flexible spinning missile under thrust. Shi et al. [8,9] investigated whether aeroelasticity affects the dynamic stability of the coning motion of a spinning missile. Hua et al. [10] investigated the effect of elastic deformation on flight dynamics.These studies mainly analyzed the stability of flexible missiles without vibration control.

    A flexible missile undergoes elastic vibration disturbed by aerodynamic force, inertia force, elastic force and follower thrust.Elastic vibration brings additional deformation of the structure,which is the feedback signal to the closed loop, resulting in an aeroservoelastic problem.The aeroservoelastic problem has a great influence on the stability of the flexible missile. The effective suppression of structural vibration becomes vital for the stability of flexible missiles.Vibration reduction control of flexible missiles has attracted the attention of many scholars.Passive control and active control are the most popular control strategies to suppress the vibration of flexible missiles. Passive control mainly uses a notch filter [11-15], and the zero point of the filter is used to cancel the high-frequency pole of the control object. The notch filter reduces the influence of elastic vibration on the control system by filtering noise rather than attenuating elastic vibration. Compared with passive control, active control has good adaptability in complex environments. Active control applies a control force, which is generated by a steering gear, vectored nozzle and piezoelectric actuators, to quickly suppress the vibration. Moreover, some advanced control theories, such as robust control [16-18] and variable structure control[19],have been investigated for the active control of elastic missiles.Liu et al.[20]put forward three attitude control schemes based on passive control, active control and compound control.

    The dynamic vibration absorber (DVA) is a well-established vibration control device that is extensively utilized for its excellent performance in terms of reliability and low cost to attenuate vibrations in rotor systems[21-25],propulsion shaft systems[26,27],and railway vehicles [28-30] and for suppressing aircraft flutter[31-33]. Ring-type absorbers are widely used for vibration suppression of rotor systems [21-23]. To optimize the parameters of the DVA, the simulated annealing algorithm combined with the particle swarm optimization algorithm [34], H∞and H2optimization[35],and fixed-points theory[36,37]have been proposed.The passive absorber works over a very narrow frequency and becomes inefficient as the frequency shifts; thus, the active dynamic vibration absorber (ADVA)was developed and introduced. The ADVA is achieved using external actuator forces to suppress vibration.Although the ADVA has been researched and applied in many industrial fields,there are no contributions in the literature focusing on the ADVA-based vibration suppression technique for flexible missiles.

    This paper focuses on the active vibration control of a flexible missile using ADVA methodology. Considering the effects of spin and thrust, the equations of motion of a missile with an ADVA are derived based on the Lagrangian approach.A ring-type ADVA based on proportional-integral-derivative (PID) control is designed to suppress the inevitable vibration of the missile.With the minimum root mean square(RMS)of the lateral displacement response of the center of mass taken as an objective function, a GA is used to optimize the parameters of the DVA and PID controller. The vibration response of the flexible missile with an ADVA is analyzed through numerical calculations.

    2. Coordinate systems

    In this study,the general motion of a flexible missile is described with three kinds of coordinate system: an earth-fixed coordinate system Axyz, a body-fixed coordinate system Ox1y1z1, and a thin disk coordinate system O′ξηζ, as shown in Fig.1.

    The earth-fixed coordinate system Axyz is the inertia coordinate system.The body-fixed coordinate system Ox1y1z1is defined under mean axis conditions, where point O is instantaneous center of mass of missile; as shown in Fig. 2, ? and ψ are the pitching angle and yaw angle, respectively. The transformation matrix L?ψ from earth-fixed coordinate system to body-fixed coordinate system is

    The coordinate system O′ξηζ is fixed to the thin disk, and the origin of coordinate O′is located in the center section of the thin disk. System rotation around the third axis and second axis is measured as θzand θη′, respectively, as shown in Fig. 3. The transformation matrix Lθη′θzfrom the body-fixed coordinate system to a thin disk coordinate system is

    3. Equations of motion

    As shown in Fig.1,the relationship between the position vectors is TVector is italic

    Fig.1. Coordinate systems of flexible missile.

    Fig. 3. Transformation from body-fixed coordinate system to disk coordinate system.

    where r and r0are the position vector of the thin disk and the missile center of mass in the earth-fixed coordinate system,respectively, and rxand u are the longitudinal position vector and transverse elastic displacement vector of a thin disk in the bodyfixed coordinate system, respectively. In addition, ω0is the rotation angular velocity of the body-fixed coordinate system relative to the earth-fixed coordinate system. The dot above the vector denotes the relative derivative of the vector with respect to time in the respective coordinate system. The vectors in the body-fixed coordinate system are

    3.1. Design of the ADVA

    The configuration of the proposed ring-type ADVA is shown in Fig.4.It is composed of a connection unit,mass unit,stiffness unit and damping unit. The connection unit is the outer ring, which is sheathed on the inner ring of the missile. Vibration and force are imposed on the missile body through the outer ring.There are eight identical sets of springs and dampers in the stiffness and damping units, respectively. Space in the inner ring is available for onboard devices.The finite element model of the flexible missile with ADVA is shown in Fig.5,where m0is the ring mass and k0and c0are the stiffness and damping of the ADVA, respectively. In the figure, the proposed ring-type ADVA is placed at the ith node. Here, uy0and uz0are the vibration displacements,Fz0is the control force,xmis the axial position of the ADVA from the tail of the missile,and d1and d2are the outer diameter and inner diameter,respectively,with d1=300 mm and d2= 290 mm. Finally, N =76 is the number of elements.

    Fig. 4. Schematic of the active dynamic vibration absorber.

    3.2. Kinetic energy, elastic potential energy and dissipative energy

    The kinetic energy of the missile and vibration absorber consists of translational kinetic energy and rotational kinetic energy.

    where lbis the length of the missile; ω=ω0+ωbis the absolute angular velocity, where ωbis the rotation angular velocity of the thin disk coordinate system relative to the body-fixed coordinate system.In addition,djbis the inertia tensor of the thin disk,and the matrix of djbin the thin disk coordinate system is denoted as

    where I is the moment of inertia of the cross section of the thin disk and ρ is the material density. Furthermore, ω0and ωbin the thin disk coordinate system are

    Fig. 5. Finite element model of the missile and active dynamic vibration absorber.

    According to the mean axis conditions [6], the kinetic energies of the missile and vibration absorber are written as

    where A is the cross-sectional area andis the missile mass. In addition,θzand θy(θη′≈θy) are the elastic rotations of the thin disk.

    The elastic deformations of the missile in terms of mode functions and generalized coordinates are as follows.

    where φi(x) and Φ are the ith displacement mode shape and displacement shape matrix,respectively.Assuming that the missile is symmetric, the ith displacement mode shape in the y and z directions is equal to φi(x). In addition, η1i(t) and η2i(t) are the corresponding generalized coordinates,and η1and η2are generalized coordinate vectors.

    In contrast to the Euler-Bernoulli beam model typically used in missile modeling, the Timoshenko beam takes into account the shear effect and rotary inertia.When the slenderness ratio is small,the Timoshenko model can be used[38].In the Timoshenko beam model, the rotation angle is expressed as

    where Ψ is the rotation angle shape matrix.

    Substituting Eqs.(15)and(16)into Eq.(14),the kinetic energy is written as

    where

    The elastic potential energy of a missile and vibration absorber is expressed as

    where EI and κGA are the bending stiffness and shear stiffness,respectively. In addition,, and

    The dissipative energy of the missile structure and vibration absorber is written as

    where c1and c2are damping coefficients. The damping matrix is

    Here,CDin terms of proportional damping is expressed as

    where ωiis the ith natural frequency, μirepresents the bending modal damping,and Miiis a diagonal element of the mass matrix M.

    3.3. Aerodynamic forces and moments

    Using quasisteady theory of the slender beam,the local effective angle of attack α and angle of sideslip β [39,40] are expressed as

    where α0and β0are the angle of attack and sideslip of the rigid missile, respectively, andandare the bending slopes.

    Here, fy(x,t) and fz(x,t) are the aerodynamic load distributions on the vehicle in the y and z directions, respectively.

    where lα(x)and lβ(x)are the lift and side force derivatives per unit length,respectively, and lα(x) = lβ(x).

    The aerodynamic forces are written as

    The virtual work δW due to virtual displacements δη1and δη2is written as

    where the generalized forces are

    The aerodynamic moments are expressed as

    where the coefficients Iiare defined in Appendix A.

    The work of the axial thrust [6] is

    where PNis the axial force.

    The virtual work of the thrust is

    where xPis the axial position of the thrust application point.Here,δuy(xP,t) and δuz(xP,t) are the virtual displacements at the thrust application point,

    The virtual work of the control force of the vibration absorber is

    where Fy0is the control force in the y direction. In addition, δuy0and δuz0are the virtual displacements of the vibration absorber,andandare the virtual displacements at point xm.

    In general, Lagrange’s equation for the generalized coordinates and forces is

    Substituting the kinetic energy in Eq. (17), potential energy in Eq.(20),dissipative energy in Eq.(22),the work of the axial thrust in Eq. (36), and the virtual work in Eq. (38) and Eq. (40) into Lagrange’s equation and defining η1and η2as the generalized coordinates,the elastic vibration equations of the missile are found to be

    According to Lagrange’s equations in the floating coordinate system [41,42], the angular velocity equations are obtained as

    where Mxis the aerodynamic moment of the longitudinal direction of the missile.

    The translational equations are expressed as

    where Fxis the force in the x direction.

    Assuming that vxis taken as a constant, coupling items and higher-order nonlinear terms are ignored. Eqs. (42)-(51)are simplified to obtain the longitudinal equations of motion. The coupled dynamic equations of the rigid body modes and elastic modes can be expressed as

    where x1is the axial distance of the ADVA from the center of mass.

    Eqs. (52)-(55) can be written in state space form as

    where I is the unit matrix;the coefficients of matrix A are defined in Appendix A.

    Fig. 6. PID controller for the flexible missile.

    4. Design of the PID controller

    4.1. PID controller

    The PID controller is the most widely used method in vibration control. Gani et al. [43] and Khot et al. [44] researched the active vibration control of a cantilever beam using a PID controller.Rubio et al.[45]designed a PID controller to decrease the vibration effects of a robotic arm,and Metin et al.[46]controlled vertical rail vehicle vibrations using a parameter adaptive PID controller. A schematic diagram of the PID controller for a flexible missile is shown in Fig.6.GA is used to adjust the three coefficients of PID.The PID controller focuses on the minimization of the control error e = r- y, the control output u is converted into the vibration absorber, and the vibration absorber generates a control force to suppress the vibration of the flexible missile. The control output u is

    where kpis the proportional gain,kiis the derivative gain,and kdis the integral gain.

    4.2. Objective function

    PID tuning is a difficult problem, even though there are only three parameters. GAs [47-49] have been widely used in PID tuning.The RMS of the lateral displacement response of the vehicle is taken as the objective function, whose smallest value serves as a reference for the fittest individuals in the minimization problem.The objective function can be expressed as

    where n is the number of time steps and uz(x,tj) is the lateral displacement response of the missile in the jth time step. The fitness function of the GA is the same as the objective function.

    5. Numerical examples

    To verify the validity of the ADVA,a flexible missile is analyzed.In this section,the parameter of the flexible missile with a fineness ratio of 25 is given as Table 1 and Figs.7-9,λBis the fineness ratio.The first two mode shapes are illustrated in Fig. 10. The lateral aerodynamic coefficient derivative distribution along the longitudinal axis of the missile is shown in Fig.11.

    Fig. 7. Mass distribution of the missile along the longitudinal axis.

    Fig. 8. Rotational inertia distribution of the missile along the longitudinal axis.

    Fig. 9. Stiffness distribution of the missile along the longitudinal axis.

    5.1. Simulation of the ADVA without follower thrust

    The parameters of the DVA and PID controller are obtained by the GA.The parameter settings of the GA are as follows:population size: 100, crossover rate: 0.4, mutation: 0.01, and generation number: 100. The range of the initial population is xm∈[1,76],xm∈N, m0∈[0.1, 10], c0∈[0.1, 400], and k0∈[0.1, 4 × 104]. The optimized parameters of the DVA are xm=76,m0=9.9,c0=399,and k0= 36394. The best position of the DVA is the nose.

    With these fixed DVA parameters, the PID parameters are optimized by the GA.The PID parameter range is kp,ki,kd∈[0,3000],and the optimum values of the PID parameters are kp=2818,ki=2476, and kd= 2999.

    Under three different conditions, namely, without control (no DVA), with passive control (DVA) and with active control (ADVA),the dynamic response without follower thrust is analyzed. The numerical results are shown in Figs. 12-14 and Table 2. The amplitude of the pitch and attack angle with the ADVA decreases gradually;when the settling time is 2 s,the DVA has little effect on the pitch and attack angle, as shown in Fig. 12. The lateral displacement amplitude of the center of mass with the DVA and ADVA is smaller than that of no DVA in Fig.13(a). The ADVA and DVA are effective in suppressing the vibration by approximately 41.2% and 17.6%, respectively, compared with no DVA as shown in Table 2; although the maximum amplitude of the ring position is increased, the settle time is shortened as shown in Fig. 13(b).Compared with the other two configurations, the lateral displacement with the ADVA is the smallest,as shown in Fig.14.

    5.2. Simulation of the ADVA with follower thrust

    The flexible missile in the active stage is affected by follower thrust, which causes axial compression of the body structure, reduces the stiffness of the structure, and changes the vibration characteristics of the system. Therefore, it is necessary to analyze the influence of follower thrust on the vibration characteristics of the flexible missile.

    When the follower thrust is 6×105N,the numerical results are as shown in Figs.15-17 and Table 2.The amplitude of the pitch and attack angle become larger, the settle time becomes longer as shown in Fig. 15, and the lateral displacement amplitude of the center of mass increases as shown in Fig. 16(a). The effect of follower thrust on the elastic vibration is substantial. The ADVA and DVA are effective,suppressing the vibration by approximately 47.6%and 23.8%,respectively,compared with no DVA as shown in Table 2,and the effect of vibration reduction is more effective than that without follower thrust. The amplitude of the ring position increases under thrust as shown in Fig. 16(b) and Table 2. Fig. 17 depicts the change in the control force under different follower thrusts; as the thrust increases, the control force gradually decreases.

    Fig.10. The first two mode shapes of the missile.

    Fig.11. Lateral aerodynamic coefficient derivative distribution along the longitudinal axis of the missile.

    Table 2 The RMS of lateral displacement under different working conditions.

    6. Conclusions

    This paper investigates the feasibility of using an ADVA for active vibration control of a flexible missile system through simulation. A ring-type ADVA based on PID control is first designed to suppress the otherwise inevitable vibration of the missile. The motion equations of the flexible missile with the ADVA are derived based on the Lagrangian approach. DVA and PID controller parameters are obtained by a GA.According to the comparison of the numerical simulation results of the flexible missile, the following conclusions can be drawn:

    1) The DVA is effective in suppressing the vibration,and the ADVA performs better than the DVA.

    Fig.12. Displacement response of the missile at P = 0N.

    Fig.13. Displacement response of the missile at P = 0N.

    Fig.14. Lateral displacement along the longitudinal axis of the missile at t = 4s.

    Fig.15. Displacement response of the missile at P = 6× 105N.

    Fig.16. Displacement response of the missile at P = 6× 105N.

    Fig.17. Control force under different thrusts.

    2) Following thrust exacerbates the elastic vibrations; the amplitude of the pitch and attack angle with follower thrust become larger, the settle time becomes longer, and the vibration reduction effect of the ADVA and DVA is more effective than that without follower thrust.

    3) As the follower thrust increases, the control force gradually decreases.

    Funding

    This work was supported by the National Natural Science Foundation of China (10972033).

    Declaration of competing interest

    The authors declare that there is no conflict of interests regarding the publication of this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China.

    Appendix A

    1. The aerodynamic coefficients and integral coefficients are

    2. Coefficients of matrix A

    婷婷色综合www| av一本久久久久| 日产精品乱码卡一卡2卡三| 国产精品一区二区在线观看99| 久久av网站| 乱码一卡2卡4卡精品| 亚洲欧美一区二区三区国产| 美女cb高潮喷水在线观看| av在线播放精品| 免费av中文字幕在线| 日韩中字成人| 亚洲第一区二区三区不卡| h视频一区二区三区| 一级av片app| 丝袜脚勾引网站| videossex国产| 久久久久久久精品精品| 亚州av有码| 观看av在线不卡| 免费av不卡在线播放| 99久久精品一区二区三区| 99热这里只有是精品在线观看| 日日摸夜夜添夜夜爱| 日韩三级伦理在线观看| 久久久久久久久久久久大奶| 成年人免费黄色播放视频 | 亚洲av国产av综合av卡| 男女免费视频国产| 人妻夜夜爽99麻豆av| 国产男女超爽视频在线观看| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产专区5o| 人人妻人人添人人爽欧美一区卜| 亚洲美女视频黄频| 国产真实伦视频高清在线观看| 夜夜看夜夜爽夜夜摸| 成人亚洲精品一区在线观看| 久久毛片免费看一区二区三区| 夜夜爽夜夜爽视频| 久久精品国产亚洲av天美| 黄色视频在线播放观看不卡| 亚洲,一卡二卡三卡| 精品一区在线观看国产| 国产精品成人在线| 精品少妇黑人巨大在线播放| 秋霞伦理黄片| 一级毛片黄色毛片免费观看视频| 另类亚洲欧美激情| 成人美女网站在线观看视频| 极品教师在线视频| 国产无遮挡羞羞视频在线观看| 男人和女人高潮做爰伦理| 高清不卡的av网站| 久久久国产一区二区| 中国三级夫妇交换| 一级毛片 在线播放| av播播在线观看一区| 亚洲国产精品一区二区三区在线| 久久鲁丝午夜福利片| 日日摸夜夜添夜夜添av毛片| 久热久热在线精品观看| 麻豆成人午夜福利视频| 精品卡一卡二卡四卡免费| 精品少妇久久久久久888优播| 亚洲精品久久午夜乱码| 大片电影免费在线观看免费| 久久久久久久久大av| 极品人妻少妇av视频| 日本av免费视频播放| 日韩一本色道免费dvd| 亚洲国产精品一区二区三区在线| 99精国产麻豆久久婷婷| 欧美激情国产日韩精品一区| 99国产精品免费福利视频| 中文字幕久久专区| av黄色大香蕉| 亚洲四区av| 日本av手机在线免费观看| 日韩大片免费观看网站| 精品国产乱码久久久久久小说| 国产极品天堂在线| 国内少妇人妻偷人精品xxx网站| 一级毛片黄色毛片免费观看视频| 欧美区成人在线视频| 午夜福利免费观看在线| 美女高潮到喷水免费观看| 高清视频免费观看一区二区| 久久天堂一区二区三区四区| 亚洲av美国av| 蜜桃在线观看..| 久久亚洲精品不卡| 亚洲精品久久成人aⅴ小说| 国产精品久久久av美女十八| 纯流量卡能插随身wifi吗| 婷婷色av中文字幕| 亚洲熟女毛片儿| 精品国产超薄肉色丝袜足j| 另类精品久久| 久久久久国产精品人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲欧美日韩高清在线视频 | 天天操日日干夜夜撸| 久久亚洲国产成人精品v| 欧美av亚洲av综合av国产av| 精品少妇一区二区三区视频日本电影| 亚洲精品国产av成人精品| 欧美性长视频在线观看| 又黄又粗又硬又大视频| 欧美日韩国产mv在线观看视频| 国产成人精品无人区| 免费女性裸体啪啪无遮挡网站| 叶爱在线成人免费视频播放| 国产精品.久久久| 一个人免费在线观看的高清视频 | 69av精品久久久久久 | 日韩视频一区二区在线观看| 五月开心婷婷网| 国产在线免费精品| 国产欧美日韩精品亚洲av| 男女边摸边吃奶| 日本一区二区免费在线视频| 伦理电影免费视频| 王馨瑶露胸无遮挡在线观看| 亚洲三区欧美一区| 久热这里只有精品99| 日韩熟女老妇一区二区性免费视频| 亚洲人成77777在线视频| cao死你这个sao货| 99香蕉大伊视频| 777米奇影视久久| 国产成人免费无遮挡视频| 久久久久久久精品精品| xxxhd国产人妻xxx| 国精品久久久久久国模美| 美女福利国产在线| av不卡在线播放| 老熟妇乱子伦视频在线观看 | 欧美亚洲日本最大视频资源| 丰满饥渴人妻一区二区三| 国产精品免费视频内射| www日本在线高清视频| 天天躁日日躁夜夜躁夜夜| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲av成人不卡在线观看播放网 | 91国产中文字幕| 亚洲五月婷婷丁香| 欧美成狂野欧美在线观看| a在线观看视频网站| 国产成人影院久久av| 欧美日本中文国产一区发布| 欧美av亚洲av综合av国产av| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美软件| 亚洲avbb在线观看| av网站免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| 视频区欧美日本亚洲| 日本黄色日本黄色录像| 久久av网站| 亚洲成人国产一区在线观看| 在线永久观看黄色视频| 日韩欧美一区视频在线观看| 欧美变态另类bdsm刘玥| 亚洲成人国产一区在线观看| 人妻一区二区av| 中文字幕人妻丝袜一区二区| 欧美黑人欧美精品刺激| 99精品欧美一区二区三区四区| 美女高潮喷水抽搐中文字幕| 大香蕉久久网| 国产精品.久久久| 叶爱在线成人免费视频播放| 交换朋友夫妻互换小说| 亚洲人成电影观看| 如日韩欧美国产精品一区二区三区| 丝袜人妻中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产熟女午夜一区二区三区| 性少妇av在线| 一区二区av电影网| 婷婷丁香在线五月| 亚洲av电影在线观看一区二区三区| 亚洲精品久久午夜乱码| 搡老熟女国产l中国老女人| 夜夜骑夜夜射夜夜干| 999久久久精品免费观看国产| 一级黄色大片毛片| 在线亚洲精品国产二区图片欧美| 乱人伦中国视频| 精品一品国产午夜福利视频| 亚洲成av片中文字幕在线观看| 大香蕉久久网| 69av精品久久久久久 | 午夜福利,免费看| 成人免费观看视频高清| 亚洲五月婷婷丁香| 免费av中文字幕在线| 亚洲成人手机| 99国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 成人av一区二区三区在线看 | 国产av又大| 久久久久久亚洲精品国产蜜桃av| 久久热在线av| 国产成人精品久久二区二区免费| 国产一区二区在线观看av| 成人国产av品久久久| 久久精品人人爽人人爽视色| 亚洲精品中文字幕一二三四区 | 日本av免费视频播放| 女人精品久久久久毛片| 99九九在线精品视频| 一级黄色大片毛片| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 热99久久久久精品小说推荐| 黄色视频,在线免费观看| 亚洲色图 男人天堂 中文字幕| 美女扒开内裤让男人捅视频| 丰满迷人的少妇在线观看| 黑人操中国人逼视频| av免费在线观看网站| 啦啦啦啦在线视频资源| 久久久久久人人人人人| 97在线人人人人妻| 天天影视国产精品| 超碰97精品在线观看| 亚洲自偷自拍图片 自拍| 9色porny在线观看| 桃花免费在线播放| 丝袜人妻中文字幕| 男女之事视频高清在线观看| 99re6热这里在线精品视频| 日本91视频免费播放| 亚洲中文字幕日韩| 老司机深夜福利视频在线观看 | 老熟妇乱子伦视频在线观看 | 日日夜夜操网爽| 一级片'在线观看视频| 如日韩欧美国产精品一区二区三区| 99精国产麻豆久久婷婷| 99国产综合亚洲精品| 最新的欧美精品一区二区| bbb黄色大片| 多毛熟女@视频| 久久 成人 亚洲| 成年人午夜在线观看视频| 激情视频va一区二区三区| videos熟女内射| 美女高潮喷水抽搐中文字幕| 黄色视频,在线免费观看| 亚洲激情五月婷婷啪啪| 免费在线观看黄色视频的| 法律面前人人平等表现在哪些方面 | 久久性视频一级片| 中文字幕色久视频| 高潮久久久久久久久久久不卡| 又黄又粗又硬又大视频| 国产精品国产三级国产专区5o| 伊人久久大香线蕉亚洲五| 欧美黑人精品巨大| 成人亚洲精品一区在线观看| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 亚洲欧洲精品一区二区精品久久久| 一级毛片精品| 国产精品1区2区在线观看. | 国产主播在线观看一区二区| 国产在线免费精品| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 国产亚洲欧美精品永久| av在线播放精品| 男人爽女人下面视频在线观看| 999精品在线视频| 国产成人系列免费观看| 91精品三级在线观看| 欧美精品人与动牲交sv欧美| 18禁黄网站禁片午夜丰满| 欧美国产精品一级二级三级| 亚洲av片天天在线观看| av免费在线观看网站| 亚洲少妇的诱惑av| 亚洲成av片中文字幕在线观看| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 爱豆传媒免费全集在线观看| 亚洲精品av麻豆狂野| 亚洲三区欧美一区| 欧美97在线视频| 午夜福利免费观看在线| 欧美亚洲 丝袜 人妻 在线| 日韩中文字幕视频在线看片| 美女福利国产在线| 婷婷成人精品国产| 亚洲精品美女久久久久99蜜臀| 18在线观看网站| xxxhd国产人妻xxx| 一级a爱视频在线免费观看| 精品人妻一区二区三区麻豆| 中文字幕人妻丝袜一区二区| 69av精品久久久久久 | 嫁个100分男人电影在线观看| 大码成人一级视频| 中文字幕av电影在线播放| 一二三四社区在线视频社区8| 国产精品久久久人人做人人爽| 久久女婷五月综合色啪小说| 免费观看a级毛片全部| 亚洲精品国产色婷婷电影| 国产老妇伦熟女老妇高清| 老熟女久久久| 久久精品人人爽人人爽视色| 国产精品偷伦视频观看了| 精品一区在线观看国产| 久久久久网色| 精品亚洲乱码少妇综合久久| 国产精品九九99| 欧美成狂野欧美在线观看| 国产精品 欧美亚洲| a级毛片黄视频| 欧美精品高潮呻吟av久久| 人人妻人人澡人人爽人人夜夜| 免费人妻精品一区二区三区视频| av一本久久久久| 欧美精品亚洲一区二区| 免费少妇av软件| 国产有黄有色有爽视频| 亚洲免费av在线视频| 大片免费播放器 马上看| 女人被躁到高潮嗷嗷叫费观| 亚洲视频免费观看视频| 肉色欧美久久久久久久蜜桃| svipshipincom国产片| 午夜精品国产一区二区电影| 成年人免费黄色播放视频| 亚洲熟女精品中文字幕| 久久热在线av| 麻豆乱淫一区二区| 在线永久观看黄色视频| 久久天躁狠狠躁夜夜2o2o| 欧美国产精品一级二级三级| 亚洲专区字幕在线| tube8黄色片| 日韩欧美免费精品| 老司机午夜福利在线观看视频 | 亚洲精品日韩在线中文字幕| 国产97色在线日韩免费| 色播在线永久视频| 精品亚洲成a人片在线观看| 黄频高清免费视频| 久久这里只有精品19| 美女扒开内裤让男人捅视频| 亚洲国产精品成人久久小说| 久久精品国产a三级三级三级| 欧美97在线视频| 国内毛片毛片毛片毛片毛片| 各种免费的搞黄视频| 老熟妇乱子伦视频在线观看 | 亚洲av日韩精品久久久久久密| 男人操女人黄网站| 啦啦啦中文免费视频观看日本| 久久久久久久国产电影| av视频免费观看在线观看| 超色免费av| 午夜免费鲁丝| 每晚都被弄得嗷嗷叫到高潮| 国产欧美亚洲国产| 欧美日韩福利视频一区二区| 啦啦啦在线免费观看视频4| 男人舔女人的私密视频| 女性生殖器流出的白浆| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品av麻豆狂野| 91字幕亚洲| 黑丝袜美女国产一区| 老司机午夜十八禁免费视频| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| 国产伦人伦偷精品视频| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 国产精品二区激情视频| 欧美日韩福利视频一区二区| 亚洲欧美一区二区三区久久| 日本五十路高清| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| 91九色精品人成在线观看| 亚洲少妇的诱惑av| 成年美女黄网站色视频大全免费| 日本猛色少妇xxxxx猛交久久| 侵犯人妻中文字幕一二三四区| 日韩视频在线欧美| 久久天躁狠狠躁夜夜2o2o| 搡老乐熟女国产| 999久久久精品免费观看国产| 高清视频免费观看一区二区| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区mp4| 热99久久久久精品小说推荐| 欧美日韩视频精品一区| 脱女人内裤的视频| 欧美+亚洲+日韩+国产| 成人亚洲精品一区在线观看| 夜夜夜夜夜久久久久| 老司机深夜福利视频在线观看 | 汤姆久久久久久久影院中文字幕| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 97精品久久久久久久久久精品| 国产欧美日韩精品亚洲av| 性少妇av在线| 国产精品一区二区精品视频观看| 精品少妇黑人巨大在线播放| 桃花免费在线播放| 老司机在亚洲福利影院| 深夜精品福利| 国产男女内射视频| 少妇粗大呻吟视频| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 欧美精品高潮呻吟av久久| 中国美女看黄片| 国产99久久九九免费精品| 精品亚洲成国产av| 男女下面插进去视频免费观看| 欧美大码av| 美女视频免费永久观看网站| 国产成人精品在线电影| 久久99一区二区三区| 又大又爽又粗| 丁香六月欧美| 精品亚洲乱码少妇综合久久| 精品福利永久在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面 | 一级黄色大片毛片| 欧美激情极品国产一区二区三区| 免费不卡黄色视频| 九色亚洲精品在线播放| 19禁男女啪啪无遮挡网站| 老司机午夜福利在线观看视频 | 成年女人毛片免费观看观看9 | 他把我摸到了高潮在线观看 | 欧美成狂野欧美在线观看| 亚洲欧美一区二区三区久久| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 美国免费a级毛片| 欧美激情 高清一区二区三区| 国产麻豆69| 亚洲精品第二区| 午夜福利免费观看在线| 国产精品欧美亚洲77777| 成年av动漫网址| 男女边摸边吃奶| 中文字幕高清在线视频| 欧美黑人欧美精品刺激| 亚洲国产欧美在线一区| 乱人伦中国视频| 后天国语完整版免费观看| 久久精品国产综合久久久| 亚洲视频免费观看视频| 日韩制服骚丝袜av| 国产无遮挡羞羞视频在线观看| 电影成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 免费女性裸体啪啪无遮挡网站| 久久国产精品人妻蜜桃| 极品少妇高潮喷水抽搐| 国产黄色免费在线视频| 美国免费a级毛片| 久久亚洲国产成人精品v| 夜夜夜夜夜久久久久| 建设人人有责人人尽责人人享有的| 性高湖久久久久久久久免费观看| 亚洲综合色网址| 老熟妇仑乱视频hdxx| 在线看a的网站| 国产99久久九九免费精品| 啦啦啦免费观看视频1| 亚洲色图 男人天堂 中文字幕| 老司机亚洲免费影院| 人人妻人人爽人人添夜夜欢视频| 爱豆传媒免费全集在线观看| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| 一区二区三区四区激情视频| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 丝袜脚勾引网站| 一个人免费在线观看的高清视频 | 一本综合久久免费| 色94色欧美一区二区| 精品国产国语对白av| 色94色欧美一区二区| 日日摸夜夜添夜夜添小说| 精品亚洲成国产av| 亚洲 国产 在线| 久久精品久久久久久噜噜老黄| 精品人妻1区二区| 亚洲人成电影免费在线| 国产精品免费视频内射| 国产精品偷伦视频观看了| 啦啦啦啦在线视频资源| 一区二区三区精品91| 久热爱精品视频在线9| 精品少妇黑人巨大在线播放| 欧美日韩成人在线一区二区| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 窝窝影院91人妻| 国产精品自产拍在线观看55亚洲 | 性高湖久久久久久久久免费观看| 搡老熟女国产l中国老女人| 久久中文字幕一级| 欧美国产精品va在线观看不卡| 亚洲黑人精品在线| 亚洲欧美清纯卡通| av有码第一页| 午夜福利视频精品| 中文字幕人妻丝袜制服| av不卡在线播放| 天天操日日干夜夜撸| 又黄又粗又硬又大视频| 国产成人精品无人区| 日韩 亚洲 欧美在线| 国产黄色免费在线视频| 妹子高潮喷水视频| 久久性视频一级片| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 国产成人欧美| 99久久国产精品久久久| 涩涩av久久男人的天堂| 亚洲国产av新网站| 国产亚洲精品第一综合不卡| 亚洲第一欧美日韩一区二区三区 | 国产深夜福利视频在线观看| 精品久久久久久电影网| 国产欧美日韩一区二区三区在线| 亚洲国产av新网站| 新久久久久国产一级毛片| 可以免费在线观看a视频的电影网站| 大片电影免费在线观看免费| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 99国产极品粉嫩在线观看| 国产97色在线日韩免费| 97在线人人人人妻| 黄色片一级片一级黄色片| 91字幕亚洲| 香蕉国产在线看| 午夜两性在线视频| 视频在线观看一区二区三区| 欧美激情久久久久久爽电影 | 亚洲avbb在线观看| 天天影视国产精品| 动漫黄色视频在线观看| 久久久久久久久久久久大奶| 日韩 亚洲 欧美在线| 黄片大片在线免费观看| 超碰97精品在线观看| 91国产中文字幕| 国产无遮挡羞羞视频在线观看| 国产成人影院久久av| 国产精品1区2区在线观看. | 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 热99re8久久精品国产| 亚洲专区中文字幕在线| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 中文欧美无线码| 国产亚洲一区二区精品| 亚洲激情五月婷婷啪啪| 久热爱精品视频在线9| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 最近最新免费中文字幕在线| 水蜜桃什么品种好| 亚洲av欧美aⅴ国产| 欧美日韩av久久| 国产成人精品无人区| 9热在线视频观看99| 人成视频在线观看免费观看| 国产精品熟女久久久久浪| 日本a在线网址| 欧美 亚洲 国产 日韩一| 免费观看av网站的网址| 99国产精品一区二区三区| 老鸭窝网址在线观看| 热re99久久精品国产66热6| 国产成人影院久久av| 午夜两性在线视频| 久久精品亚洲av国产电影网| 久久久久久免费高清国产稀缺| 国产色视频综合| 热re99久久精品国产66热6| 亚洲美女黄色视频免费看| 妹子高潮喷水视频| 老司机午夜十八禁免费视频| 国产在线观看jvid| 伦理电影免费视频| 日本黄色日本黄色录像| 咕卡用的链子| 欧美xxⅹ黑人| 丝袜脚勾引网站|