• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis for the residual prestress of composite barrel for railgun with tension winding

    2020-07-02 03:17:28DongmeiYinBaomingLiHongchengXiao
    Defence Technology 2020年4期

    Dong-mei Yin, Bao-ming Li, Hong-cheng Xiao

    National Key Laboratory of Transient Physics, Nanjing University of Science & Technology, Nanjing, 210094, China

    Keywords:Railgun Barrel Composite materials Filament winding Winding tension Residual prestress

    ABSTRACT Based on the elastic theory of cylindrical shells and the theory of composite laminates, a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre pretension is considered in this model. A three dimensional numerical simulation for the residual prestress in the railgun barrel is carried out, by combining the temperature differential method with the element birth and death technology.The results obtained by the two methods are compared.It reveals that the distribution trends of residual prestress are consistent. And the difference for residual prestress in the filament wound composite housing of barrel is relatively small. The same finite element method is used to analysis the residual prestress in the non-simplified composite barrels for railgun,which are under different control modes of winding tension.The results mean that the residual prestress in barrel will increase while the taper coefficient for winding is decreasing. Therefore, the sealing performance in bore is improved, but the strength of the filament wound composite housing drops. In addition,the axial and circumferential residual prestress in the filament wound composite housing with constant torque winding are close to the ones in iso-stress design for barrel.

    1. Introduction

    In order to meet the needs of lightweight and motility of railgun in the actual combat, filament wound composite barrel is a good choice in the design of railgun barrel, which has high specific stiffness and strength and design flexibility.However,cure reaction and winding tension in the manufacturing process,especially with the high tension winding technology, may cause initial residual stress in the winding products [1-4]. It will affect the mechanical properties of the winding products. Therefore many researchers have developed a series of methods, such as theoretical analysis methods [5-7], numerical simulation methods [8-11] and experimental technology[12-15],to investigate on the winding tension and the residual prestress caused by it for different winding products. And the pretension winding technology adopted in the manufacturing process of the filament wound composite barrel for railgun can increase the fiber volume fraction and arrange the fiber in orderly for the barrel.Also it can produce prestress in barrel[16],which can improve the stiffness and seal performance for the barrel bore.But the research for it is less reported.Therefore,the residual prestress caused only by winding tension in the filament wound composite barrel for railgun will be investigated in this paper.

    In addition, if the interior structures of winding layers can be considered as the liner,rails and insulators in bore form the liner of filament wound composite barrel for railgun. It is different from most winding products’ liners with one kind of homogeneous material,which are often winded in circumferential direction with one kind fiber. And the composite barrels of railguns are winded with a variety of fiber types based on consideration of insulation and mechanical properties. These factors may make the residual prestress in the barrel more complex.Referring to the design theory of filament winding pressure vessel, a theoretical model for the residual prestress in the round composite barrel for railgun will be established in this work, which is based on the elastic theory of cylindrical shells and the theory of composite laminates. Through joining the temperature differential method and the element birth and death technology,a finite element numerical simulation will be done to analyze the residual prestress in the railgun barrel,which is leaded only by winding tension. Furthermore, the residual prestress in the composite barrels for railgun which are under different control modes of winding tension will be analyzed by the 3D numerical simulation.

    2. Theoretical model of the residual prestress in composite barrel for railgun

    The filament wound composite barrel of railgun is assumed to behave as a hybrid filament wound cylinder with an isotropic liner.The structural coordinate system(cylindrical coordinate system:θz-r) for the barrel is defined by rotating the material coordinate system (1-2-3) for the filament wound composite housing with winding angle α around 3-axis. And the 3-axis is paralleling to raxis.Here r,θ and z are denoted as radial,circumferential and axial coordinates.And 1-axis is along the fiber direction.The cylinder is composed of n layers,and the innermost layer is its liner.According to the composite laminate theory, the constitutive equation in the structural coordinate system for the kth filament wound layer is given as follows [17-19]:

    where Qij(i,j = 1,2,3) are elastic constants, and k = 1,2, …,n-1.

    If the radial, circumferential and axial displacements can be considered as [18,19]:

    Based on the axisymmetric assumptions,it can be deduced from Eqs. (1) and (2):

    Then the equilibrium equations for the kth layer are simplified as:

    And the strains in the kth can be expressed as:

    Thus,from Eqs.(1)-(5),the radial displacement of kth layer can be written as:

    For the winding layers:

    For the liner:

    The interfaces for the adjacent layers in barrel should satisfy the continuity conditions:

    The normal stresses in the inner surface of barrel and the outer surface of the kth layer are:

    In addition, the conditions of equilibrium of axial forces and torque are shown in Eqs. (10) and (11) respectively:

    After that, the stress and strain in every layer which are inside the newly winding layer can be obtained by Eqs.(1)and(5)-(7).At last, after all winding have been completed, the residual prestress and prestrain in each layer of barrel can be got by linear superposition.

    3. Numerical simulation model of the residual prestress in composite barrel for railgun

    Fig.1. The structure of railgun barrel.

    A round railgun barrel is adopted in this work [20], and its geometric structure is shown in Fig. 1(a). It includes two copper rails, ceramic insulators and filament wound composite housing(glass fiber layers and carbon fiber layers). The radius of bore is 25 mm, the length of barrel L is 4 m, and the thickness of carbon fiber layers is 25 mm. Both thicknesses of glass fiber layers 1 and glass fiber layers 2 are 5 mm.And the winding angles in fiber layers are±45°.The copper rails and Ceramic insulators are considered as isotropic materials. Material properties for copper rails are:density = 8900.00 kg/m3, Poisson’s ratio = 0.31, yield stress= 320.00 MPa,Young’s modulus = 117.00 GPa.And the material parameters for ceramic insulator are: density = 3896.00 kg/m3, Poisson’s ratio = 0.218, Young’s modulus = 293.15 GPa. The filament wound composite housing are composed by carbon fiber layers and glass fiber layers, and their orthotropic material parameters are provided in Table 1.

    The bonds among rails, insulators in bore and each winding layer are assumed to be perfect. A 3D finite element model of the filament wound composite barrel for railgun is built in the software ANSYS,as exhibited in Fig.1(b).The rails and insulators in bore are modeled with isotropic solid elements. While the filament wound composite housing is meshed with laminated elements,12 layers elements along its radial direction. And each laminated element has four layers.The liner of barrel is comprised of rails and ceramic insulators.All degrees of freedom on the two end faces of liner are restrained.

    3.1. Loading of the winding tension

    The effects of thermal loads in winding process, such as curing process, are supposed to be not considered. After the equivalent thermal expansion coefficient is defined for each layer, winding pretension in fiber can be modeled by loading certain temperature.Here, we assume that the stress of 1 MPa generated in the fiber direction with the change of temperature of 1°C. And the loading temperature(ΔT)can be gained according to the initial prestress in the fiber bundles.

    Table 1 Material parameters of filament wound layers.

    Thus the equivalent thermal expansion coefficients in all directions for each winding layer can be calculated:

    where σiand Eiare initial fiber prestresses and elastic moduli in all directions for each winding layer, respectively.

    3.2. Simulation for the winding process

    Owing to the great number of layers,the finite element model is set up in one time to simulate the winding process by using the element birth and death technology. The birth and death of element will be achieved by modifying the element stiffness.If the element stiffness is multiplied with a small coefficient, the parameters of loading,mass and damping of this element are all set to zero.It means that this element is killed.Once the death element is activated, the above parameters for this element return to the original ones. When the jth is winding, the layers (≤j) are all activated,and the layers(>j)are all killed.This method can be used to simulate the jth layer winding undisturbed by the subsequent winding layers. And when the (j+1)th layer is activated to be calculated,it can start with the outer diameter of the wrapped layer j rather than the one modeled at the beginning for the jth layer.

    4. Calculation and discussion

    In order to verify the results’ reliability, the liner in the above barrel model is assumed to be simplified as a copper liner,and the constant tension winding method is adopted in this model. The results gained from the theoretical model and numerical simulation model are compared with each other. The distributions of all direction components of residual prestress through the wall thickness for this simplified barrel model are shown in Fig. 2. It reveals that the distribution trends of residual prestress obtained by two methods are consistent,and the stresses in all directions of liner are mainly compressive stresses. Stresses in the interfaces among different materials appear various degrees of fluctuation,especially in the interfaces of liner and filament wound layers, inner glass fiber layers and carbon fiber layers.The differences of the stresses’ values in the liners for two kinds of models are relatively bigger,especially for the axial stress component.It is influenced by several factors,such as the constraints on the end faces of liner for the numerical simulation model, and theory of thin walled cylindrical shell for the theoretical model. But the distributions of residual prestress in the filament winding layers is close, so the numerical model is reliable to some extent, especially for the analysis of the residual prestress of the filament wound composite housing.

    Fig.2. Distributions of Residual prestress through the wall thickness for the simplified barrel model. (Method 1-Finite element method, Method 2- theoretical model).

    Then this numerical simulation method is applied to the simulation of residual prestress in the non-simplified filament wound composite barrel for railgun in Fig. 1(a). Three common winding tension control models,constant tension,constant torque and taper tension,are employed in the railgun’s barrels.In addition,with the taper tension winding, the initial fiber prestress along the fiber direction for the kth layer,which is also equal to the initial prestress in the fiber bundle listed in Eqs. (12) and (13), can be found as follows [6,21]:

    According to Eq.(16),if β=0,the winding tension control mode is simplified to the constant tension mode. While β = 1, the one turns into the constant torque mode. Furthermore, other taper tension winding modes(β=0.25,0.75)are also used in this work.The distributions of initial fiber prestress in fiber direction through the wall thickness for the filament wound layers with different β are given in Fig. 3.

    The distributions of residual stress caused by different winding tension control modes in the filament wound composite barrel for railgun are gained by the numerical simulation. Since the barrel liner consists of two different materials, two paths are defined on the section of barrel, which is located on the half length of barrel.Path oS1 is along the oy-axis and through the middle of the rail,while path oS2 is along the ox-axis and through the middle of the ceramic insulator, as shown in Fig.1(a). The variations of residual prestress components in all directions through the wall thickness of barrel for these two paths are displayed in Fig.4 and Fig.5.It can be also observed that the stresses in all directions of liner are mainly compressive stresses. And the stresses in the interfaces among different materials also present various degrees of fluctuation,especially in the interfaces of liner and filament wound composite housing, inner glass fiber layers and carbon fiber layers. With the taper coefficient increasing, the level of residual stress in barrel drops. It is because that the decreasing amplitude of winding tension enlarges gradually, which can be seen in Fig. 3. While β = 0(constant tension mode), the circumferential and axial residual prestresses become greater from the inner layer to the outer layer of the filament wound layers,obviously in the carbon fiber layers.It presents a feature of “internal looseness and external tightness”.And when β = 1 (constant torque mode), the circumferential and axial residual prestresses in the filament wound layers are relatively more uniform,especially in the carbon fiber layers.It is closer to the requirement of iso-stress design for filament winding.

    Fig. 3. Distributions of initial fiber prestress in fiber direction through the wall thickness for the filament wound layers.

    Fig. 4. Variations of residual prestress in all directions through the wall thickness of barrel for path oS1.

    Fig. 5. Variations of residual prestress in all directions through the wall thickness of barrel for path oS2.

    The residual prestress contours for all directions in railgun barrel, which is under the constant torque mode, are exhibited in Fig. 6. Clearly, residual stress in liner is variable along the circumference. It is due to the fact that the liner is made up of different materials which distributing along the circumference.It is also can be observed in Figs. 4 and 5. Therefore, there are differences for residual prestresses on the path oS1 and oS2.In which the axial and circumferential residual prestresses in rail liner are bigger than the ones in ceramic liner.But the differences for residual prestresses in filament wound layers on the two paths are relatively smaller.

    Moreover, the electromagnetic load in the railgun barrel is incomplete axial symmetry. When the electromagnetic load is greater, the contact interfaces between the rails and ceramic insulators will appear separation because of larger normal stress and shear stress on the interfaces [20]. And it will cause the failure of bore seal. Here, a constant electromagnetic pressure (200Mpa) is assumed to be loaded on the inner sides of rails.Then the path AB is defined on the contact plane(in circumference 60°)along the radial direction, as depicted in Fig. 1(a). And it is also on the section of barrel, which is located on the half length of barrel.

    The normal stress and shear stress on the path AB for the barrel only under the electromagnetic load, and the residual prestress in normal and shear direction on the path AB for the barrel after filament winding, are compared in Fig. 7. It presents that the normal stress on the contact interface for the liner only with the electromagnetic pressure is mainly tensile tress.And after filament winding with fiber prestress,the normal residual prestress on this contact interface is compressive stress.So the normal tensile stress leaded by the electromagnetic load can be weakened in a fiber prestress winding barrel during its launching. Similarly, the directions of the shear stresses on the contact interface under these two loading conditions are opposite to each other. Hence, it can enhance the bond strength for the interfaces and slow the separation of contact interfaces.Then the seal performance of bore will be improved. And with the decreasing of β, the normal residual prestress on the contact interface is larger, while the change of shear residual prestress is smaller.It means that reducing the value of β is better for improving the seal performance of bore. But the same kinds of stresses in the filament wound layers with two loading conditions respectively are in the same direction, so they are superimposed with each other.And the intensified stresses are bigger with the decline of β,which will lead to a higher stress level in the winding layers. This will reduce the strength of the composite housing for barrel.

    5. Conclusions

    In this work, a theoretical analysis model for the residual prestress only caused by the fibre pretension in the round composite barrel of railgun is developed. Based on the elastic theory and the theory of composite laminates,the barrel is simplified as a hybrid filament wound cylinder with an isotropic liner in this model. Then the residual prestress in this railgun barrel model is also simulated in a 3D finite element model through combining the temperature differential method with the element birth and death technology.

    Fig. 6. Residual prestress contours for all directions in railgun barrel with β = 1(unit:Pa).

    Fig. 7. Normal stress and Shear stress on the path AB.

    Comparing the results of two methods, it indicates that the distribution trends of residual prestress are consistent. And the difference for residual prestress in the filament wound composite housing of barrel is relatively small. Furthermore, the residual prestresses in the non-simplified composite barrels for railgun,which are wound with different winding tension modes, are analyzed by using the same numerical simulation method. The results reveal some rules of the distributions of residual prestresses of the barrel with different control modes of winding tension, and their effects on some mechanical performances of barrel. It can provide a reference to the optimal design of filament winding for railgun barrel.

    Declaration of competing interest

    No conflict of interest exits in the submission of this manuscript,and manuscript is approved by all authors for publication.I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere.All the authors:Dong-mei Yin, Bao-ming Li and Hong-cheng Xiao.

    We deeply appreciate your consideration of our manuscript,and we look forward to receiving comments from the reviewers.If you have any queries,please don’t hesitate to contact me at the address below.

    99热精品在线国产| 亚洲av五月六月丁香网| 一区二区三区四区激情视频 | 久久精品国产亚洲网站| а√天堂www在线а√下载| 久久久久国产网址| 久久精品国产鲁丝片午夜精品| 午夜老司机福利剧场| 亚洲aⅴ乱码一区二区在线播放| 久久亚洲精品不卡| eeuss影院久久| 天堂√8在线中文| 偷拍熟女少妇极品色| 久久久久久大精品| 亚洲国产欧美人成| 欧美日韩精品成人综合77777| 日本免费一区二区三区高清不卡| 国产精品国产高清国产av| 亚洲国产日韩欧美精品在线观看| 欧美潮喷喷水| 国产精品一二三区在线看| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满| 可以在线观看毛片的网站| 99热这里只有是精品50| 性欧美人与动物交配| 黄色视频,在线免费观看| 国产亚洲精品av在线| 成人欧美大片| 国产欧美日韩精品一区二区| 亚洲不卡免费看| 女的被弄到高潮叫床怎么办| 中文字幕精品亚洲无线码一区| 美女内射精品一级片tv| 午夜久久久久精精品| 亚洲经典国产精华液单| 久久婷婷人人爽人人干人人爱| 69人妻影院| 在线免费观看不下载黄p国产| 国产aⅴ精品一区二区三区波| 美女被艹到高潮喷水动态| 欧美一级a爱片免费观看看| 一级av片app| 国产亚洲欧美98| 一区二区三区四区激情视频 | av在线观看视频网站免费| 日本免费一区二区三区高清不卡| 国产极品精品免费视频能看的| 婷婷色综合大香蕉| а√天堂www在线а√下载| 午夜激情福利司机影院| 九九爱精品视频在线观看| 亚洲久久久久久中文字幕| 成人无遮挡网站| 国产精品女同一区二区软件| 国产精品日韩av在线免费观看| 哪里可以看免费的av片| 久久精品国产清高在天天线| 搡老岳熟女国产| 亚洲乱码一区二区免费版| 2021天堂中文幕一二区在线观| 永久网站在线| 不卡视频在线观看欧美| 国产精品国产高清国产av| 在线天堂最新版资源| 免费观看在线日韩| 在线天堂最新版资源| 99久久久亚洲精品蜜臀av| 亚洲电影在线观看av| 国产毛片a区久久久久| 欧美日本视频| 日本在线视频免费播放| 国产伦一二天堂av在线观看| 精品久久久久久久久亚洲| 免费观看人在逋| 国产日本99.免费观看| 午夜精品一区二区三区免费看| 亚洲第一电影网av| 国产精品久久电影中文字幕| 国产日本99.免费观看| 亚洲国产色片| 麻豆乱淫一区二区| 国产淫片久久久久久久久| 亚洲av免费高清在线观看| 深爱激情五月婷婷| 中文字幕熟女人妻在线| 男女视频在线观看网站免费| 久久天躁狠狠躁夜夜2o2o| 日本成人三级电影网站| 日本一本二区三区精品| 又黄又爽又刺激的免费视频.| 干丝袜人妻中文字幕| 久久人人爽人人片av| 国产片特级美女逼逼视频| 最近2019中文字幕mv第一页| 99热6这里只有精品| 午夜激情欧美在线| 午夜激情福利司机影院| 老司机午夜福利在线观看视频| 99riav亚洲国产免费| 禁无遮挡网站| 成年免费大片在线观看| 国产精品美女特级片免费视频播放器| 禁无遮挡网站| 国产人妻一区二区三区在| 精品免费久久久久久久清纯| 97在线视频观看| 亚洲av第一区精品v没综合| 免费看美女性在线毛片视频| 一个人免费在线观看电影| 精品免费久久久久久久清纯| 成年女人毛片免费观看观看9| 看免费成人av毛片| 男女做爰动态图高潮gif福利片| 国产精品女同一区二区软件| 性插视频无遮挡在线免费观看| 久久久久久久久大av| 亚洲精品国产成人久久av| 美女内射精品一级片tv| 中国美女看黄片| 国国产精品蜜臀av免费| 久久久久久久午夜电影| 免费观看人在逋| 亚洲精品久久国产高清桃花| 狂野欧美白嫩少妇大欣赏| aaaaa片日本免费| 精华霜和精华液先用哪个| 男女做爰动态图高潮gif福利片| 国产男人的电影天堂91| 天堂√8在线中文| 性色avwww在线观看| 国产单亲对白刺激| 成熟少妇高潮喷水视频| 直男gayav资源| 国产av一区在线观看免费| 日韩一区二区视频免费看| 国产探花在线观看一区二区| 国产精品乱码一区二三区的特点| 欧美日本视频| 亚洲色图av天堂| 高清日韩中文字幕在线| 少妇裸体淫交视频免费看高清| 国产精品久久久久久av不卡| 日韩欧美免费精品| 在线观看美女被高潮喷水网站| 国产亚洲精品久久久com| 久久国内精品自在自线图片| 亚洲天堂国产精品一区在线| 欧美日本视频| 寂寞人妻少妇视频99o| 国产男靠女视频免费网站| 日本五十路高清| 亚洲美女视频黄频| 69人妻影院| 99久久精品国产国产毛片| 在线播放国产精品三级| 天堂网av新在线| 成人高潮视频无遮挡免费网站| 日本黄色视频三级网站网址| av中文乱码字幕在线| 日本黄大片高清| 国产三级在线视频| 国产欧美日韩精品亚洲av| 我要搜黄色片| 在线看三级毛片| 亚洲第一电影网av| 99精品在免费线老司机午夜| 午夜精品在线福利| 成人性生交大片免费视频hd| 欧美在线一区亚洲| 亚洲国产精品成人久久小说 | 婷婷亚洲欧美| 欧美一区二区国产精品久久精品| 午夜精品国产一区二区电影 | 女人被狂操c到高潮| 国产精品久久久久久久久免| 老女人水多毛片| 亚洲在线自拍视频| 久久鲁丝午夜福利片| 亚洲经典国产精华液单| 日本黄大片高清| 亚洲美女视频黄频| 国产欧美日韩精品亚洲av| 日本黄色片子视频| 12—13女人毛片做爰片一| 亚洲av一区综合| 一本精品99久久精品77| 国产白丝娇喘喷水9色精品| 欧美+亚洲+日韩+国产| 午夜a级毛片| 久久久午夜欧美精品| 深夜精品福利| 毛片一级片免费看久久久久| 黄色视频,在线免费观看| 午夜福利视频1000在线观看| 美女 人体艺术 gogo| 联通29元200g的流量卡| 亚洲第一区二区三区不卡| 国产精品久久久久久久电影| 国产精品无大码| 一区二区三区高清视频在线| 亚洲精品一卡2卡三卡4卡5卡| 色哟哟哟哟哟哟| 12—13女人毛片做爰片一| 亚洲人与动物交配视频| av免费在线看不卡| 色播亚洲综合网| 成年女人毛片免费观看观看9| 亚洲中文日韩欧美视频| 国产精品一区二区性色av| 久久精品夜夜夜夜夜久久蜜豆| 男女之事视频高清在线观看| 老司机影院成人| 老女人水多毛片| 亚洲av五月六月丁香网| 成年女人看的毛片在线观看| 日本五十路高清| a级毛片a级免费在线| 成人精品一区二区免费| 亚洲专区国产一区二区| 美女免费视频网站| 国产一区二区激情短视频| 亚洲av熟女| 国产精品久久久久久久久免| 国产精品电影一区二区三区| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 久久这里只有精品中国| 色综合站精品国产| 久久天躁狠狠躁夜夜2o2o| 成人鲁丝片一二三区免费| 99久久成人亚洲精品观看| 久久久a久久爽久久v久久| 国产伦在线观看视频一区| 91午夜精品亚洲一区二区三区| 亚洲乱码一区二区免费版| 综合色av麻豆| 久久韩国三级中文字幕| 男人和女人高潮做爰伦理| 亚洲在线自拍视频| 久久人人精品亚洲av| 日本免费a在线| 中文字幕免费在线视频6| 人妻制服诱惑在线中文字幕| 日韩欧美精品v在线| 九色成人免费人妻av| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 天天躁夜夜躁狠狠久久av| 五月玫瑰六月丁香| 久久国内精品自在自线图片| 午夜福利成人在线免费观看| 亚洲性久久影院| 午夜影院日韩av| 听说在线观看完整版免费高清| 男插女下体视频免费在线播放| 91精品国产九色| 免费观看精品视频网站| 国产老妇女一区| 男人舔女人下体高潮全视频| 久久久久久大精品| 久久韩国三级中文字幕| 免费看av在线观看网站| 搡老熟女国产l中国老女人| 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| 久久午夜福利片| 干丝袜人妻中文字幕| 免费一级毛片在线播放高清视频| 我的老师免费观看完整版| 国产精品av视频在线免费观看| 有码 亚洲区| 亚洲精品久久国产高清桃花| 99在线视频只有这里精品首页| 99热这里只有是精品在线观看| 欧美日本视频| 日日啪夜夜撸| 丰满人妻一区二区三区视频av| 偷拍熟女少妇极品色| 美女 人体艺术 gogo| 99久久成人亚洲精品观看| 欧美激情国产日韩精品一区| 婷婷精品国产亚洲av在线| 狂野欧美激情性xxxx在线观看| 国产欧美日韩一区二区精品| 一本精品99久久精品77| 全区人妻精品视频| 国产成年人精品一区二区| 午夜福利在线观看吧| 亚洲不卡免费看| 小说图片视频综合网站| avwww免费| 亚洲av一区综合| 午夜激情欧美在线| 天堂av国产一区二区熟女人妻| 在线a可以看的网站| 自拍偷自拍亚洲精品老妇| 亚洲国产欧洲综合997久久,| 国产真实乱freesex| 精品久久久久久久久久免费视频| 亚洲国产高清在线一区二区三| 日韩欧美一区二区三区在线观看| 美女cb高潮喷水在线观看| 99热这里只有精品一区| 18+在线观看网站| 亚洲自拍偷在线| 六月丁香七月| 精品久久久久久久久久久久久| 成人永久免费在线观看视频| 最好的美女福利视频网| 我要看日韩黄色一级片| 午夜福利成人在线免费观看| 亚洲经典国产精华液单| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品自产自拍| 我要看日韩黄色一级片| 免费在线观看成人毛片| 国产探花在线观看一区二区| 悠悠久久av| 国产一区二区在线av高清观看| 非洲黑人性xxxx精品又粗又长| 亚洲在线观看片| 亚洲中文字幕日韩| 日韩制服骚丝袜av| 精品无人区乱码1区二区| 网址你懂的国产日韩在线| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器| 中文资源天堂在线| 国产三级在线视频| 国产精品日韩av在线免费观看| 国产麻豆成人av免费视频| 亚洲欧美成人精品一区二区| 22中文网久久字幕| 男女边吃奶边做爰视频| 午夜爱爱视频在线播放| 日韩一区二区视频免费看| 91久久精品电影网| 18禁在线播放成人免费| 久久精品国产99精品国产亚洲性色| 一进一出抽搐gif免费好疼| 一本一本综合久久| 精品一区二区三区人妻视频| 国产人妻一区二区三区在| 网址你懂的国产日韩在线| 超碰av人人做人人爽久久| 国产在视频线在精品| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 麻豆乱淫一区二区| 欧美激情久久久久久爽电影| 精品一区二区免费观看| 一本一本综合久久| 啦啦啦观看免费观看视频高清| av中文乱码字幕在线| 欧美性猛交黑人性爽| 少妇人妻精品综合一区二区 | 18禁在线无遮挡免费观看视频 | 欧美日本亚洲视频在线播放| 国产精品女同一区二区软件| 如何舔出高潮| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 欧美一区二区精品小视频在线| 日本欧美国产在线视频| 欧美人与善性xxx| 国产精品人妻久久久影院| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 神马国产精品三级电影在线观看| 女人十人毛片免费观看3o分钟| 亚洲av电影不卡..在线观看| 中文亚洲av片在线观看爽| 偷拍熟女少妇极品色| 国产精品久久久久久久久免| 免费看光身美女| 少妇被粗大猛烈的视频| av视频在线观看入口| 欧美另类亚洲清纯唯美| 国产精品一区二区性色av| 成人漫画全彩无遮挡| 成年av动漫网址| 中文亚洲av片在线观看爽| 亚洲熟妇熟女久久| 久久精品夜色国产| 黄色一级大片看看| 波多野结衣高清作品| 老司机影院成人| 看片在线看免费视频| 搡老岳熟女国产| 国产人妻一区二区三区在| 在线播放无遮挡| 一a级毛片在线观看| 三级毛片av免费| 国产成人一区二区在线| av天堂在线播放| 一夜夜www| 成人美女网站在线观看视频| 91午夜精品亚洲一区二区三区| 91在线精品国自产拍蜜月| 99热这里只有是精品50| 一a级毛片在线观看| 久久午夜亚洲精品久久| 日韩成人伦理影院| 在线观看一区二区三区| 免费观看的影片在线观看| 搡老熟女国产l中国老女人| 亚洲欧美日韩无卡精品| 国模一区二区三区四区视频| 欧美日本视频| 3wmmmm亚洲av在线观看| 美女cb高潮喷水在线观看| 久久久久免费精品人妻一区二区| 久久精品国产自在天天线| 久99久视频精品免费| 国产精品乱码一区二三区的特点| 我的女老师完整版在线观看| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 久久久久久大精品| 色av中文字幕| 亚洲专区国产一区二区| 中文字幕熟女人妻在线| 午夜精品一区二区三区免费看| 99视频精品全部免费 在线| 国产欧美日韩精品亚洲av| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 97在线视频观看| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 亚洲精品日韩在线中文字幕 | 欧美性猛交黑人性爽| 在现免费观看毛片| 亚洲人与动物交配视频| 日韩,欧美,国产一区二区三区 | 桃色一区二区三区在线观看| 国产极品精品免费视频能看的| 欧美激情在线99| 国内精品久久久久精免费| www.色视频.com| 欧美色欧美亚洲另类二区| 国产一级毛片七仙女欲春2| 免费大片18禁| 又黄又爽又刺激的免费视频.| 国产av在哪里看| 男插女下体视频免费在线播放| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 色尼玛亚洲综合影院| 国产一区二区在线观看日韩| 99热6这里只有精品| 国产成人精品久久久久久| 在线观看午夜福利视频| 不卡视频在线观看欧美| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 人妻夜夜爽99麻豆av| 两个人视频免费观看高清| 国产成人一区二区在线| 色综合站精品国产| 国产色爽女视频免费观看| 国产精品福利在线免费观看| 成人av在线播放网站| 搞女人的毛片| 香蕉av资源在线| 久久精品国产99精品国产亚洲性色| 12—13女人毛片做爰片一| 日本一二三区视频观看| av天堂中文字幕网| 99riav亚洲国产免费| 精品人妻偷拍中文字幕| 国产v大片淫在线免费观看| 久久亚洲精品不卡| 高清毛片免费看| 男女下面进入的视频免费午夜| 国产精品一二三区在线看| 中文亚洲av片在线观看爽| 久久久久久伊人网av| a级毛色黄片| 亚洲国产高清在线一区二区三| 欧美日韩乱码在线| 久久久欧美国产精品| 亚洲国产欧洲综合997久久,| 亚洲美女搞黄在线观看 | 亚洲欧美日韩卡通动漫| 在线国产一区二区在线| 天堂√8在线中文| 亚洲在线观看片| 99在线人妻在线中文字幕| 久久亚洲国产成人精品v| av在线播放精品| 亚洲人成网站在线播放欧美日韩| 一级黄片播放器| 亚洲欧美成人综合另类久久久 | 国产一区二区在线av高清观看| 男女那种视频在线观看| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 老师上课跳d突然被开到最大视频| 亚洲一区二区三区色噜噜| 免费人成视频x8x8入口观看| 色综合色国产| 两个人视频免费观看高清| 国产精品人妻久久久久久| 国产男人的电影天堂91| 国产高清三级在线| 99久久中文字幕三级久久日本| 成人亚洲精品av一区二区| 99国产极品粉嫩在线观看| 97超级碰碰碰精品色视频在线观看| 久久婷婷人人爽人人干人人爱| 一级毛片aaaaaa免费看小| 18禁在线播放成人免费| 欧美日韩一区二区视频在线观看视频在线 | 成人三级黄色视频| 别揉我奶头~嗯~啊~动态视频| 人人妻人人澡人人爽人人夜夜 | 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 神马国产精品三级电影在线观看| 久久综合国产亚洲精品| 国产在线精品亚洲第一网站| 丰满人妻一区二区三区视频av| 久久人人爽人人片av| 成年版毛片免费区| 在线观看美女被高潮喷水网站| 特级一级黄色大片| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 久久精品夜夜夜夜夜久久蜜豆| 91精品国产九色| 日韩中字成人| 国产精品伦人一区二区| 嫩草影视91久久| 亚洲国产欧洲综合997久久,| 精品久久久噜噜| 亚州av有码| 乱码一卡2卡4卡精品| 日本色播在线视频| 欧美丝袜亚洲另类| 中文亚洲av片在线观看爽| 69av精品久久久久久| 搡老熟女国产l中国老女人| 乱人视频在线观看| 欧美绝顶高潮抽搐喷水| 一进一出抽搐gif免费好疼| 国产片特级美女逼逼视频| 成人av一区二区三区在线看| 国产精品嫩草影院av在线观看| 免费av不卡在线播放| 偷拍熟女少妇极品色| 亚洲av成人精品一区久久| 十八禁网站免费在线| 精品久久久久久成人av| 深夜a级毛片| 成熟少妇高潮喷水视频| 男人舔女人下体高潮全视频| 亚洲人成网站在线播| 国产蜜桃级精品一区二区三区| 亚洲人成网站在线播| 一进一出好大好爽视频| 亚洲最大成人手机在线| 精品熟女少妇av免费看| 午夜福利在线观看吧| 国语自产精品视频在线第100页| а√天堂www在线а√下载| 亚洲国产日韩欧美精品在线观看| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 久久久久免费精品人妻一区二区| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 俄罗斯特黄特色一大片| 一个人看视频在线观看www免费| 久久综合国产亚洲精品| 黄色配什么色好看| 免费观看人在逋| h日本视频在线播放| 成人午夜高清在线视频| 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 插阴视频在线观看视频| 悠悠久久av| 少妇人妻精品综合一区二区 | 午夜视频国产福利| videossex国产| 国产一区二区三区av在线 | 午夜福利高清视频| 日韩欧美国产在线观看| 搡老妇女老女人老熟妇| 日本成人三级电影网站| 国产黄色视频一区二区在线观看 | 免费黄网站久久成人精品| 搡女人真爽免费视频火全软件 | 伦精品一区二区三区| 亚洲七黄色美女视频| 国产高清不卡午夜福利| 老司机影院成人| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 国产av在哪里看| 午夜福利成人在线免费观看| 久久久久久久久久黄片| 真实男女啪啪啪动态图| 九色成人免费人妻av| 中文字幕av在线有码专区| 99九九线精品视频在线观看视频|