• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice

    2020-06-22 05:45:58RuiyingQinShengxiangLiaoJuanLiHaoLiXiaoshuangLiuJianboYangPengchengWei
    The Crop Journal 2020年3期

    Ruiying Qin, Shengxiang Liao, Juan Li, Hao Li, Xiaoshuang Liu, Jianbo Yang *, Pengcheng Wei *

    Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei 230031, Anhui, China

    Keywords:CRISPR-Cas9 Base editing BE3 CDA Oryza sativa

    ABSTRACT The efficiency of plant cytidine base-editing systems is limited, and unwanted mutations frequently occur in transgenic plants. We increased the cytidine editing frequency and fidelity of the plant base editor 3(BE3)and targeted activation-induced cytidine deaminase(CDA) (target-AID) systems by coexpressing three copies of free uracil-DNA glycosylase(UDG)inhibitor(UGI).The editing efficiency of the improved BE3 and CDA systems reached as high as 88.9% and 85.7%, respectively, in regenerated rice plants, with a very low frequency of unwanted mutations. The low editing frequency of the BE3 system in the GC context could be overcome by the modified CDA system. These results provide a highfidelity and high-efficiency solution for rice genomic base editing.

    1. Introduction

    Precise genome modification is highly desired in crop breeding and in plant genomic research. Considerable efforts have been made to establish gene targeting systems in plants; however, the efficiency of these systems is limited in higher plants, especially crops, mainly because of the very low frequency of homologous recombination(HR). Recently developed base-editing systems permit direct nucleotide substitution at target genomic loci without requiring DNA double-strand breaks and homologydirected repair (HDR). C?G to T?A base editors such as BE3,are normally composed of an APOBEC1/AID member of the cytosine deaminase family,a catalytically defective Cas9 or Cpf1, and a uracil-DNA glycosylase (UDG) inhibitor (UGI)[1,2], while A?T to G?C editors (adenine base editors, ABEs)employ a fusion protein composed of a laboratory-evolved tRNA adenine deaminase (TadA) and a SpCas9 or SaCas9 nickase variant [3,4]. In mammals, the efficiency and precision of base editors could be enhanced by optimizing nuclear localization signals (NLSs) and codon usage, engineering nCas9 fusion proteins, and coexpressing Mu Gam protein or free UGI [5-7].In plants,three types of C?G to T?A base editors are most commonly used: BE3, which uses rat APOBEC1 for C-to-T conversion [8-12]; a target-AID system using Petromyzon marinus CDA1 (PmCDA) [13]; and rBE5,which uses a mutated variant of human AID [14]. These systems have successfully induced targeted base conversion in different plant species,including rice,wheat,maize,Arabidopsis, tomato, and watermelon [8,12,15]. However,the base-editing frequency induced by these systems is lower than the mutagenesis efficiency of the CRISPR/SpCas9 system in plants. Furthermore, in addition to targeted base conversion, these systems often generate indels and unwanted nucleotide substitutions. These infidelity mutations lead to great inconvenience during the genotyping and phenotyping of transgenic plants,compromising the application of these systems in plants.We set out to optimize the plant BE3 and target-AID systems to achieve cleaner and more efficient base editing of multiple sites in rice.

    2. Materials and methods

    2.1. Vector construction

    Fig.1-Base editing in transgenic rice plants using BE3 variants.A.Expression cassette of BE3 and eBE3 in binary vectors.PUBI,promoter of maize ubiquitin 1;35S-ter,terminator of the CaMV 35S promoter.B.Base-editing efficiencies of different BE3 and eBE3 vectors in regenerated populations.The number of lines carrying targeted base substitutions(which may also carry alleles with unwanted mutations)was used to calculate the substitution efficiency(left),while the number of regenerated plants with an exclusive mutation type of targeted C-to-T conversions(and no unwanted mutations)was used to calculate the clean editing yield efficiency; C.Frequencies of unwanted mutations in BE3/eBE3 plants.The regenerated lines carrying unwanted mutations,including InDels,a base conversion of C-to-A or C-to-G(Non-T),or both in a single line(Non-T + InDels)are indicated separately. D.Frequencies of targeted C-to-T conversions in regenerated populations treated with BE3/eBE3 vectors at the indicated position of the sgRNA target region.

    Fig.2- Base editing in BE3 lines using native sgRNA and esgRNA.A.Base-editing efficiencies of the BE3-sgRNA and BE3-esgRNA vectors in the regenerated population.B. Frequencies of unwanted mutations in BE3-sgRNA and BE3-esgRNA plants.C.Frequencies of targeted C-to-T conversions in the BE3-sgRNA and BE3-esgRNA regenerated populations at the indicated position of the sgRNA target region.

    The previously described sequences of rice codon-optimized SpCas9, APO-XTEN, and UGI-NLS were synthesized separately [11,16] (GENEWIZ, Suzhou, China). The D10A mutation was induced in SpCas9 by PCR. The fragments were seamlessly assembled using a HiFi DNA Assembly Cloning Kit (NEB, Beverly, MA, USA) to produce BE3. To construct eBE3, the sequence of UGI-3X2A-UGI (eGUI) was codon-optimized for rice and synthesized [6]. Te eGUI was then attached to the 3′ terminus of the APO-XTEN-nSpCas9 fragment by seamless cloning. To construct CDA, the Arabidopsis codon-optimized sequence of SH3-FLAGPmCDA [13] was reoptimized for rice expression, and the synthesized fragment was linked to nSpCas9 to generate CDA.The 3X2A-UGI sequence was then amplified from eGUI and directly added to the 3′end of CDA to construct eCDA.The native sgRNA and esgRNA were synthesized and placed into an OsU3-derived expression cassette with a spectinomycin selection marker [17]. The base editors and OsU3-SpR-sgRNA or OsU3-SpR-esgRNA cassette were cloned into the pHUN411 backbone to generate binary vectors. To construct the genomic editing constructs, protospacers were annealed and inserted to replace SpR in the vector. Following the protocol of the pHUN system,the clones were positively selected with kanamycin and negatively selected with spectinomycin. All primers used in this study are listed in Table S1.

    2.2. Rice transformation

    The vector was individually introduced into the Agrobacterium strain EHA105-pSoup. Mature seeds of the japonica rice cultivar Nipponbare were used for callus induction for three weeks.The embryonic calli were then transfected by Agrobacterium following a previously described procedure [18]. Resistant calli were selected with 50 μg mL?1hygromycin for four weeks.Transgenic plants were then regenerated under selection with 25 μg mL?1hygromycin. Only one plant from each transfected callus (a single event)was selected for rooting and further examination.

    2.3. DNA extraction and genotyping

    In each transgenic plant, one leaf from each tiller was collected. Genomic DNA samples were prepared by the CTAB method and diluted to the same concentration with a NanoDrop spectrophotometer (Thermo Fisher, Waltham,MA, USA). For Hi-TOM detection, specific primers containing barcodes were used to amplify the target region.Following the manufacturer's instructions, the products of two rounds of PCR were pooled and sequenced with the Illumina HiSeq platform (Novogene, Tianjin, China). Approximately 1 Gb of raw data was generated for each of 96 samples. Mutations were identified with Hi-TOM(http://www.hi-tom.net/hi-tom).To confirm the next-generation sequencing(NGS)genotyping,at least 16 samples for each target were randomly selected,amplified and Sanger sequenced. All results from the firstgeneration sequencing perfectly matched the genotypes identified by the Hi-TOM method. The efficiencies of vectors were compared with Fisher's exact test.The NGS data used for the Hi-TOM analysis can be accessed under NCBI BioProject number PRJNA481881.

    3.Results

    Recombinant BE3 was first generated by fusion of plant codon-optimized rat APOBEC and UGI to the N-and C-termini of the SpCas9 nickase (D10A). Then, enhanced BE3 (eBE3) was developed by addition of triplet copies of 2A-UGI to the 3′ end of the BE3 sequence (Fig. S1) to coexpress an additional three free copies of UGI (Fig. 1-A).The BE3 and eBE3 genes separately replaced SpCas9 in a previously modified pHUN411 binary vector[19,20], resulting in pHUN411-BE3 and pHUN411-eBE3, respectively. The base editing of the two vectors was tested at five different genomic sites (ALS-T1, CHL9, IPA, NRT1.1, and SLR1) in transgenic rice plants using Agrobacterium-mediated stable transformation (Fig. S2). All independent regenerated lines (24 to 48 lines for each vector) were genotyped by Hi-TOM [21], a NGS method.In agreement with findings of previous reports in plants, the efficiencies of BE3-mediated targeted base conversions varied from 25.0% to 58.8% (Fig. 1-B). Base targeting was not statistically increased by eBE3 at most of the tested genomic sites (Fisher's exact test, P <0.05), except in the SLR1 target region (achieving 70.8% efficiency compared to 25.0% by BE3).However, the editing fidelity was different in the BE3 or eBE3 regenerated populations with the same target sgRNA. As indicated in Fig. 1-C, the indel frequency in BE3 plants was 12.5%-25.0%, possibly as a consequence of the base excision repair of apurinic/apyrimidinic (AP) sites transformed from APOBEC1-converted U by UDG. In contrast, no indels were detected in plants carrying the eBE3 construct(Fig.1-C).AP sites could also lead to undesired C-to-A or C-to-G conversion instead of C-to-T substitution. The eBE3 with increased UGI expression showed a substantially lower unwanted base conversion frequency (0-3.5%) than the BE3 vectors (2.5%-14.7%) (Fig. 1-C).At all five sites, the percentage of clean editing yield (ratio of lines carrying only the C-to-T substitution to total lines) in the regenerated population was 1.14- to 3.81-fold higher for eBE3 than for BE3(Fig.1-B).

    Fig.3-Base editing in transgenic rice plants using CDA variants.A.Expression cassette of CDA and eCDA in binary vectors.B.Base-editing efficiencies of different CDA and eCDA vectors in regenerated populations.C.Frequencies of unwanted mutations in CDA/eCDA plants.D.Frequencies of C?G to T?A conversions in CDA/eCDA regenerated populations at the indicated position of the sgRNA target region.

    Previous reports [17,22,23] indicated that optimization of the sgRNA sequence (esgRNA) with a mutated potential terminator sequence and extended duplex length can improve the efficiency of SpCas9 and its variants(Fig.S3).To test whether optimized sgRNA could increase the frequency of the plant base editors, the esgRNA scaffold sequences were synthesized and individually fused with each of the five above-described protospacers in the eBE3 vector. The BE3-esgRNA combination was also tested with the CHL9,IPA1,and SLR1 targets as controls (Fig. 2). In plants treated with the eBE3-esgRNA vectors, base editing was highly effective(varying from 53.5%to 88.9%)(Fig.1-B).The editing frequency of esgRNA was 1.9- and 2.1-fold higher than that of native sgRNA at the ALS-T1 and IPA1 targets,respectively.Moreover,eBE3-esgRNA still produced a much lower frequency of unwanted mutations (0-7.0%) than BE3-esgRNA (25.0%-50.0%). Producing a perfectly matched 20 bp guide sequence using the tRNA-sgRNA expression system is another strategy to enhance CRISPR editing efficiency [24,25]. Because the rice U3 promoter in the vectors attaches an additional adenine to the 5′end of the mature sgRNA,the 20-bp spacers of the ALST1, IPA1, and NRT1.1 targets, which did not start with “A”,were individually cloned downstream of the tRNA to generate a precisely matched guide sequence.The clean editing yield in the regenerated populations varied from 48.4% to 63.2% (Fig.1-B), and the unwanted mutation rate varied from 0 to 3.1%(Fig. 1-C). These results suggested that eBE3 in combination with esgRNA or tRNA-sgRNA can efficiently generate baseedited plants without unwanted mutations. Consistent with the BE3 system, the most effective editing window of eBE3 tools is still positions 4 to 8(Fig.1-D).

    Fig.4- Base editing in CDA lines using native sgRNA and esgRNA.A.Base-editing efficiencies of the CDA-sgRNA and CDAesgRNA vectors in the regenerated populations.B.Frequencies of unwanted mutations in CDA-sgRNA and CDA-esgRNA plants.C.Frequencies of targeted C-to-T conversions in CDA-sgRNA and CDA-esgRNA regenerated populations at the indicated position of the sgRNA target region.

    Target-AID showed limited editing efficiency and frequently showed undesired mutations, restricting its use for generating precise gain-of-mutations [14]. To improve the efficiency of this system in crops, the coding sequence of PmCDA1 (Os-PmCDA) was specifically codon-optimized for rice expression. Os-PmCDA was linked to the 3′ terminus of nSpCas9 (D10A) with or without the addition of the 3X2A-UGI fraction to form the CDA or eCDA gene. Similarly to the method described above for BE3, SpCas9 in the binary vector pHUN411 was replaced by CDA or eCDA, leading to pHUN411-CDA or pHUN411-eCDA, respectively (Fig. 3-A). The editing effect of CDA was first tested at the ALS-T2 target (Fig. S4).Targeted mutations occurred in 19.4% and 25.0% of regenerated CDA plants with native sgRNA and esgRNA(Figs.3-B, 4),respectively.However,many mutated lines carried InDels and unwanted base conversions (19.4%-30.0% of total lines), and the clean editing yield was lower than 5.6% (Fig. 3-B). As expected, eCDA provided a much higher clean editing yield(18.6% and 18.8% using native sgRNA and esgRNA,respectively) and a much lower unwanted mutation rate(3.1% and 9.3%) than CDA (Fig. 3-B). The combination of tRNA-sgRNA and eCDA showed much higher editing efficiency. Of the 40 regenerated lines, 30 lines were mutants that carried only a targeted C-to-T substitution(s)(representing 75.0% efficiency), including seven biallelic mutants. Moreover, no undesired mutations occurred (Fig.3-C).Interestingly,efficient editing occurred even at position 7, suggesting that eCDA might have a wider editing window than the previously reported 3-bp highly-mutated region(positions 2 to 4) of CDA (Fig. 3-D) [13]. The members of the APOBEC/AID family have different sensitivities to the 5′adjacent nucleotide of target C. The BE3 system has limited GC editing efficiency. We confirmed that the editing frequency of the position 4 C in the GC context of the NRT1.1 target was substantially lower than that of the C at the same position in the CC context of the CHL9 and SLR1 targets (Fig.1-D). We accordingly tested the GC preferences of the CDAs.A 20-bp Pi-d2 region with a G located at position 4 in the GC context (reverse complement strand) was selected for CDA/eCDA-mediated base editing. The clean position 4 G-to-A conversion occurred in 24 lines of 28 tRNA-eCDA plants(85.7% efficiency) (Fig. 3-B) and 17 of these lines were identified as having biallelic or homozygous mutations.These findings implied that, similar to the rBE5 system [14],the CDA/eCDA tool would be more useful in targeted editing of plant genomes with a high GC context.

    4. Discussion

    Limited editing fidelity and efficiency have greatly compromised the application of base editing in the plant genome. The absent or insufficient UGI activity of the target-AID or BE3 system normally leads to a high frequency of undesired mutations in addition to the targeted C-to-T conversions. The unwanted mutations,especially InDels, interfere with the sequence determination of base conversions in plants. Although some unwanted mutations can segregate in the progeny, robust production of clean base conversion in the T0generation will greatly reduce time and economic costs. Although increasing the fidelity of base editing by adding UGI has been reported in mammalian cells [5,6,26], it had not been tested in the plant genome. In this study, we developed plant base-editing systems with additional UGI activity.Combined with the optimized sgRNA expression cassette,our modified eBE3 and eCDA tools showed as high as 86.1%and 85.7% clean editing efficiency (Fig. 1-B), respectively,4.9- and 6.9-fold of the corresponding BE3 and CDA vectors with the conventional structure. In addition, the eBE3 and eCDA tools have different editing scope and target preferences. The improved base-editing toolkits demonstrated in this study will expand the scope of targeted single-base substitutions in the rice genome. We propose that these high-fidelity and high-efficiency base-editing tools, together with the previous reported base substitution systems in plants, can accelerate the application of precise mutagenesis to plant fundamental research and trait improvement.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2019.04.007.

    Declaration of Competing Interest

    Authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was funded by the Genetically Modified Breeding Major Project (2016ZX08010-002-008), the National Natural Science Foundation of China (31701405), and the Natural Science Foundation of Anhui Province,China(1708085QC60).

    国产真人三级小视频在线观看| 人妻一区二区av| 亚洲,欧美精品.| 国产高清激情床上av| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 亚洲第一av免费看| 另类亚洲欧美激情| avwww免费| 村上凉子中文字幕在线| 男人舔女人的私密视频| 精品电影一区二区在线| 国产精品98久久久久久宅男小说| 国产成人欧美| av在线播放免费不卡| www.999成人在线观看| 精品人妻在线不人妻| 亚洲av日韩精品久久久久久密| 国产精品久久久久久人妻精品电影| 超色免费av| 国产精品秋霞免费鲁丝片| e午夜精品久久久久久久| 欧美成人免费av一区二区三区 | 午夜成年电影在线免费观看| 亚洲欧美精品综合一区二区三区| 亚洲国产精品sss在线观看 | 午夜福利免费观看在线| 十八禁人妻一区二区| 午夜精品久久久久久毛片777| 久久国产精品人妻蜜桃| 日日夜夜操网爽| 9热在线视频观看99| 欧美亚洲日本最大视频资源| av不卡在线播放| 色综合婷婷激情| 亚洲成国产人片在线观看| 夜夜爽天天搞| 黄频高清免费视频| 一个人免费在线观看的高清视频| 捣出白浆h1v1| 国产欧美亚洲国产| 欧美在线一区亚洲| 99国产极品粉嫩在线观看| xxx96com| 久久久久久久精品吃奶| av欧美777| 在线免费观看的www视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区在线观看成人免费| 欧美av亚洲av综合av国产av| 91字幕亚洲| 91在线观看av| 女人被狂操c到高潮| 久久中文字幕一级| 久久狼人影院| 日韩欧美一区二区三区在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 涩涩av久久男人的天堂| 久久国产乱子伦精品免费另类| 91在线观看av| 中文字幕高清在线视频| 久久中文字幕人妻熟女| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清 | 黄色视频,在线免费观看| av中文乱码字幕在线| 精品少妇久久久久久888优播| 精品人妻熟女毛片av久久网站| 亚洲在线自拍视频| 亚洲久久久国产精品| 99精品在免费线老司机午夜| 亚洲中文av在线| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三| 久久午夜综合久久蜜桃| 亚洲第一青青草原| 亚洲在线自拍视频| 精品一区二区三区四区五区乱码| 最新在线观看一区二区三区| 亚洲精品一二三| 国产日韩一区二区三区精品不卡| 久99久视频精品免费| 亚洲视频免费观看视频| 黑人欧美特级aaaaaa片| 一二三四社区在线视频社区8| 亚洲 欧美一区二区三区| 国产主播在线观看一区二区| 在线播放国产精品三级| 久久天堂一区二区三区四区| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看| 国产精品电影一区二区三区 | 成年人黄色毛片网站| 悠悠久久av| 精品无人区乱码1区二区| 91成人精品电影| 两人在一起打扑克的视频| 久久国产乱子伦精品免费另类| 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 日日夜夜操网爽| 99国产综合亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| av超薄肉色丝袜交足视频| 亚洲成人免费电影在线观看| 国产av又大| 国产欧美日韩一区二区三区在线| 久久久精品国产亚洲av高清涩受| 国产成人系列免费观看| 免费久久久久久久精品成人欧美视频| 无遮挡黄片免费观看| 欧美精品av麻豆av| 岛国毛片在线播放| 国产亚洲精品一区二区www | 久久中文字幕人妻熟女| 9热在线视频观看99| 黄片大片在线免费观看| 久久久久久人人人人人| 亚洲免费av在线视频| 国产真人三级小视频在线观看| 欧美大码av| 国产精品一区二区在线观看99| 在线国产一区二区在线| 欧美在线一区亚洲| 999精品在线视频| 国产亚洲欧美98| 午夜免费观看网址| 黄色毛片三级朝国网站| 亚洲七黄色美女视频| 亚洲欧美精品综合一区二区三区| 如日韩欧美国产精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 久久香蕉激情| 欧美精品啪啪一区二区三区| 久久热在线av| 成人国语在线视频| 国产99久久九九免费精品| bbb黄色大片| 国产成人精品久久二区二区91| 18禁国产床啪视频网站| 精品人妻1区二区| 王馨瑶露胸无遮挡在线观看| 精品久久久久久久毛片微露脸| 午夜福利影视在线免费观看| 1024视频免费在线观看| 精品亚洲成a人片在线观看| 可以免费在线观看a视频的电影网站| 欧美激情 高清一区二区三区| 精品久久久精品久久久| 91国产中文字幕| 国产xxxxx性猛交| 黄色女人牲交| 欧美日本中文国产一区发布| 极品少妇高潮喷水抽搐| 亚洲熟女毛片儿| 国产1区2区3区精品| 亚洲成国产人片在线观看| 无人区码免费观看不卡| 1024香蕉在线观看| 日韩 欧美 亚洲 中文字幕| 少妇被粗大的猛进出69影院| 欧美 日韩 精品 国产| 好男人电影高清在线观看| 亚洲精品乱久久久久久| 国产午夜精品久久久久久| 欧美不卡视频在线免费观看 | 欧美日韩成人在线一区二区| 不卡av一区二区三区| 亚洲七黄色美女视频| 亚洲 国产 在线| 欧美国产精品一级二级三级| 露出奶头的视频| 久久香蕉精品热| 久久久国产一区二区| 国产一区二区三区在线臀色熟女 | 国产精华一区二区三区| 美女午夜性视频免费| 成人精品一区二区免费| 久久午夜亚洲精品久久| 精品一区二区三卡| 真人做人爱边吃奶动态| 国产色视频综合| 久久精品国产亚洲av香蕉五月 | 国产男靠女视频免费网站| 夫妻午夜视频| 中文字幕人妻丝袜制服| 免费日韩欧美在线观看| 国产成人免费观看mmmm| 国产三级黄色录像| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 深夜精品福利| 国产精品1区2区在线观看. | 后天国语完整版免费观看| 亚洲片人在线观看| 久久 成人 亚洲| 成人手机av| 丁香欧美五月| 国产亚洲精品一区二区www | 99精品在免费线老司机午夜| 欧美亚洲 丝袜 人妻 在线| 日本欧美视频一区| 丝袜美足系列| 久99久视频精品免费| 免费在线观看完整版高清| 日日爽夜夜爽网站| 动漫黄色视频在线观看| 精品少妇久久久久久888优播| 亚洲一区二区三区欧美精品| 国产精品亚洲一级av第二区| 老鸭窝网址在线观看| 亚洲精品在线美女| 无人区码免费观看不卡| 成人免费观看视频高清| 日韩免费av在线播放| 日韩一卡2卡3卡4卡2021年| 久久香蕉国产精品| av免费在线观看网站| 性少妇av在线| 18禁国产床啪视频网站| 咕卡用的链子| 久久久久久人人人人人| 久久国产精品男人的天堂亚洲| 午夜激情av网站| 好男人电影高清在线观看| 亚洲色图综合在线观看| 午夜精品久久久久久毛片777| 精品一品国产午夜福利视频| 看免费av毛片| 国产欧美日韩精品亚洲av| 国产成+人综合+亚洲专区| 国产国语露脸激情在线看| 亚洲男人天堂网一区| 午夜激情av网站| 亚洲精品国产色婷婷电影| 国产精品 国内视频| 亚洲欧美色中文字幕在线| 亚洲精品国产色婷婷电影| 色精品久久人妻99蜜桃| www.自偷自拍.com| 日韩免费高清中文字幕av| 国产人伦9x9x在线观看| 制服人妻中文乱码| e午夜精品久久久久久久| 热99re8久久精品国产| 国产精品美女特级片免费视频播放器 | 国产精品电影一区二区三区 | 精品少妇一区二区三区视频日本电影| 日韩免费av在线播放| 精品人妻在线不人妻| 成人亚洲精品一区在线观看| 一级作爱视频免费观看| 精品国内亚洲2022精品成人 | 极品少妇高潮喷水抽搐| 欧美老熟妇乱子伦牲交| 999久久久国产精品视频| 亚洲av成人一区二区三| 成年女人毛片免费观看观看9 | 久久久久久久午夜电影 | 一级a爱视频在线免费观看| 最新在线观看一区二区三区| 男人操女人黄网站| 深夜精品福利| 久久亚洲精品不卡| 亚洲九九香蕉| 亚洲欧美激情综合另类| 中文字幕最新亚洲高清| 成年版毛片免费区| 成年动漫av网址| 国产一区二区三区在线臀色熟女 | 啦啦啦视频在线资源免费观看| 精品国内亚洲2022精品成人 | 亚洲精品国产一区二区精华液| 久久青草综合色| 老司机福利观看| 99精品久久久久人妻精品| 日本a在线网址| 午夜视频精品福利| 窝窝影院91人妻| 色精品久久人妻99蜜桃| 国产一区二区三区综合在线观看| 中文亚洲av片在线观看爽 | 色94色欧美一区二区| 亚洲全国av大片| 日韩免费高清中文字幕av| 性少妇av在线| 日韩成人在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 两个人看的免费小视频| 777米奇影视久久| 99热网站在线观看| 男人操女人黄网站| 男人的好看免费观看在线视频 | 无人区码免费观看不卡| 免费观看a级毛片全部| 1024视频免费在线观看| 天天操日日干夜夜撸| 91av网站免费观看| 90打野战视频偷拍视频| 欧美日本中文国产一区发布| 人妻一区二区av| 国产精品国产av在线观看| 热re99久久精品国产66热6| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品99久久99久久久不卡| 男男h啪啪无遮挡| 久久午夜综合久久蜜桃| 午夜老司机福利片| 亚洲av熟女| 欧美av亚洲av综合av国产av| 一区在线观看完整版| 天天操日日干夜夜撸| 久久国产精品大桥未久av| 亚洲欧美色中文字幕在线| 12—13女人毛片做爰片一| 国产精品久久久久成人av| 国产单亲对白刺激| 嫁个100分男人电影在线观看| 日韩熟女老妇一区二区性免费视频| 国产亚洲精品第一综合不卡| 亚洲自偷自拍图片 自拍| 黑人猛操日本美女一级片| 国产国语露脸激情在线看| 亚洲一区二区三区欧美精品| 国产三级黄色录像| 搡老岳熟女国产| av电影中文网址| 亚洲 欧美一区二区三区| 色尼玛亚洲综合影院| 久久久久国内视频| 在线看a的网站| 99国产综合亚洲精品| 亚洲精品美女久久av网站| 久久亚洲精品不卡| 国产精品久久久av美女十八| 水蜜桃什么品种好| 精品久久久精品久久久| 久久青草综合色| 黑人欧美特级aaaaaa片| 久久久久国产一级毛片高清牌| 美女 人体艺术 gogo| 黄片小视频在线播放| 亚洲片人在线观看| 久久久国产欧美日韩av| 久久久久久久国产电影| 亚洲成人免费电影在线观看| 精品福利观看| 色综合婷婷激情| 国产精品电影一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 久久久国产成人精品二区 | 三上悠亚av全集在线观看| 激情视频va一区二区三区| 久热爱精品视频在线9| 亚洲va日本ⅴa欧美va伊人久久| 精品卡一卡二卡四卡免费| 色尼玛亚洲综合影院| 熟女少妇亚洲综合色aaa.| 五月开心婷婷网| www.999成人在线观看| 精品国产美女av久久久久小说| 久久精品国产a三级三级三级| 一二三四社区在线视频社区8| 日韩大码丰满熟妇| 日日夜夜操网爽| 成人18禁高潮啪啪吃奶动态图| 久久人人爽av亚洲精品天堂| 日日夜夜操网爽| 黄色 视频免费看| 国产亚洲av高清不卡| 精品卡一卡二卡四卡免费| 夜夜躁狠狠躁天天躁| 可以免费在线观看a视频的电影网站| 首页视频小说图片口味搜索| 亚洲人成电影观看| 亚洲精品自拍成人| 欧美日韩亚洲综合一区二区三区_| 视频区欧美日本亚洲| 久久久国产精品麻豆| 久久久久精品人妻al黑| 亚洲精品美女久久久久99蜜臀| 久久香蕉国产精品| 操美女的视频在线观看| 午夜日韩欧美国产| 国产99久久九九免费精品| 老熟妇乱子伦视频在线观看| 成人av一区二区三区在线看| 日韩欧美一区视频在线观看| 欧美日韩乱码在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产一区二区精华液| 国产精品免费大片| 欧美精品av麻豆av| 国产精品美女特级片免费视频播放器 | 久久久久久人人人人人| 亚洲精品在线美女| 国产精品久久久久久精品古装| 成人av一区二区三区在线看| 黄网站色视频无遮挡免费观看| 人人妻人人添人人爽欧美一区卜| 老司机午夜福利在线观看视频| 久久亚洲真实| 亚洲av成人av| 国产成人系列免费观看| 精品国产国语对白av| 亚洲欧美一区二区三区久久| 一本大道久久a久久精品| 亚洲中文日韩欧美视频| 91大片在线观看| 看免费av毛片| netflix在线观看网站| av不卡在线播放| 国产精品国产高清国产av | av不卡在线播放| 国产精品亚洲一级av第二区| 精品国产超薄肉色丝袜足j| 老司机靠b影院| 一区二区日韩欧美中文字幕| 午夜福利免费观看在线| 欧美日韩成人在线一区二区| 国产单亲对白刺激| 黄色怎么调成土黄色| 激情在线观看视频在线高清 | 人成视频在线观看免费观看| 国产成人一区二区三区免费视频网站| 国产片内射在线| 午夜福利影视在线免费观看| 飞空精品影院首页| 日韩欧美一区视频在线观看| 久久中文字幕一级| 久久精品亚洲av国产电影网| 99久久综合精品五月天人人| 亚洲 欧美一区二区三区| 国产乱人伦免费视频| 人人妻,人人澡人人爽秒播| 1024香蕉在线观看| 一夜夜www| 国产成人一区二区三区免费视频网站| 国内久久婷婷六月综合欲色啪| 久久精品国产综合久久久| 身体一侧抽搐| 国产不卡av网站在线观看| 满18在线观看网站| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频 | 日韩欧美三级三区| 久久亚洲真实| 婷婷丁香在线五月| 欧美乱码精品一区二区三区| 欧美亚洲日本最大视频资源| 久久天堂一区二区三区四区| 国产激情欧美一区二区| 国产亚洲精品一区二区www | 日韩欧美免费精品| 欧美日韩福利视频一区二区| 50天的宝宝边吃奶边哭怎么回事| 国产精品99久久99久久久不卡| 国产一区有黄有色的免费视频| 久久久久久久午夜电影 | 精品国产一区二区三区久久久樱花| 欧美日韩福利视频一区二区| 精品一区二区三区av网在线观看| 在线观看免费视频日本深夜| 久热这里只有精品99| 交换朋友夫妻互换小说| 日本wwww免费看| 黄片播放在线免费| 国产精品亚洲一级av第二区| 国产蜜桃级精品一区二区三区 | 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 亚洲一区中文字幕在线| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 成人18禁高潮啪啪吃奶动态图| 精品国产亚洲在线| 又大又爽又粗| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| av不卡在线播放| 国产精品av久久久久免费| 久久久国产成人精品二区 | 多毛熟女@视频| 亚洲色图av天堂| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲精品一区二区精品久久久| av线在线观看网站| 无人区码免费观看不卡| 黑人巨大精品欧美一区二区蜜桃| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 狠狠婷婷综合久久久久久88av| 91大片在线观看| 午夜福利视频在线观看免费| 在线观看午夜福利视频| 丁香六月欧美| 久久精品熟女亚洲av麻豆精品| 久久久久久亚洲精品国产蜜桃av| 免费日韩欧美在线观看| 在线永久观看黄色视频| 香蕉国产在线看| 怎么达到女性高潮| 99久久人妻综合| 亚洲精品中文字幕一二三四区| 国产精品久久电影中文字幕 | 国产高清视频在线播放一区| 露出奶头的视频| 成年女人毛片免费观看观看9 | 国产精品综合久久久久久久免费 | 国内毛片毛片毛片毛片毛片| 18禁裸乳无遮挡动漫免费视频| 国产精品乱码一区二三区的特点 | 国产亚洲精品久久久久久毛片 | 91在线观看av| 中文字幕人妻丝袜一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 18禁观看日本| a级毛片在线看网站| 搡老熟女国产l中国老女人| 亚洲男人天堂网一区| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与性动交α欧美软件| 日韩精品免费视频一区二区三区| 久久精品亚洲av国产电影网| 在线国产一区二区在线| 国产在线观看jvid| 这个男人来自地球电影免费观看| 国产激情欧美一区二区| 亚洲国产毛片av蜜桃av| 免费人成视频x8x8入口观看| 淫妇啪啪啪对白视频| 日韩制服丝袜自拍偷拍| 99国产精品一区二区蜜桃av | 精品亚洲成国产av| 最近最新免费中文字幕在线| 亚洲 欧美一区二区三区| 波多野结衣av一区二区av| 最近最新免费中文字幕在线| 窝窝影院91人妻| 丁香欧美五月| 黄片大片在线免费观看| 在线国产一区二区在线| 80岁老熟妇乱子伦牲交| 女警被强在线播放| 下体分泌物呈黄色| 亚洲精品国产精品久久久不卡| 在线av久久热| 精品一区二区三区视频在线观看免费 | 久99久视频精品免费| 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 精品久久蜜臀av无| 老汉色∧v一级毛片| 在线看a的网站| 欧美最黄视频在线播放免费 | 最新在线观看一区二区三区| 在线观看66精品国产| 日韩视频一区二区在线观看| 中文字幕av电影在线播放| 丰满人妻熟妇乱又伦精品不卡| 另类亚洲欧美激情| 99精品在免费线老司机午夜| 亚洲性夜色夜夜综合| 免费日韩欧美在线观看| 色精品久久人妻99蜜桃| 韩国av一区二区三区四区| 人妻一区二区av| 亚洲综合色网址| 成人国产一区最新在线观看| 老鸭窝网址在线观看| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 夜夜夜夜夜久久久久| 999精品在线视频| 久久久久久久久久久久大奶| 9191精品国产免费久久| 亚洲男人天堂网一区| 色综合欧美亚洲国产小说| 18禁观看日本| 国产成人影院久久av| 欧美乱色亚洲激情| 亚洲熟妇熟女久久| 成人18禁在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 后天国语完整版免费观看| 日韩免费高清中文字幕av| 日本黄色日本黄色录像| 久久精品国产99精品国产亚洲性色 | 777米奇影视久久| 亚洲 国产 在线| 亚洲人成电影观看| 免费日韩欧美在线观看| 国产免费现黄频在线看| 亚洲精品乱久久久久久| 亚洲自偷自拍图片 自拍| 欧美日本中文国产一区发布| 欧美国产精品一级二级三级| 男女午夜视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 又紧又爽又黄一区二区| 久久人妻熟女aⅴ| 少妇猛男粗大的猛烈进出视频| 亚洲av美国av| www.熟女人妻精品国产| 国产xxxxx性猛交| 99热网站在线观看| 精品电影一区二区在线| 中文欧美无线码| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 欧美精品啪啪一区二区三区| 国产一区二区三区在线臀色熟女 | 国产极品粉嫩免费观看在线| 久久久久久免费高清国产稀缺|