• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses,Structures and Magnetic Properties of Manganese Phosphonates

    2020-06-21 10:03:02LIUBeiBAOSongSongRENMinCAIZhongShengLIUJingCuiZHENGLiMin
    無機化學學報 2020年6期

    LIU BeiBAO Song-Song REN Min CAI Zhong-Sheng LIU Jing-CuiZHENG Li-Min

    (State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210023,China)

    Abstract:Reactions of(4-carboxynaphthalen-1-yl)phosphonic acid (4-cnappH3)with manganese chloride under solvo/hydrothermal conditions resulted in four new coordination polymers,formulated as Mn(4-cnappH2)2(1),Mn(4-cnappH2)2(H2O)2(2),α-Mn(4-cnappH)(H2O)(3)and β-Mn(4-cnappH)(H2O)(4).Compound 1 shows a 3D framework structure,where chains made up of corner-sharing {MnO6}octahedra and {PO3C}tetrahedra are cross-linked by the organic groups of the phosphonate ligands.Compounds 2~4 exhibit 2D layered structures with interlayer hydrogen bonds through the pendent carboxylic acid groups.However,the layer topologies are different in the three cases.In 2,the {MnO6}octahedra and {PO3C}tetrahedra are corner-shared with each other alternatively,forming an inorganic layer containing rectangular-shaped 12-membered rings.In 3,edge-sharing dimers of{Mn2O2}are connected by {PO3C}tetrahedra through corner-sharing,forming an inorganic layer containing 4-membered rings.In 4,chains of corner-sharing{MnO5}are connected by{PO3C}tetrahedra into an inorganic layer containing 3-and 4-membered rings.Magnetic studies reveal that antiferromagnetic interactions are dominant in all four compounds.CCDC:1990441,1;1990442,2;1990443,3;1990444,4.

    Keywords:phosphonate;manganese;coordination polymer;magnetic

    Metal-organic systems have provided tremendous possibilities in building up new molecular materials with potential applications in various areas such as sorption and separation,catalysis,sensors and other functional materials[1-3].As an important class of metalorganic materials,metal phosphonates possess advantages over many others in their high water and thermal stabilities due to the strong coordination capabilities of the phosphonate ligands and the presence of inorganic components (cluster,chains and layers)in the molecular composite[4].During the past two decades,great efforts have been devoted to the syntheses of metal phosphonates with new architectures and interesting physical or chemical functions[5-8].Among them,metal phosphonates containing carboxylate groups are of particular interest as they provide additional coordination sites for metal ions[4].For example,by using 2/3/4-carboxyphenylphosphonic acid (2/3/4-cppH3)asreaction precursor,a series of metal phosphonate compounds with 1D,2D and 3D structures have been reported[9],and some of them show interesting magnetic[10],dielectric[11]and chiroptical properties[12].The (4-carboxynaphthalen-1-yl)phosphonic acid (4-cnappH3)is analogues to 4-cppH3except with an expanded aromatic moiety.However,only four metal phosphonates based on this ligand have been described,including a cobalt compound with 3D framework structure showing enantioenrichment[13]and three copper compounds with layered structures[14].To explore new aromatic phosphonate-carboxylate materials,herein we report four new manganese phosphonates based on 4-cnappH3,formulated as Mn(4-cnappH2)2(1),Mn(4-cnappH2)2(H2O)2(2),α-Mn(4-cnappH)(H2O)(3) and β-Mn(4-cnappH)(H2O)(4).Compound 1 shows a 3D framework structure,whereas 2~4 exhibit 2D layered structures but with different layer topologies.The magnetic properties of all four compounds are also investigated.

    1 Experimental

    1.1 Materials and characterization

    The (4-carboxynaphthalen-1-yl)phosphonic acid(4-cnappH3) was synthesized according to the literature method[13,15].All the other starting materials were obtained from commercial sources without further purification.Elemental analysis for C,H,N were performed on a Perkin-Elmer 240C elemental analyzer.The infrared spectra were recorded on a Bruker Tensor 27 spectrometer with pressed KBr pellets in the 400~4 000 cm-1region.Powder X-ray diffraction patterns(PXRD)were recorded in 2θ range of 3°~50°on a Bruker D8 ADVANCE X-ray powder diffractometer(40 kV and 40 mA)using Cu Kα radiation(λ=0.154 18 nm)at room temperature.The magnetic susceptibility data were obtained using polycrystalline samples by a Quantum Design MPMS-XL7 SQUID magnetometer or MPMS SQUID VSM.The diamagnetic contribution of the sample itself was estimated from Pascal′s constant[16].

    1.2 Syntheses of manganese phosphonates

    1.2.1 Synthesis of Mn(4-cnappH2)2(1)

    A mixture of MnCl2·4H2O(0.029 9 g,0.15 mmol)and 4-cnappH3(0.025 3 g,0.10 mmol)in 10 mL of H2O/methanol(2∶3,V/V),adjusted to pH=3.05 with 0.5 mol·L-1NaOH and 0.5 mol·L-1HCl,was kept in a Teflon-lined autoclave at 100℃for 3 d.After cooling to room temperature,light yellow block-like polycrystalline materials of 1 were obtained as a pure phase,confirmed by the powder XRD measurements(Fig.S1).Yield:40.8%(based on 4-cnappH3).Elemental analysis found(Calcd.)for C22H16O10P2Mn(%):C,48.01(47.41);H,3.01(2.90).IR(KBr,cm-1):3 425(b,m),2 902(b,m),1 678(s),1 584(w),1 513(m),1 463(w),1 421(m),1 319(m),1 302(w),1 211(m),1 153(m),1 106(vs),1 078(m),1 044(vs),1 015(vs),961(s),903(m),858(m),788(m),741(m),674(m),624(m).

    1.2.2 Synthesis of Mn(4-cnappH2)2(H2O)2(2)

    Compound 2 was synthesized following a similar procedure to compound 1 except that the pH value of the reaction mixture was 3.80.Colorless plate-like crystals were obtained as a pure phase,confirmed by the powder XRD measurements(Fig.S1).Yield:34.4%(based on 4-cnappH3).Elemental analysis found(Calcd.)for C22H20O12P2Mn2(%):C,44.95(44.54);H,3.43(3.40).IR(KBr,cm-1):3 628(m),3 576(m),3 414(m),3 088(b,m),1 709(s),1 652(m),1 633(m),1 578(w),1 515(m),1 459(m),1 404(w),1 279(m),1 249(m),1 187(s),1 167(m),1 121(s),1 048(vs),1 007(m),944(m),904(m),858(w),797(w),774(s),675(m).

    1.2.3 Synthesis of α-Mn(4-cnappH)(H2O)(3)

    Compound 3 was synthesized following a similar procedure to compound 1 except that the solvent was pure water(6 mL)and the pH value of the reaction mixture was 3.60.Colorless plate-like crystals were obtained as a pure phase,confirmed by the powder XRD measurements(Fig.S1).Yield:34.4%(based on 4-cnappH3).Elemental analysis found (Calcd.)for C11H9O6PMn(%):C,40.56(40.89);H,3.01(2.79).IR(KBr,cm-1):3 332(b,m),3 055(b,m),2 361(w),1 694(s),1 580(m),1 515(m),1 458(w),1 353(w),1 309(m),1 284(m),1 257(m),1 203(m),1 153(w),1 126(m),1 081(vs),1 034(vs),1 017(vs),984(s),927(m),855(w),794(w),773(s),677(m),614(m).

    1.2.4 Synthesis of β-Mn(4-cnappH)(H2O)(4)

    Compound 4 was synthesized following a similar procedure to 3 except that the pH value of the reaction mixture was 4.10 and the reaction temperature was 140℃.Colorless flake-like crystals were obtained as a pure phase,confirmed by the powder XRD measurements(Fig.S1).Yield:50.1% (based on 4-cnappH3).Elemental analysis found(Calcd.)for C11H9O6PMn(%):C,40.66(40.89);H,2.93(2.79).IR(KBr,cm-1):3 334(b,m),2 361(vs),2 341(vs),1 697(s),1 618(m),1 581(w),1 516(m),1 459(w),1 405(m),1 285(m),1 260(m),1 205(w),1 154(w),1 124(m),1 069(s),1 025(s),1 003(s),979(vs),860(m),794(w),773(s),679(s),619(m).

    1.3 Structure determination

    Single crystals of dimensions 0.3 mm×0.1 mm×0.05 mm for 1,0.3 mm×0.02 mm×0.05 mm for 2,0.2 mm×0.15 mm×0.05 mm for 3,and 0.3 mm×0.1 mm×0.1 mm for 4 were used for structural determination on a Bruker APEX DUO diffractometer(Mo Kα,λ=0.071 073 nm)at 123 K (for 1 and 2)or Bruker APEX Ⅱ diffractometer(Mo Kα,λ=0.071 073 nm)at 296 K(for 3 and 4).A total of 8 952,18 518,4 613 and 15 806 diffraction points were collected for compounds 1~4 in the range of 1.8°< θ< 26.0°,2.1°< θ< 26.0°,3.5°< θ< 27.0°and 2.2°< θ< 28.3°,respectively,in which the independent diffraction points were 2 320(1:Rint=0.046),4 591 (2:Rint=0.057),2 385 (3:Rint=0.032)and 2 761(4:Rint=0.082),respectively.The observed diffraction points(I>2.0σ(I))were 1 902,3 788,2 125 and 1 969 for 1~4,respectively.The collected data were integrated by using the Siemens SAINT program[17],with the intensities corrected for the Lorentz factor, polarization, air absorption, and absorption due to variation in the path length through the detector face plate.Absorption corrections were applied.The structures were solved by direct methods and refined on F2by full-matrix least-squares by using SHELXTL[18].All the non-hydrogen atoms were located from the Fourier maps and were refined anisotropically.The organic groups in 3 and 4 are disordered over two sites.The disordered atoms were refined anisotropically.All hydrogen atoms bound to carbon were refined isotropically in the riding mode;hydrogen atoms bound to phosphonate and carboxylate oxygen were calculated on idealized positions by taking into account C-O and P-O bond lengths;hydrogen atoms of water molecules were detected in the experimental electron density map and then refined isotropically with reasonable restriction of O-H bond distances and H-O-H angles.The crystallographic data of the compounds are listed in Table 1.Selected bond lengths and angles are given in Table 2.

    CCDC:1990441,1;1990442,2;1990443,3;1990444,4.

    Continued Table 1

    Table 2 Selected bond lengths(nm)and bond angles(°)for compounds 1~4

    Continued Table 2

    2 Results and discussion

    2.1 Crystal structures of 1 and 2

    Compounds 1 and 2 were synthesized under similar solvothermal reaction conditions in water/methanol solution except the pH value of the reaction mixture(3.05 for 1,and 3.80 for 2,Scheme 1).Although the chemical composition of 2 is different from that of 1 by two additional water molecules,their structures are completely different.

    Single crystal structural determination reveals that 1 crystalizes in orthorhombic system space group Pbcn.The asymmetric unit consists of 0.5 Mn atom and one 4-cnappH2-ligand.The Mn atom has an octahedral geometry with the six sites occupied by four phosphonate oxygen and two carboxylate oxygen atoms from six equivalent 4-cnappH2-ligands(Fig.1a and S4a,Table 2).The Mn-O bond lengths(0.215 0(2)~0.220 0(2)nm)are comparable to those in the other manganese phosphonate compounds[19].

    Each 4-cnappH2-acts as a tri-dentate bridging ligand,binding to three equivalent Mn atoms via two phosphonate oxygen (O2,O3)and one carboxylate oxygen (O4)atoms(Scheme 2a).The remaining one phosphonate oxygen (O3)and one carboxylate oxygen(O5)atoms are protonated.As a result,the equivalent Mn atoms are doubly bridged by the O-P-O units forming infinite chains running along the c-axis with extensive intrachain hydrogen bond interactions(Fig.1a).The neighboring chains are cross-linked by the organic groups of 4-cnappH2-,leading to a threedimensional framework structure(Fig.1b).The shortest Mn…Mn distances are 0.528 4 nm within the chain and 1.138 8 nm between the chains.

    Scheme 1 Synthetic routes of compounds 1~4

    Scheme 2 Coordination modes of 4-cnappH3in compounds 1(a),2(b),3 and 4(c)

    Fig.1 (a)Single chain structure of compound 1;(b)Packing diagram of structure 1

    Compound 2 crystallizes in monoclinic space group P21/c.The asymmetric unit contains one Mn,two 4-cnappH2-and two water molecules.The Mn atom is again octahedrally coordinated but by four phosphonate oxygen atoms(O1,O2A,O4,O5B)and two water molecules(O1W,O2W)(Mn-O 0.209 7(1)~0.223 0(1)nm,∠O-Mn-O=84.5(1)°~173.8(1)°,F(xiàn)ig.2a and S4b,Table 2),unlike that in 1 where the carboxylate oxygen atoms occupy two sites.In addition,each 4-cnappH2-ligand binds to two instead of three equivalent Mn atoms using two of its three phosphonate oxygen donors,leaving both carboxylate oxygen atoms pendant (Scheme 2b).The{MnO6}octahedra and {PO3C}tetrahedra are corner-shared with each other alternatively,forming an inorganic layer containing rectangular-shaped 12-membered rings of Mn6P6(Fig.2a).The Mn…Mn distances within the layer are 0.519 2 and 0.511 6 nm over O-P1-O and O-P2-O units,respectively.Extensive hydrogen bond interactions are present within the layer among the phosphonate oxygen atoms and coordination water molecules.The layers are stacked along the a-axis with the 4-carboxynaphthalen-1-yl groups filling in the interlayer space (Fig.2b).Hydrogen bond interactions are found between the protonated carboxylic groups of the adjacent layers(O7…O9A 0.266 8(135)nm,O10…O9A 0.269 5(127)nm,Symmetry code:A:1+x,1+y,z).The interlayer distance is 1.905 8 nm.

    Fig.2(a)Inorganic layer in structure 2;(b)Packing diagram of structure 2

    2.2 Crystal structures of 3 and 4

    Compounds 3 and 4 were synthesized under hydrothermal conditions at different temperatures(Scheme 1).They are isomers with the same molecular formula,but crystallize in different space groups,triclinic P1 for 3 and monoclinic P21/n for 4.In both cases,the asymmetric unit is composed of one Mn,one 4-cnppH2-and one water molecule.The Mn atoms in 3 and 4 have distorted trigonal bipyramidal geometries(Fig.S5a and S5b),unlike those in 1 and 2.For 3,three equatorial sites of{MnO5}are occupied by the phosphonate oxygen atoms(O1,O2B,O3A),and the axial positions by phosphonate oxygen atom(O2C)and one water(O1W)(Mn-O 0.206 3(6)~0.218 1(5)nm)(Fig.3a).The sum of equatorial O-Mn-O angles,ranging from 114.9°to 129.0°,is 359.5°.The axial O2C-Mn1-O1W angle is 166.1°.The{MnO5}geometry in 4 is more distorted with the equatorial O-Mn-O angles ranging from 105.8°to 144.5°and the axial OMn-O angle of 168.8°(Fig.3c).The coordination modes of the 4-cnppH2-ligands are also quite similar in 3 and 4,each serves as a tetra-dentate ligand connecting four Mn atoms using its three phosphonate oxygen donors,one of which serves as a μ3-O bridge(Scheme 2c).The carboxylate groups are protonated and not involved in coordination with metal ions.Remarkably,although both show layer structures,their layer topologies are significantly different.In 3,two equivalent{MnO5}are edge-shared with each other forming{Mn2O2}dimers(∠Mn1-O2B-Mn1C=102.1(2)°).The dimers are further connected by O-P-O linkages,forming an inorganic layer containing 4-membered rings of Mn2P2(Fig.3a).In 4,the equivalent{MnO5}are corner-shared with each other forming chains of Mn-O-Mn-O (∠Mn1-O1C-Mn1C=116.1(2)°),which are connected by the {PO3C}tetrahedra via cornersharing of{MnO5}and{PO3C}into an inorganic layer containing 3-and 4-membered rings of Mn2P and Mn2P2(Fig.3c).The different topologies result in different Mn…Mn distances within the layer.The Mn…Mn distances over the μ3-O bridge in 3 (0.336 4 nm)is shorter than that in 4(0.368 6 nm).Those over the O-P-O bridges are 0.391 7,0.414 6 and 0.471 4 nm in 3,and 0.417 8 and 0.513 4 nm in 4.The layers are stacked along the c-axis(for 3)or b-axis(for 4)with interlayer hydrogen bond interactions through the carboxylic acid groups,thus leading to 3D supramolecular frameworks(Fig.3b and 3d).

    It is worth mentioning that there are only four compounds reported so far based on the same phosphonate ligand.Compound Co2(4-cnapp)(OH)(H2O)2has a 3D framework structure in which the Δ-type chains of corner-sharing Co3(μ3-OH)triangles are crosslinked by the organic groups of the phosphonate ligands.Compounds α-Cu(4-cnappH)(H2O)and α-Cu(4-cnappH)(H2O)·0.5H2O display layer structures containing 4-and 8-membered rings made up of{CuO4}planes and {PO3C}tetrahedra.In β-Cu(4-cnappH)(H2O),the layer topology is composed of edge-sharing dimers of{CuO5}square pyramids and{PO3C}linkages which is similar to that in 3.Therefore,compounds 1,2 and 4 provide new types of structures of metal phosphonates based on (4-carboxynaphthalen-1-yl)phosphonate ligand.As far as we are aware,the layer topology of 4 has not been observed in the other layered metal phosphonate materials.

    Fig.3 (a)Inorganic layer and(b)packing diagram of structure 3;(c)Inorganic layer and(d)packing diagram of structure 4

    2.3 Magnetic properties

    Temperature dependent magnetic susceptibilities were measured for 1~4 in a temperature range of 1.8~300 K.The observed room temperature χMT values per Mn unit were 4.43 cm3·K·mol-1for 1,5.00 cm3·K·mol-1for 2,4.40 cm3·K·mol-1for 3,and 4.26 cm3·K·mol-1for 4,which are close to the theoretical value(4.38 cm3·K·mol-1)for one Mn(Ⅱ) ion with g=2.0.Upon cooling,the χMT values decreased with decreasing temperature in all cases,indicating that dominant antiferromagnetic (AF)interactions are propagated between the Mn(Ⅱ)ions.

    For 1,there exists O-P-O bridged equally spaced manganese chains,inter-connected by the organic groups.The Mn…Mn distances within the chain(0.528 4 nm)is much shorter than that between the chains(1.138 8 nm).Thus the magnetic susceptibility data can be analyzed using Fisher′s expression for a uniform chain based on Hamiltonian H=-J∑SASA+1,with the classical spins scaled to a real quantum spin of S=5/2[16],leading to parameters g=2.03,J=-0.13 cm-1(Fig.4).The negative exchange coupling constant(J)confirms the presence of weak AF interactions.This value is close to those in[NH3(CH2)4NH3][Mn(hedpH2)2](J=-0.18 cm-1)[20]and Mn{(C7H5N2)CH2N(CH2PO3H)2}(J=-0.08 cm-1)[21]which also contain manganese chains with O-P-O linkages.

    Fig.4 χMvs T(black)and χMT vs T(red)plots for 1

    Compound 2 has a layer structure containing rectangular-shaped 12-membered rings in which each Mn is linked to three equivalents via O-P-O units.The Mn…Mn distances within the layer are 0.519 2 and 0.511 6 nm.It is difficult to find a suitable model to fit the susceptibility data.Hence the data were simply fitted by the Curie-Weiss law,leading to the Curie constantof4.29 cm3·K·mol-1and Weiss constant(θ)of-1.56 K(Fig.S7).The negative θ value also confirms the presence of AF interactions in 2.

    For 3,the layer structure is composed of{Mn2O2}dimers inter-connected by O-P-O units.Assuming that the exchange coupling within the dimer over μ3-O(P)bridge(J)is much stronger than that over the O-P-O bridge between the dimers(zJ′),the susceptibility data can be analyzed by an isotropic dimer model for two S=5/2 spins based on the Heisenberg Hamiltonian H=-JSASB[16].The best fit gave parameters g=2.03,J=-0.82 cm-1,zJ′=0(fixed)(Fig.5).The exchange coupling constant is more negative than that for 1,in agreement with the stronger AF interaction mediated over the μ3-O(P)bridge than that over the O-P-O linkage.The J value also agrees well with those for the other manganese phosphonates containing μ3-O(P)bridged{Mn2O2}dimers[20].The magnetization measured at 2.0 K showed a slight sigmoid curve(Fig.5,Inset).The M value increased linearly with increasing field from zero to 18.8 kOe,above which it increased faster.The result is indicative of a spin flipping behavior from AF group state of the material.

    Fig.5 χM vs T(black)and χMT vs T(red)plots for 3

    In the case of 4,chains of Mn-O-Mn-O are separated by the O-P-O units within the inorganic layer.Both the negative Weiss constant(-36.1 K)and the maximum appearing at 7.5 K in the χMvs T curve support the presence of AF interactions between the magnetic centers(Fig.S8a).However,an attempt to fit the susceptibility data using Fisher′s chain model could not give a reasonable result,indicating that the exchange couplings propagated through μ3-O(P)and O-P-O bridges are comparable.The magnetization curve again reveals a spin flipping behavior with the critical field of 20 kOe at 2.0 K(Fig.S8b).

    3 Conclusions

    We report four manganese phosphonates based on(4-carboxynaphthalen-1-yl)phosphonic acid,namely,Mn(4-cnappH2)2(1),Mn(4-cnappH2)2(H2O)2(2),α-Mn(4-cnappH)(H2O)(3)and β-Mn(4-cnappH)(H2O)(4),simply by modifying the reaction conditions such as the solvent and the pH of the reaction mixture.Compound 1 shows a 3D framework structure containing inorganic chains,whereas 2~4 exhibit 2D layered structures with different topologies of the inorganic layers.Antiferromagnetic interactions are found to be dominant in all four compounds.Spin flipping behavior is observed in compounds 3 and 4.

    Supporting information is available at http://www.wjhxxb.cn

    欧美日韩一级在线毛片| 宅男免费午夜| 欧美中文综合在线视频| 欧美日韩综合久久久久久| 1024香蕉在线观看| 亚洲av成人不卡在线观看播放网 | 超色免费av| 日韩,欧美,国产一区二区三区| 麻豆乱淫一区二区| 国产亚洲欧美精品永久| 如日韩欧美国产精品一区二区三区| 在线看a的网站| 人人妻人人爽人人添夜夜欢视频| 精品亚洲成a人片在线观看| a级毛片黄视频| 高清不卡的av网站| 亚洲免费av在线视频| 大型av网站在线播放| 日本黄色日本黄色录像| 国产成人一区二区在线| 国产主播在线观看一区二区 | 在线观看国产h片| 亚洲欧美成人综合另类久久久| 国产成人精品久久二区二区91| 国产在线视频一区二区| 在线观看免费视频网站a站| 性色av一级| 婷婷色综合www| 啦啦啦在线免费观看视频4| 可以免费在线观看a视频的电影网站| 99香蕉大伊视频| 久久人妻熟女aⅴ| 女人久久www免费人成看片| 精品少妇黑人巨大在线播放| 国产免费又黄又爽又色| 97在线人人人人妻| 久久人人爽人人片av| 国产精品99久久99久久久不卡| 青青草视频在线视频观看| 亚洲av男天堂| 精品国产乱码久久久久久小说| 精品福利永久在线观看| 免费高清在线观看日韩| 人人妻人人爽人人添夜夜欢视频| 日韩 欧美 亚洲 中文字幕| 婷婷色av中文字幕| 国产精品99久久99久久久不卡| 91精品伊人久久大香线蕉| 久久人人爽av亚洲精品天堂| 久久午夜综合久久蜜桃| 中文精品一卡2卡3卡4更新| 国产一区二区三区av在线| 1024视频免费在线观看| 国产一区二区三区综合在线观看| 在线观看免费视频网站a站| 亚洲精品一区蜜桃| 亚洲精品中文字幕在线视频| 久久精品国产综合久久久| 夫妻午夜视频| 亚洲免费av在线视频| 国产黄频视频在线观看| 亚洲七黄色美女视频| 国产精品.久久久| 国产精品国产av在线观看| tube8黄色片| 飞空精品影院首页| 一区二区三区激情视频| 欧美人与性动交α欧美软件| 国精品久久久久久国模美| 中文字幕精品免费在线观看视频| 中文字幕av电影在线播放| 9色porny在线观看| 国产精品三级大全| 国产精品人妻久久久影院| 99热国产这里只有精品6| 日韩人妻精品一区2区三区| 国产av精品麻豆| 国产精品.久久久| 在线精品无人区一区二区三| 青春草视频在线免费观看| 亚洲少妇的诱惑av| 亚洲av综合色区一区| 久久久久国产精品人妻一区二区| 超碰成人久久| 人妻人人澡人人爽人人| 午夜福利视频精品| 国产精品熟女久久久久浪| 久久精品久久久久久久性| 久久人人爽人人片av| 午夜激情av网站| 一区二区三区乱码不卡18| 黄色怎么调成土黄色| 中国国产av一级| 成人国产av品久久久| 高清av免费在线| 成人国语在线视频| 一本色道久久久久久精品综合| 成年女人毛片免费观看观看9 | tube8黄色片| 国产深夜福利视频在线观看| 99热全是精品| a级毛片黄视频| 高清不卡的av网站| 久久热在线av| 一级毛片电影观看| 高清av免费在线| 亚洲免费av在线视频| 永久免费av网站大全| 精品国产一区二区三区久久久樱花| 伦理电影免费视频| 老鸭窝网址在线观看| 久久精品国产亚洲av高清一级| 国产精品.久久久| 99国产精品免费福利视频| 天天影视国产精品| 亚洲 国产 在线| 日韩一区二区三区影片| 热99国产精品久久久久久7| 精品国产国语对白av| 啦啦啦中文免费视频观看日本| 久久热在线av| 在线观看国产h片| 成人18禁高潮啪啪吃奶动态图| www.精华液| 亚洲国产欧美在线一区| 免费在线观看黄色视频的| 免费在线观看黄色视频的| 香蕉国产在线看| 精品福利永久在线观看| 人人妻人人澡人人爽人人夜夜| 80岁老熟妇乱子伦牲交| 91字幕亚洲| 韩国高清视频一区二区三区| 欧美人与性动交α欧美软件| 黄色视频在线播放观看不卡| 好男人视频免费观看在线| 免费一级毛片在线播放高清视频 | 熟女少妇亚洲综合色aaa.| 久久精品久久久久久噜噜老黄| 99香蕉大伊视频| 亚洲天堂av无毛| 人成视频在线观看免费观看| 波野结衣二区三区在线| 国产精品九九99| 欧美人与善性xxx| 亚洲男人天堂网一区| 亚洲,欧美精品.| 热99久久久久精品小说推荐| 亚洲少妇的诱惑av| 欧美av亚洲av综合av国产av| 嫩草影视91久久| 亚洲国产欧美日韩在线播放| 亚洲欧美日韩另类电影网站| 亚洲专区国产一区二区| 丝袜脚勾引网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文日韩欧美视频| 国产免费视频播放在线视频| 婷婷色综合www| 欧美日韩av久久| 国产黄色视频一区二区在线观看| 狂野欧美激情性bbbbbb| 成年人午夜在线观看视频| 在线观看www视频免费| 亚洲专区国产一区二区| 日韩 亚洲 欧美在线| 亚洲欧美日韩另类电影网站| 精品国产超薄肉色丝袜足j| 欧美成人精品欧美一级黄| 欧美日韩黄片免| 亚洲欧美中文字幕日韩二区| 国产片特级美女逼逼视频| 在现免费观看毛片| av不卡在线播放| 中文字幕精品免费在线观看视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区国产| 建设人人有责人人尽责人人享有的| 九色亚洲精品在线播放| 狂野欧美激情性bbbbbb| 激情视频va一区二区三区| 建设人人有责人人尽责人人享有的| 悠悠久久av| 久久亚洲精品不卡| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久av网站| 天天添夜夜摸| 永久免费av网站大全| 女性生殖器流出的白浆| videosex国产| 色网站视频免费| 大型av网站在线播放| 一区二区三区精品91| 香蕉国产在线看| 久久久久视频综合| 国产日韩一区二区三区精品不卡| av国产精品久久久久影院| av一本久久久久| 国产精品免费大片| 日日爽夜夜爽网站| 午夜日韩欧美国产| 亚洲国产欧美网| av国产久精品久网站免费入址| 建设人人有责人人尽责人人享有的| 亚洲精品在线美女| 国产一级毛片在线| avwww免费| 成年人免费黄色播放视频| 国产熟女欧美一区二区| 一级片免费观看大全| 国产精品偷伦视频观看了| 欧美日韩一级在线毛片| 视频区图区小说| 大码成人一级视频| 久久久久久亚洲精品国产蜜桃av| 伦理电影免费视频| 亚洲国产最新在线播放| 美女国产高潮福利片在线看| 啦啦啦啦在线视频资源| 十八禁高潮呻吟视频| 一区二区日韩欧美中文字幕| 亚洲精品美女久久久久99蜜臀 | e午夜精品久久久久久久| 国产男女内射视频| av国产精品久久久久影院| 人妻人人澡人人爽人人| 亚洲欧美中文字幕日韩二区| 国产精品国产三级国产专区5o| 国产在线观看jvid| 国产欧美日韩精品亚洲av| 国产免费现黄频在线看| 制服诱惑二区| 在线观看国产h片| 一本久久精品| 欧美日韩av久久| 新久久久久国产一级毛片| tube8黄色片| 捣出白浆h1v1| 永久免费av网站大全| 国产精品秋霞免费鲁丝片| 亚洲精品国产色婷婷电影| 不卡av一区二区三区| 久久精品久久久久久久性| 欧美av亚洲av综合av国产av| 九草在线视频观看| 久久精品亚洲av国产电影网| 欧美国产精品一级二级三级| 久久精品亚洲熟妇少妇任你| 女人被躁到高潮嗷嗷叫费观| 久久久欧美国产精品| 日韩人妻精品一区2区三区| 成年女人毛片免费观看观看9 | 人人妻人人澡人人看| 国产人伦9x9x在线观看| 九色亚洲精品在线播放| 国产精品麻豆人妻色哟哟久久| 国产伦理片在线播放av一区| 中文字幕人妻丝袜制服| 两性夫妻黄色片| 欧美精品av麻豆av| 最近手机中文字幕大全| 欧美日韩亚洲高清精品| 80岁老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影 | 精品国产乱码久久久久久男人| 亚洲精品日韩在线中文字幕| 在线av久久热| 在线观看免费高清a一片| 日韩免费高清中文字幕av| 亚洲三区欧美一区| 日韩欧美一区视频在线观看| 纵有疾风起免费观看全集完整版| 亚洲色图 男人天堂 中文字幕| 亚洲成国产人片在线观看| 国产1区2区3区精品| 秋霞在线观看毛片| 国产精品国产av在线观看| 国产伦人伦偷精品视频| 别揉我奶头~嗯~啊~动态视频 | 首页视频小说图片口味搜索 | 国产欧美日韩一区二区三 | 天堂俺去俺来也www色官网| 亚洲精品一二三| 亚洲精品自拍成人| 国产片内射在线| 亚洲专区国产一区二区| 国产免费又黄又爽又色| 欧美日韩亚洲综合一区二区三区_| 久9热在线精品视频| 国产成人av激情在线播放| 老司机在亚洲福利影院| 欧美97在线视频| 51午夜福利影视在线观看| 少妇人妻 视频| 国产成人a∨麻豆精品| a级毛片黄视频| 日韩欧美一区视频在线观看| 人体艺术视频欧美日本| 亚洲av成人精品一二三区| 久久国产亚洲av麻豆专区| 老汉色∧v一级毛片| a级片在线免费高清观看视频| 中文字幕人妻丝袜制服| 国产97色在线日韩免费| 欧美日韩国产mv在线观看视频| 晚上一个人看的免费电影| 日本黄色日本黄色录像| 麻豆国产av国片精品| 欧美大码av| 亚洲欧美一区二区三区国产| tube8黄色片| 叶爱在线成人免费视频播放| 日韩伦理黄色片| 啦啦啦在线免费观看视频4| 老司机深夜福利视频在线观看 | 国产精品免费视频内射| 韩国精品一区二区三区| 五月开心婷婷网| 国产一区二区三区av在线| 亚洲欧洲日产国产| 在现免费观看毛片| av在线老鸭窝| 男的添女的下面高潮视频| 夫妻午夜视频| 欧美日韩精品网址| 日本欧美视频一区| 肉色欧美久久久久久久蜜桃| 操出白浆在线播放| 啦啦啦中文免费视频观看日本| 亚洲精品日本国产第一区| www.自偷自拍.com| 大香蕉久久网| 午夜老司机福利片| 久久精品国产综合久久久| 欧美在线黄色| 又大又爽又粗| 久久影院123| 飞空精品影院首页| 午夜福利免费观看在线| 99久久精品国产亚洲精品| www日本在线高清视频| 美女午夜性视频免费| 性色av乱码一区二区三区2| 最新在线观看一区二区三区 | 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀 | 黄色视频在线播放观看不卡| 国产成人系列免费观看| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| 热99国产精品久久久久久7| 天天影视国产精品| 男女免费视频国产| 午夜久久久在线观看| 精品少妇一区二区三区视频日本电影| 少妇被粗大的猛进出69影院| 美女大奶头黄色视频| 久久影院123| 亚洲av综合色区一区| 捣出白浆h1v1| 女警被强在线播放| 久久精品国产综合久久久| 久久国产精品男人的天堂亚洲| 欧美日韩成人在线一区二区| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 捣出白浆h1v1| 99香蕉大伊视频| 人妻人人澡人人爽人人| 国产高清视频在线播放一区 | 深夜精品福利| 久久性视频一级片| 中文字幕av电影在线播放| 亚洲伊人色综图| 51午夜福利影视在线观看| 一级毛片电影观看| 亚洲av综合色区一区| 成人亚洲精品一区在线观看| 美女主播在线视频| 国产片内射在线| 国产精品久久久久久精品古装| 男女床上黄色一级片免费看| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 精品亚洲成a人片在线观看| 亚洲七黄色美女视频| 中国国产av一级| av线在线观看网站| 国产免费现黄频在线看| 少妇人妻 视频| 99九九在线精品视频| 一个人免费看片子| 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 999精品在线视频| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 亚洲国产精品成人久久小说| 午夜免费男女啪啪视频观看| 两性夫妻黄色片| 亚洲成人手机| 一区福利在线观看| 这个男人来自地球电影免费观看| 亚洲国产精品一区三区| 亚洲专区中文字幕在线| 丝袜美腿诱惑在线| 亚洲综合色网址| 亚洲熟女毛片儿| 看十八女毛片水多多多| 大码成人一级视频| 亚洲中文字幕日韩| 精品久久久久久久毛片微露脸 | 尾随美女入室| 日本wwww免费看| 日韩 亚洲 欧美在线| 国产精品九九99| av又黄又爽大尺度在线免费看| 一级黄片播放器| 亚洲,欧美,日韩| 精品久久久久久电影网| 亚洲精品日本国产第一区| 尾随美女入室| 一区二区av电影网| 老司机影院成人| 国产精品二区激情视频| 又粗又硬又长又爽又黄的视频| 久久精品久久久久久久性| 黄色一级大片看看| 亚洲国产av影院在线观看| 一级毛片我不卡| 少妇被粗大的猛进出69影院| 亚洲人成电影免费在线| 日韩免费高清中文字幕av| av视频免费观看在线观看| 婷婷色综合大香蕉| 不卡av一区二区三区| 国产伦理片在线播放av一区| 中文字幕人妻熟女乱码| 欧美国产精品va在线观看不卡| 亚洲,欧美,日韩| 一本色道久久久久久精品综合| 久久久精品区二区三区| 成人亚洲精品一区在线观看| www.精华液| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 9热在线视频观看99| 捣出白浆h1v1| 日韩av免费高清视频| 18禁观看日本| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 亚洲精品国产一区二区精华液| 自线自在国产av| 亚洲精品自拍成人| 好男人视频免费观看在线| 久久av网站| 亚洲精品乱久久久久久| 欧美日韩黄片免| 国产成人精品久久久久久| 我的亚洲天堂| 午夜免费观看性视频| 又大又黄又爽视频免费| 国产精品免费视频内射| 夫妻性生交免费视频一级片| 亚洲国产精品一区三区| 丝袜喷水一区| 国产色视频综合| 老司机影院成人| 欧美日韩综合久久久久久| 丰满迷人的少妇在线观看| 嫩草影视91久久| 一级,二级,三级黄色视频| 脱女人内裤的视频| 国产免费又黄又爽又色| 成年人黄色毛片网站| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 首页视频小说图片口味搜索 | 丝瓜视频免费看黄片| 欧美黑人欧美精品刺激| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 老司机影院毛片| 精品一区在线观看国产| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频 | 免费一级毛片在线播放高清视频 | 在线天堂中文资源库| 亚洲综合色网址| 97在线人人人人妻| 中文欧美无线码| 男人爽女人下面视频在线观看| 国产精品.久久久| 久久影院123| 国产真人三级小视频在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品在线美女| 男的添女的下面高潮视频| 一本大道久久a久久精品| 亚洲,欧美,日韩| 激情五月婷婷亚洲| 国产日韩欧美在线精品| 免费不卡黄色视频| 久久久久久久大尺度免费视频| 又大又爽又粗| 中文字幕精品免费在线观看视频| 在线天堂中文资源库| 国产一区二区 视频在线| 精品一区二区三卡| 成年女人毛片免费观看观看9 | 一本大道久久a久久精品| 人体艺术视频欧美日本| 亚洲中文日韩欧美视频| 人人妻人人爽人人添夜夜欢视频| 国产精品三级大全| 亚洲国产看品久久| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 亚洲精品乱久久久久久| av天堂在线播放| 日韩一卡2卡3卡4卡2021年| 日韩制服丝袜自拍偷拍| 欧美日韩一级在线毛片| 悠悠久久av| 日本色播在线视频| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 日韩中文字幕欧美一区二区 | 夜夜骑夜夜射夜夜干| 亚洲九九香蕉| 我要看黄色一级片免费的| 免费观看av网站的网址| 一级毛片我不卡| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 日本a在线网址| www日本在线高清视频| 99精国产麻豆久久婷婷| 久久精品国产综合久久久| 午夜福利在线免费观看网站| 国产av国产精品国产| 高清视频免费观看一区二区| 成人三级做爰电影| 日本五十路高清| 亚洲欧洲国产日韩| 蜜桃国产av成人99| 欧美日韩成人在线一区二区| 午夜激情av网站| 日本a在线网址| 国产精品久久久久成人av| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 深夜精品福利| 50天的宝宝边吃奶边哭怎么回事| 尾随美女入室| 久久国产精品人妻蜜桃| 另类亚洲欧美激情| 一级毛片电影观看| 考比视频在线观看| 欧美国产精品一级二级三级| 午夜免费观看性视频| 2018国产大陆天天弄谢| 国产日韩欧美在线精品| 18禁裸乳无遮挡动漫免费视频| 91成人精品电影| 99热网站在线观看| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美色中文字幕在线| 最新在线观看一区二区三区 | 蜜桃在线观看..| 伦理电影免费视频| 欧美变态另类bdsm刘玥| svipshipincom国产片| 日韩精品免费视频一区二区三区| 又粗又硬又长又爽又黄的视频| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 新久久久久国产一级毛片| 亚洲成国产人片在线观看| 一个人免费看片子| 大码成人一级视频| 搡老岳熟女国产| 亚洲国产欧美在线一区| 国产真人三级小视频在线观看| 777米奇影视久久| 国产又爽黄色视频| 国产精品免费大片| 久久精品aⅴ一区二区三区四区| 日本猛色少妇xxxxx猛交久久| 国产一卡二卡三卡精品| 国产日韩一区二区三区精品不卡| 亚洲第一青青草原| 久久国产精品人妻蜜桃| 欧美激情 高清一区二区三区| 亚洲av电影在线观看一区二区三区| 久久毛片免费看一区二区三区| 考比视频在线观看| 国产亚洲午夜精品一区二区久久| 人妻 亚洲 视频| 国产人伦9x9x在线观看| 欧美激情 高清一区二区三区| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 日日爽夜夜爽网站| 久久女婷五月综合色啪小说| 一级毛片我不卡| 亚洲欧美一区二区三区黑人| 亚洲午夜精品一区,二区,三区| 亚洲精品自拍成人| 激情视频va一区二区三区| 日韩伦理黄色片| 成人国产一区最新在线观看 |