• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Zn(Ⅱ) and Cd(Ⅱ) Metal-Organic Frameworks with Mixed Ligands:Synthesis,Structure,Sorption and Luminescent Properties

    2020-06-21 10:03:02LIYuLingZHAOYueSUNWeiYin

    LI Yu-LingZHAO YueSUN Wei-Yin

    (1State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210023,China)

    (2School of Chemical Engineering and Food Science,Zhengzhou University of Technology,Zhengzhou 450044,China)

    Abstract:Two new metal-organic frameworks(MOFs)[Cd3(tib)2(BPT)2(H2O)2]·DMA·6H2O(1)and[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)(tib=1,3,5-tris(1-imidazolyl)benzene,H3BPT=biphenyl-3,4′,5-tricarboxylic acid,H3BTB=4,4′,4″-benzene-1,3,5-triyl-tribenzoic acid,DMA=N,N-dimethylacetamide)were synthesized and characterized.Complex 1 is a 4-nodal three-dimensional(3D)framework with point symbol{83}4{85·12}{86}2,while 2 is a two-dimensional(2D)network to be joined together by hydrogen bonds to generate a 3D supramolecular structure.Gas/vapor adsorption and luminescence behavior of the two complexes were studied.It is meaningful that 1 and 2 can selectively adsorb CO2 over N2,and MeOH over EtOH.Furthermore,1 can selectively detect acetone through a fluorescence quenching mechanism in the organic solvents including MeOH,EtOH,2-PA,CH3CN,DMF,DMA,THF,CHCl3,CH2Cl2 and acetone.CCDC:1996242,1;1845264,2.

    Keywords:Zn(Ⅱ) and Cd(Ⅱ) MOFs;sorption properties;luminescent properties

    Over the past years,the rational design and synthesis of functional metal-organic frameworks(MOFs)materials have caused remarkable attention due to their rich and varied structures as well as potential application,such as gas storage and separation,magnetism,heterogeneous catalysis,drug delivery and luminescence[1-8].However,it still remains challenging by control-synthesizing and predicting structures of the functional MOFs because of many factors which can affect the structures and properties of MOFs.Among these factors,the selection of organic linkers is very crucial for formation of MOFs with definite framework structures and desired properties.Therefore,proper organic bridging linkers are significant in building the desired MOFs materials.As for as we know,biphenyl-3,4′,5-tricarboxylic acid(H3BPT)and 4,4′,4″-benzene-1,3,5-triyl-tribenzoic acid (H3BTB)(Scheme 1)are good bridging ligands because of their diversified coordination modes and rigid multicarboxylic groups[9-12].

    Scheme 1 Coordination modes of BPT3-and HBTB2-in 1 and 2

    In our previous studies,a rigid tridentate ligand 1,3,5-tris(1-imidazolyl)benzene(tib)as a N-donor ligand have been used in construction of MOFs,and the results showed that it can react with varied metal salts leading to the formation of MOFs with specific structures and interesting properties[13-15].Thus,it is meaningful for using mixed N-donor ligand tib and multicarboxylic acids H3BPT/H3BTB to construct MOFs with novel structures and properties.In this work,two new metal-organic frameworks, [Cd3(tib)2(BPT)2(H2O)2]·DMA·6H2O(1)and[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)(tib=1,3,5-tris(1-imidazolyl)benzene,H3BPT=biphenyl-3,4′,5-tricarboxylic acid,H3BTB=4,4′,4″-benzene-1,3,5-triyl-tribenzoic acid,DMA=N,N-dimethylacetamide),were synthesized and characterized.Structural characterization reveals that complex 1 is a 4-nodal 3D framework with point symbol{83}4{85·12}{86}2,while 2 is a 2D network to be joined togetherby hydrogen bonds to generate a 3D supramolecular structure.Gas/vapor adsorption and luminescence behavior of the two complexes were studied.It is meaningful that 1 and 2 can selectively adsorb CO2over N2,and MeOH over EtOH.Furthermore,1 can selectivity detect acetone through a fluorescence quenching mechanism in the organic solvents including MeOH,EtOH,2-PA,CH3CN,DMF,DMA,THF,CHCl3,CH2Cl2and acetone.

    1 Experimental

    1.1 Materials and measurements

    All commercially available chemicals and solvents are of reagent grade and were used as received without further purification.Ligand tib was prepared according to the procedures reported previously[16].Elemental analyses for C,H and N were performed on a FLASH EA 1112 elemental analyzer.Thermogravimetric analyses(TGA)were carried out on a Mettler-Toledo (TGA/DSC1)thermal analyzer under nitrogen with a heating rate of 10℃·min-1.FT-IR spectra were recorded in a range of 400~4 000 cm-1on a BRUKER TENSOR 27 spectrophotometer using KBr pellets.Powder X-ray diffraction (PXRD)analyses were performed on a Bruker D8 Advance X-ray diffractometer with Cu Kα (λ=0.154 18 nm)radiation,in which the X-ray tube was operated at 40 kV and 40 mA,and the scanning angle range was between 5°and 50°.Sorption experiments were carried out on a Belsorp-max volumetric gas sorption instrument.The lumine-scence spectra were recorded on an Aminco Bowman Series 2 spectrofluorometer with a xenon arc lamp as the light source.The pass width of 10 nm was used in the measurements of emission and excitation spectra,and all the measurements were performed under the same experimental conditions.

    1.2 Synthesis of[Cd3(tib)2(BPT)2(H2O)2]·DMA·4H2O(1)

    A mixture of tib (13.8 mg,0.05 mmol),H3BPT(14.3 mg,0.05 mmol),and Cd(NO3)2·4H2O(30.0 mg,0.1 mmol)in DMA/H2O (8 mL,3∶1,V/V)was placed in an 18 mL Teflon-lined stainless steel container and heated at 90 ℃ for 72 h.Thereafter,colorless blockshaped crystals of 1 were isolated in 80%yield(based on tib).Elemental analysis Calcd.for C64H63N13O21Cd3(%):C 45.55,H 3.76,N 10.79;Found(%):C 45.28,H 3.91,N 10.72.IR(KBr pellet,cm-1):3 357(m),3 143(m),1 670(m),1 610(m),1 569(s),1 403(s),1 357(m),1 278(m),1 191(m),1 096(m),1 051(m),932(m),852(m),792(s),674(m),558(m),447(m).

    1.3 Synthesis of[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)

    Complex 2 was synthesized by tib(13.8 mg,0.05 mmol),H3BTB (22.0 mg,0.05 mmol)and Zn(NO3)2·6H2O(30.0 mg,0.1 mmol)in H2O(8 mL)in a 18 mL glass vial and heated at 160℃for 72 h.After cooling to room temperature,colorless block crystals of 2 were obtained with a yield of 75%based on tib.Anal.Calcd.for C69H50N6O15Zn2(%):C 62.13,H 3.78,N 6.30;Found(%):C 62.07,H 3.85,N 6.25.IR(KBr pellet,cm-1):3 449(m),1 689(s),1 662(s),1 620(s),1 511(m),1 401(s),1 240(m),1 177(m),1 075(s),1 015(s),946(m),854(m),774(s),683(m),646(m),482(m).

    1.4 Sample activation

    Solvent-exchanged samples were prepared by immersing the as-synthesized samples 1 in THF for 3 days to remove the nonvolatile solvates,the solvent was decanted every 8 h,and fresh THF was added.The activated sample 1′was obtained by heating the solvent-exchanged samples at 423 K under a dynamic high vacuum for 10 h.The activated samples 2′was obtained by heating the sample 2 directly at 423 K under a dynamic high vacuum for 10 h.

    1.5 X-ray crystallography

    Crystallographic data of 1 and 2 were collected on a Bruker Smart ApexⅡCCD area-detector diffractometer with graphite-monochromated Mo Kα radiation(λ =0.071 073 nm)using the ω-scan technique.The diffraction data were integrated using the SAINT program[17],which were also used for the intensity corrections for the Lorentz and polarization effects.Semi-empirical absorption correction was applied using the SADABS program[18].Complex 1 was solved by direct methods using SHELXT-2014 and all the non-hydrogen atoms were refined anisotropically on F2by the full-matrix least-squares technique with the SHELXL-2018[19-20].Complex 2 was solved by direct methods using SHELXT-2014 and all the nonhydrogen atoms were refined anisotropically on F2by the full-matrix least-squares technique with the SHELXL-2014[19].All the hydrogen atoms,except for those of water molecules,were generated geometrically and refined isotropically using the riding model.The hydrogen atoms of the coordinated water molecules were found from the Fourier map directly,while those of free water molecules were not found.Because some free solvent molecules in 1 are highly disordered and impossible to refine using conventional discrete-atom models,the SQUEEZE subroutine of the PLATON software suite[21-22]was applied to remove the scattering from the highly disordered solvent molecules.The formula of 1 was calculated based on volume/count_electron analysis,thermogravimetric analysis(TGA)and elemental analysis.The reported refinements are of the guest-free structures obtained by the SQUEEZE routine,and the results are attached to the CIF file.The details of the crystal parameters,data collection,and refinements for the 1 and 2 are listed in Table 1.Selected bond lengths and angles are given in Table S1,and the hydrogen bond data for 2 are provided in Table S2.

    CCDC:1996242,1;1845264,2.

    Table 1 Crystal data and structure refinements for 1 and 2

    Continued Table 1

    2 Results and discussion

    2.1 Crystal structure of[Cd3(tib)2(BPT)2(H2O)2]·DMA·6H2O(1)

    X-ray crystallographic analyses show that1 crystallizes in the C2/c space group (Table 1).As shown in Fig.1a,the asymmetric unit of 1 contains two crystallographically independent Cd(Ⅱ) cations,which have different coordination environments.The Cd1 is in a distorted tetrahedral coordination geometry with two N atoms(N1,N1A)from two different tib ligands and two carboxylate O atoms (O1,O1A)from two distinct BPT3-anions,while the Cd2 is six-coordinated with a distorted octahedral geometry by two imidazole N atoms (N6B,N4C)from two different tib ligands,three carboxylate O atoms(O3D,O4D,O5)from two different BPT3-anions,and one coordinated water molecule.The Cd-N and Cd-O bond lengths are found to be 0.227 7(3)~0.236 0(3)and 0.217 7(3)~0.248 0(3)nm,respectively(Table S1).Moreover,the coordination angles around Cd are in a range of 55.12(8)°~178.81(12)°(Table S1).In 1,each Cd(Ⅱ) ion connects two tib and every tib joins three Cd(Ⅱ)ions to form a 2D network (Fig.1b).Meanwhile,each BPT3-ligand adopts the coordination mode (κ1)-(κ1)-(κ2)-μ3-BPT coordination mode (Scheme 1,mode Ⅰ)to connect three Cd(Ⅱ) cations and every Cd(Ⅱ) links two ligands to build a 2D Cd-BPT structure(Fig.1c).The 2D Cdtib and 2D Cd-BPT are interspersed with Cd ions as nodes to generate the final 3D structure(Fig.1d).According to the simplification principle,Cd1,Cd2,tib,and BPT3-can be viewed as four-,four-,three-,and three-connectors,respectively.So,the resulting structure of 1 is a (3,3,4,4)-connected 4-nodal 3D framework with a{83}4{85·12}{86}2topology(Fig.1e)[23].Additionally,the solvent-accessible volume of 1 is 2.025 4 nm3per 7.338 4 nm3unit cell volume(27.6%of the total crystal volume)[24].

    2.2 Crystal structure of[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)

    Fig.1 (a)Coordination environment around Cd(Ⅱ)in 1;(b)2D Cd-tib network in 1;(c)2D Cd-BPT network structure in 1;(d)3D packing structure of 1(Grey color:2D Cd-tib network,Green color:1D Cd-BPT chain structure);(e)Topological presentation of 1

    When the H3BPT was replaced by H3BTB,complex 2 was isolated.As illustrated in Fig.2a,the asymmetric unit of 2 contains two crystallographically independent Zn ions.Zn1 is six-coordinated with distorted octahedral geometry by two imidazole N atoms (N1,N5A)from two different tib and four carboxylate O ones(O1,O2,O7,O8)from two distinct HBTB2-,with Zn1-N bond distance from 0.201 9(3)to 0.202 3(4)nm and the Zn1-O one from 0.196 2(3)to 0.198 2(3)nm.Furthermore,the coordination angles around Zn1 are in the scope of 97.54(13)°~121.79(15)°(Table S1).While Zn2 is five-coordinated by one imidazole N atom (N3B)from tib ligand,three carboxylate O atoms(O3,O11C,O12C)from different HBTB2-and one terminal water molecule(O1W).The bond lengths and coordination angles around Zn2 are in normal range (Table S1).In 2,each Zn1 ions joins two tib molecules and each tib ligand connects two Zn1 ions to construct a 1D chain(Fig.2b).Meanwhile,partly deprotonated HBTB2-ligand adopts(κ1)-(κ2)-μ2-HBTB or(κ2)-(κ2)-μ2-HBTB coordination mode(Scheme 1,modeⅡ andⅢ)to connect two Zn(Ⅱ) ions to form a 1D chain structure (Fig.2c).The combination of 1D Zn-tib chain and 1D Zn-HBTB chain generate a final 2D network structure of 2 (Fig.2d).Eventually,hydrogen bonding C(10)-H(10A)…O1W and C(3)-H(3)…O11(Table S2)bridge the layers to form a 3D supramolecular structure of 2(Fig.2e).

    Fig.2 (a)Coordination environment of Zn(Ⅱ)in 2;(b)1D chain structure of Zn-tib in 2 along b axis;(c)1D chain structure of Zn-HBTB in 2 along c axis;(d)2D layer structure of 2;(e)3D supramolecular structure of 2 with hydrogen bonds indicated by dashed lines

    2.3 Powder X-ray diffraction(PXRD)and thermal stability

    The purity for the bulky samples of synthesized 1 and 2 were confirmed by PXRD tests and the results are provided in Fig.S1.Each PXRD pattern of the asprepared sample was well consistent with the simulated one,confirming the phase purity of the products.

    Thermogravimetric analysis (TGA)was carried out in evaluating the thermal stability of the frameworks and the TGA curves of 1 and 2 are shown in Fig.S2.Complex 1 showed a weight loss of 13.2%between 30 and 245℃corresponding to the removal of free and coordinated H2O molecules as well as free DMA molecules(Calcd.13.4%).Further weight loss was observed at about 350℃,implying collapse of the framework of complex 1(Fig.S2a).TGA curve of 2 gave weight loss of 4.4% from 30 to 185℃,originating from the loss oftwo free and one coordinated H2O molecules (Calcd.4.0%),and the framework is stable up to about 395℃(Fig.S2b).

    2.4 Gas and vapor adsorption properties

    The porosity and high stability of the frameworks prompted us to examine their gas/vapor sorption behavior.The sorption performances of the activated samples 1′and 2′for N2at 77 K,CO2at 195 K,MeOH and EtOH at 298 K are discussed here.

    From the Fig.3a,we can see the adsorption isotherm of N2at 77 K for 1′,which suggests only surface adsorption[25].However,as shown in Fig.3a and 3b,the adsorption capacities of CO2,MeOH,and EtOH on 1′are considerable.The CO2adsorption capacity of 1′at 195 K and 100 kPa was 81.12 cm3·g-1,corresponding to about 5.8 CO2molecules per formula unit,while the uptake amount of CH3OH and CH3CH2OH at 298 K and 100 kPa was 105.81 cm3·g-1(151.04 mg·g-1)and 33.32 cm3·g-1(68.54 mg·g-1),corresponding to 7.6 MeOH molecules and 2.4 EtOH molecules per formula unit,respectively.The observed hysteretic adsorption and incomplete desorption behavior suggest strong interactions between adsorbed CO2and the framework[26-29].Considering all of the above analysis results,it can be seen that complex 1 can selectively adsorb CO2and MeOH molecules.

    It is noteworthy that almost no adsorption of N2at 77 K and EtOH at 298 K was found for 2′(Fig.4a and 4b).The final value of CO2adsorption at 195 K and 100 kPa was 32.14 cm3·g-1corresponding to about 1.9 CO2molecules per formula unit for 2′.As for MeOH adsorption of 2′at 298 K (Fig.4b),the final value of 47.3 cm3·g-1(71.8 mg·g-1)at 100 kPa corresponds to 2.8 MeOH molecules per formula unit for 2′.The hysteresis and incomplete desorption suggest the strong interactions between the adsorbate and adsorbent,which include the hydrogen bond interactions between the guest molecules and framework,as well as the guest molecules and the guest molecules.

    Fig.3 (a)Sorption isotherms of N2 at 77 K and CO2 at 195 K for 1′;(b)Sorption isotherms of MeOH and EtOH at 298 K for 1′

    Fig.4 (a)N2 at 77 K and CO2 at 195 K sorption isotherms for 2′;(b)MeOH and EtOH at 298 K sorption isotherms for 2′

    2.5 Fluorescence sensing properties

    MOFs constructed from d10-metal ions and πconjugated skeleton ligands are usually considered to be potential luminescent materials[30-34].Accordingly,the luminescence properties of tib,H3BPT ligands and 1 were studied in the solid state at room temperature.It was found that 1 displayed apparent fluorescence enhancement and the intense emission bands were observed at λem=398 nm (λex=335 nm)as exhibited in Fig.5,which may be attributed to the tib and H3BPT ligands emission since the free tib and H3BPT ligands exhibited emission at 402 and 408 nm (λex=295 nm),respectively[35-36].It has been reported that the construction of architectures can enhance the rigidity ofthe aromatic backbone ofthe ligands and strengthen the intramolecular/intermolecular interactions among the organic ligands,which are beneficial to energy transfer[37].Compared with the free tib and H3BPT ligands,the observed much stronger emission intensity of 1 implies that the formation of MOFs enhances the fluorescence of the ligand.

    Fig.5 Solid-state photoluminescence spectra of the free tib and H3BPT ligands(λex=295 nm)and 1(λex=335 nm)at room temperature

    To examine the potential sensing properties for small organic solvent molecules,the fluorescence experiments of 1 were carried out by dispersing 5 mg well-ground crystalline powder samples in 3 mL different organic solvents including MeOH,EtOH,2-propanol(2-PA),CH3CN,DMF,DMA,THF,CHCl3,CH2Cl2and acetone.As illustrated in Fig.6,the intensity of the photoluminescent(PL)of 1 distinctly depended on the identity of the solvent molecule and the emission intensity of 1 in MeOH dispersion was stronger than those in other solvent dispersions under the same concentration.Therefore,MeOH was chose as dispersion solvent in the sensing studies.Furthermore,only addition of acetone can quench the fluorescence emissions of 1 efficiently.These experimental phenomena can be mainly attributed to dierent interactions between the framework architecture and distinct organics[38].

    Fig.6 Photoluminescence intensities of 1 introduced into different pure organic solvents when excited at 335 nm

    To examine the sensing sensitivity of 1 toward acetone in detail,a batch of suspensions of 1 were dispersed in MeOH solution,respectively,with gradually increasing acetone concentration.As exhibited in Fig.7,with the addition of acetone into the suspensions of 1,a gradual decrease of the fluorescence intensity was observed.The results of fluorescence titration of 1 show that about 50%decrease of the luminescence intensity was reached with the addition of 5 μL acetone,and the luminescence was almost completely quenched with the addition of 50 μL acetone.Therefore the tib-composed complex 1 may be served as a potential fluorescent sensing material.

    Fig.7 Fluorescence titrations of compound 1 dispersed in 1 mg·mL-1MeOH with gradual addition of acetone

    3 Conclusions

    In summary,two new Cd(Ⅱ) and Zn(Ⅱ)-based MOFs with mixed tib and tricarboxylate ligands have been synthesized.Gas/vapor adsorption and luminescence behavior of the complexes were investigated and the results indicate that complexes 1 and 2 both show the ability to selectively adsorb CO2over N2,MeOH over EtOH,suggesting a possible application in selective gas/vapor adsorption and separation.More importantly,complex 1 shows unique selectivity for detection of acetone through luminescence quenching mechanism.It can be seen that the mixed ligand is an effective strategy for assembling MOF-based functional material.

    Acknowledgements:We gratefully acknowledge the Key Projects of Henan Provincial High School (GrantNo.18A150042)for financial support of this work.This work was also financially supported by the National Research Project Incubation Fund of Zhengzhou University of Technology(Grant No.GJJKTPY2018K1).

    Supporting information is available at http://www.wjhxxb.cn

    a级毛片a级免费在线| 好男人在线观看高清免费视频| 视频区欧美日本亚洲| 国产爱豆传媒在线观看 | 可以在线观看的亚洲视频| 久久中文字幕一级| av福利片在线| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 免费在线观看黄色视频的| 欧美日韩亚洲综合一区二区三区_| 日本 av在线| 亚洲va日本ⅴa欧美va伊人久久| cao死你这个sao货| 亚洲精品久久成人aⅴ小说| 国产精品乱码一区二三区的特点| xxxwww97欧美| 亚洲精品粉嫩美女一区| 国产区一区二久久| 88av欧美| 在线观看66精品国产| 国产黄色小视频在线观看| 脱女人内裤的视频| 特大巨黑吊av在线直播| 国产午夜精品论理片| www.自偷自拍.com| 韩国av一区二区三区四区| av在线播放免费不卡| 国产亚洲精品av在线| 欧美黑人精品巨大| 黑人欧美特级aaaaaa片| 蜜桃久久精品国产亚洲av| 亚洲一区高清亚洲精品| 久久精品国产99精品国产亚洲性色| 亚洲av电影不卡..在线观看| 色尼玛亚洲综合影院| 观看免费一级毛片| 国内久久婷婷六月综合欲色啪| 精品午夜福利视频在线观看一区| 黄色片一级片一级黄色片| 国产午夜精品久久久久久| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品一及| 国产亚洲精品第一综合不卡| 亚洲中文字幕日韩| 看黄色毛片网站| 色综合婷婷激情| 国产精品野战在线观看| 看免费av毛片| 一级毛片女人18水好多| 国产精品久久电影中文字幕| 久久久国产成人精品二区| 久久精品影院6| 国产免费av片在线观看野外av| 超碰成人久久| 久9热在线精品视频| ponron亚洲| 亚洲 欧美一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成电影免费在线| 亚洲色图 男人天堂 中文字幕| 最近在线观看免费完整版| 久久精品综合一区二区三区| 久久久水蜜桃国产精品网| 亚洲熟妇中文字幕五十中出| 国产蜜桃级精品一区二区三区| 精华霜和精华液先用哪个| 亚洲国产精品999在线| 一区福利在线观看| 香蕉av资源在线| av天堂在线播放| 国产av在哪里看| 黄色 视频免费看| 亚洲人成网站在线播放欧美日韩| 好看av亚洲va欧美ⅴa在| 国产激情偷乱视频一区二区| 高清在线国产一区| 国产视频内射| 在线观看日韩欧美| 久久久精品国产亚洲av高清涩受| 丝袜人妻中文字幕| 欧美zozozo另类| 国产精品久久视频播放| 免费观看人在逋| 床上黄色一级片| 中文字幕人妻丝袜一区二区| av欧美777| 国产免费av片在线观看野外av| 久久精品人妻少妇| 国产一区二区三区视频了| 婷婷亚洲欧美| 熟女电影av网| 国产99白浆流出| 成人国产综合亚洲| 看免费av毛片| 人妻丰满熟妇av一区二区三区| 色尼玛亚洲综合影院| 精品久久久久久成人av| 亚洲欧美日韩高清在线视频| 正在播放国产对白刺激| 淫妇啪啪啪对白视频| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇的丰满在线观看| 亚洲男人的天堂狠狠| 欧美3d第一页| 夜夜夜夜夜久久久久| 麻豆成人午夜福利视频| 非洲黑人性xxxx精品又粗又长| bbb黄色大片| www国产在线视频色| 老鸭窝网址在线观看| 天堂√8在线中文| 村上凉子中文字幕在线| 99久久精品热视频| 国语自产精品视频在线第100页| 天堂影院成人在线观看| 亚洲一区高清亚洲精品| tocl精华| 久久中文字幕人妻熟女| 亚洲欧洲精品一区二区精品久久久| 青草久久国产| 18禁国产床啪视频网站| 成人高潮视频无遮挡免费网站| 性欧美人与动物交配| 日韩欧美三级三区| av福利片在线观看| 精品一区二区三区视频在线观看免费| 好男人在线观看高清免费视频| 桃红色精品国产亚洲av| 国产午夜精品久久久久久| 国产在线观看jvid| 一边摸一边做爽爽视频免费| 成人高潮视频无遮挡免费网站| 日日爽夜夜爽网站| 特大巨黑吊av在线直播| 久久久久久久午夜电影| 精品福利观看| 精品第一国产精品| 欧美日韩中文字幕国产精品一区二区三区| 91字幕亚洲| 午夜福利在线在线| 中文字幕人成人乱码亚洲影| 亚洲成人免费电影在线观看| 床上黄色一级片| 国产av不卡久久| 国产精品爽爽va在线观看网站| 欧美zozozo另类| 中文字幕熟女人妻在线| 一夜夜www| 亚洲av熟女| 中亚洲国语对白在线视频| 99久久精品热视频| 欧美一级a爱片免费观看看 | 久久香蕉精品热| 性欧美人与动物交配| 国产97色在线日韩免费| 成人亚洲精品av一区二区| 黄色a级毛片大全视频| 91老司机精品| 国产激情偷乱视频一区二区| 欧美乱色亚洲激情| 亚洲一区中文字幕在线| 国产乱人伦免费视频| 亚洲 欧美 日韩 在线 免费| 国产精品影院久久| 久久亚洲精品不卡| 1024香蕉在线观看| 国产不卡一卡二| 国产精品av视频在线免费观看| 丰满人妻一区二区三区视频av | 精品不卡国产一区二区三区| 激情在线观看视频在线高清| 成人av一区二区三区在线看| 日本 av在线| 国产免费av片在线观看野外av| a级毛片a级免费在线| 亚洲国产精品成人综合色| 桃红色精品国产亚洲av| 大型av网站在线播放| 亚洲一码二码三码区别大吗| 国产主播在线观看一区二区| 黄色女人牲交| 亚洲九九香蕉| 母亲3免费完整高清在线观看| 国产黄色小视频在线观看| cao死你这个sao货| 高清毛片免费观看视频网站| 一本一本综合久久| 高清在线国产一区| 成年版毛片免费区| 亚洲美女视频黄频| 美女午夜性视频免费| 国产99白浆流出| 亚洲成人久久性| 一进一出抽搐gif免费好疼| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 国产精品香港三级国产av潘金莲| 在线观看www视频免费| 国产精品一区二区精品视频观看| 精品高清国产在线一区| 女人爽到高潮嗷嗷叫在线视频| 欧美乱码精品一区二区三区| 国产精品久久久久久久电影 | 叶爱在线成人免费视频播放| 淫秽高清视频在线观看| 一级a爱片免费观看的视频| 亚洲片人在线观看| 日本精品一区二区三区蜜桃| 国产精品自产拍在线观看55亚洲| a级毛片在线看网站| 18禁美女被吸乳视频| 国产成人精品久久二区二区91| 国产成人精品无人区| 女生性感内裤真人,穿戴方法视频| 视频区欧美日本亚洲| 香蕉丝袜av| 久久中文字幕一级| 又大又爽又粗| 久久久久久大精品| 国产精品爽爽va在线观看网站| av有码第一页| 五月玫瑰六月丁香| 精品久久久久久,| 国内揄拍国产精品人妻在线| 我的老师免费观看完整版| 特级一级黄色大片| 欧美乱色亚洲激情| 白带黄色成豆腐渣| 亚洲国产日韩欧美精品在线观看 | 成人永久免费在线观看视频| 亚洲一区中文字幕在线| 国产精品一区二区精品视频观看| 亚洲真实伦在线观看| 欧美又色又爽又黄视频| 国产又色又爽无遮挡免费看| 一进一出抽搐动态| 在线观看免费日韩欧美大片| 国产真实乱freesex| 欧洲精品卡2卡3卡4卡5卡区| 怎么达到女性高潮| 欧美性长视频在线观看| 在线观看66精品国产| 男人舔女人的私密视频| 男女午夜视频在线观看| 我的老师免费观看完整版| 男人舔奶头视频| 女同久久另类99精品国产91| 久久精品人妻少妇| 日韩 欧美 亚洲 中文字幕| 在线视频色国产色| 女人高潮潮喷娇喘18禁视频| 久久精品国产亚洲av香蕉五月| 丰满的人妻完整版| 听说在线观看完整版免费高清| 久久香蕉激情| 国产精品亚洲av一区麻豆| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区免费欧美| 久久久久久久久免费视频了| 精品久久久久久久人妻蜜臀av| 亚洲专区字幕在线| 国产亚洲精品久久久久久毛片| 久久婷婷人人爽人人干人人爱| 亚洲精品久久成人aⅴ小说| 亚洲中文av在线| 精品免费久久久久久久清纯| 精品无人区乱码1区二区| 国产区一区二久久| 精品国产乱子伦一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲成人久久性| 1024香蕉在线观看| 色综合站精品国产| 在线观看日韩欧美| 精品日产1卡2卡| 欧美高清成人免费视频www| 精品国产亚洲在线| 国产精品一及| videosex国产| 男人的好看免费观看在线视频 | 淫妇啪啪啪对白视频| 成人国产综合亚洲| 一边摸一边做爽爽视频免费| 国产高清激情床上av| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 狂野欧美激情性xxxx| 夜夜躁狠狠躁天天躁| 成人特级黄色片久久久久久久| 人妻夜夜爽99麻豆av| 在线视频色国产色| 中文字幕人妻丝袜一区二区| 亚洲18禁久久av| 欧美成狂野欧美在线观看| 成年人黄色毛片网站| 久久久久久亚洲精品国产蜜桃av| 欧美高清成人免费视频www| 亚洲欧美精品综合一区二区三区| 亚洲精品一区av在线观看| 老汉色av国产亚洲站长工具| 国内毛片毛片毛片毛片毛片| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲av一区麻豆| 日韩欧美国产在线观看| 在线国产一区二区在线| 老司机在亚洲福利影院| 国产亚洲精品久久久久久毛片| 亚洲av成人不卡在线观看播放网| 国内少妇人妻偷人精品xxx网站 | 91成年电影在线观看| 亚洲男人的天堂狠狠| 日本黄大片高清| 淫秽高清视频在线观看| 国产v大片淫在线免费观看| 一边摸一边做爽爽视频免费| 色综合站精品国产| 久久性视频一级片| 免费搜索国产男女视频| 中文字幕精品亚洲无线码一区| 欧美最黄视频在线播放免费| 午夜视频精品福利| 91成年电影在线观看| 99久久精品国产亚洲精品| 国产成+人综合+亚洲专区| 国产成人系列免费观看| 搡老妇女老女人老熟妇| 欧美中文综合在线视频| 又黄又粗又硬又大视频| 欧美+亚洲+日韩+国产| 岛国在线免费视频观看| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 精品乱码久久久久久99久播| 毛片女人毛片| 日日夜夜操网爽| 男人舔奶头视频| 欧美日韩亚洲综合一区二区三区_| 国产麻豆成人av免费视频| 欧美乱码精品一区二区三区| 少妇人妻一区二区三区视频| 狠狠狠狠99中文字幕| 色综合欧美亚洲国产小说| 亚洲一区中文字幕在线| 久久中文看片网| 非洲黑人性xxxx精品又粗又长| 好看av亚洲va欧美ⅴa在| www日本黄色视频网| 在线观看午夜福利视频| 日本在线视频免费播放| 国产精品久久久久久久电影 | 色综合欧美亚洲国产小说| 可以在线观看的亚洲视频| 法律面前人人平等表现在哪些方面| 香蕉久久夜色| 此物有八面人人有两片| 99国产综合亚洲精品| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| www国产在线视频色| 午夜激情av网站| 欧美午夜高清在线| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 国产精品1区2区在线观看.| 黑人巨大精品欧美一区二区mp4| 黄片小视频在线播放| 给我免费播放毛片高清在线观看| 免费在线观看亚洲国产| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文字幕一区二区三区有码在线看 | 久久久久九九精品影院| aaaaa片日本免费| netflix在线观看网站| 国产精品亚洲一级av第二区| 日韩欧美国产一区二区入口| 美女高潮喷水抽搐中文字幕| 哪里可以看免费的av片| 午夜老司机福利片| 欧美成人免费av一区二区三区| 啦啦啦观看免费观看视频高清| 国产亚洲av高清不卡| 国产精品影院久久| 91在线观看av| 在线观看舔阴道视频| 婷婷精品国产亚洲av在线| 国产亚洲欧美在线一区二区| 日韩有码中文字幕| 特级一级黄色大片| 少妇被粗大的猛进出69影院| a在线观看视频网站| 日韩欧美在线乱码| 最好的美女福利视频网| а√天堂www在线а√下载| 老司机午夜十八禁免费视频| 亚洲欧美日韩高清在线视频| 久久欧美精品欧美久久欧美| 男女之事视频高清在线观看| 一进一出抽搐动态| 国产99久久九九免费精品| 三级男女做爰猛烈吃奶摸视频| 日韩欧美国产一区二区入口| 久久久久久国产a免费观看| 一个人观看的视频www高清免费观看 | 少妇熟女aⅴ在线视频| 免费在线观看影片大全网站| av有码第一页| 欧美3d第一页| 欧美日韩精品网址| 国产高清视频在线观看网站| 在线观看免费午夜福利视频| 久久精品国产综合久久久| 国产一区二区在线观看日韩 | 美女 人体艺术 gogo| 亚洲国产日韩欧美精品在线观看 | 在线观看美女被高潮喷水网站 | 久久久久久久久久黄片| 午夜老司机福利片| 色老头精品视频在线观看| 久久精品综合一区二区三区| 国产真实乱freesex| 又黄又粗又硬又大视频| 岛国视频午夜一区免费看| 精品欧美国产一区二区三| 午夜日韩欧美国产| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 国产成人啪精品午夜网站| 久久香蕉精品热| 一个人免费在线观看的高清视频| 亚洲欧美精品综合久久99| www日本在线高清视频| 久久精品国产清高在天天线| 18禁裸乳无遮挡免费网站照片| 啦啦啦观看免费观看视频高清| 久久久久亚洲av毛片大全| 亚洲aⅴ乱码一区二区在线播放 | 亚洲 国产 在线| 一夜夜www| 亚洲在线自拍视频| 久久久久亚洲av毛片大全| 日日干狠狠操夜夜爽| 亚洲天堂国产精品一区在线| 男人舔女人的私密视频| 老鸭窝网址在线观看| 啦啦啦韩国在线观看视频| 性欧美人与动物交配| 岛国视频午夜一区免费看| 亚洲人成电影免费在线| 搞女人的毛片| 婷婷六月久久综合丁香| 在线观看免费午夜福利视频| 国产精品乱码一区二三区的特点| 中文字幕人妻丝袜一区二区| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女| 亚洲精品美女久久av网站| 欧美黄色淫秽网站| 在线观看www视频免费| 最近视频中文字幕2019在线8| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 亚洲性夜色夜夜综合| 久久伊人香网站| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 九色国产91popny在线| 欧美日本亚洲视频在线播放| cao死你这个sao货| 欧美最黄视频在线播放免费| 美女大奶头视频| 成年人黄色毛片网站| 欧美乱色亚洲激情| 久久久久久久久久黄片| 国产97色在线日韩免费| 日本黄色视频三级网站网址| 久久久水蜜桃国产精品网| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 欧美一区二区国产精品久久精品 | xxx96com| 美女免费视频网站| 两人在一起打扑克的视频| ponron亚洲| 91国产中文字幕| 99国产精品99久久久久| 国产三级在线视频| 男插女下体视频免费在线播放| 欧美乱码精品一区二区三区| 天堂动漫精品| 成熟少妇高潮喷水视频| 悠悠久久av| 巨乳人妻的诱惑在线观看| 青草久久国产| 欧美不卡视频在线免费观看 | 欧美成人免费av一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 又黄又粗又硬又大视频| 国产成年人精品一区二区| 久久久国产成人精品二区| 精品国产超薄肉色丝袜足j| 18禁美女被吸乳视频| 国产精品电影一区二区三区| 亚洲成人中文字幕在线播放| 午夜激情福利司机影院| 黑人巨大精品欧美一区二区mp4| 国产亚洲欧美在线一区二区| 久久热在线av| 啦啦啦免费观看视频1| 久久精品国产99精品国产亚洲性色| 我的老师免费观看完整版| 麻豆av在线久日| 欧美日韩瑟瑟在线播放| 国产精品精品国产色婷婷| 亚洲精品av麻豆狂野| 深夜精品福利| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 国产精品影院久久| 久9热在线精品视频| av免费在线观看网站| 精品国产乱码久久久久久男人| 亚洲欧美日韩高清在线视频| 欧美黑人精品巨大| 97超级碰碰碰精品色视频在线观看| 少妇熟女aⅴ在线视频| 视频区欧美日本亚洲| 观看免费一级毛片| 一区福利在线观看| 国产区一区二久久| 国产爱豆传媒在线观看 | 精品高清国产在线一区| 国产91精品成人一区二区三区| 老司机午夜福利在线观看视频| 男人舔奶头视频| 99精品久久久久人妻精品| 亚洲熟女毛片儿| 国产伦人伦偷精品视频| 在线国产一区二区在线| 亚洲精品美女久久av网站| 久久久久精品国产欧美久久久| 美女午夜性视频免费| 国产97色在线日韩免费| 久久精品人妻少妇| 午夜精品在线福利| 亚洲欧美日韩东京热| 听说在线观看完整版免费高清| 日日爽夜夜爽网站| 中文字幕人妻丝袜一区二区| 一本精品99久久精品77| 亚洲片人在线观看| 熟女少妇亚洲综合色aaa.| 美女大奶头视频| 97超级碰碰碰精品色视频在线观看| 少妇粗大呻吟视频| 国产亚洲av嫩草精品影院| 国产乱人伦免费视频| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 久久久国产精品麻豆| 男男h啪啪无遮挡| 亚洲精品国产精品久久久不卡| 国产探花在线观看一区二区| 亚洲成人国产一区在线观看| 亚洲国产精品久久男人天堂| 两个人免费观看高清视频| 两个人看的免费小视频| 亚洲成人国产一区在线观看| 亚洲人成网站高清观看| 88av欧美| 亚洲在线自拍视频| 国产高清视频在线观看网站| 久久国产精品人妻蜜桃| 国产精品免费一区二区三区在线| 高清在线国产一区| 久久这里只有精品中国| 在线播放国产精品三级| 久久这里只有精品中国| 欧美3d第一页| 成人三级黄色视频| 成年女人毛片免费观看观看9| 此物有八面人人有两片| 国产麻豆成人av免费视频| 18禁观看日本| 国产真实乱freesex| 老熟妇仑乱视频hdxx| 成人av在线播放网站| 午夜福利高清视频| 国产精品美女特级片免费视频播放器 | 亚洲国产欧美一区二区综合| 成年版毛片免费区| 69av精品久久久久久| 又黄又爽又免费观看的视频| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区| 欧美成人性av电影在线观看| 岛国在线观看网站| 日本a在线网址| 国产免费男女视频| 午夜亚洲福利在线播放| 波多野结衣高清作品| 日本一本二区三区精品| 99精品欧美一区二区三区四区| 黑人欧美特级aaaaaa片| 欧美黑人欧美精品刺激| 怎么达到女性高潮| 黄色视频不卡| 亚洲av成人一区二区三| 欧美性猛交黑人性爽| 在线国产一区二区在线| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www|