• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sr2MgSi2O7中本征缺陷和鑭系離子的熱力學(xué)穩(wěn)定性和轉(zhuǎn)變能級(jí)

    2020-06-16 09:21:48江貴生寧利新
    發(fā)光學(xué)報(bào) 2020年6期
    關(guān)鍵詞:中本安徽師范大學(xué)浙江師范大學(xué)

    聞 軍,汪 燕,江貴生,郭 海,寧利新

    (1.安慶師范大學(xué)電子工程與智能制造學(xué)院,安徽安慶 246133;2.安徽師范大學(xué)功能分子固體教育部重點(diǎn)實(shí)驗(yàn)室,安徽蕪湖 241000;3.安徽師范大學(xué)光電材料科學(xué)與技術(shù)安徽省重點(diǎn)實(shí)驗(yàn)室,安徽蕪湖 241000; 4.浙江師范大學(xué)物理系,浙江金華 321004)

    1 Introduction

    The phosphor Sr2MgSi2O7(SMSO)∶Eu2+,Dy3+is a kind of important long-afterglow material and has many advantages, such as the long afterglow time,high stabilities,non-radiation and so on.Since around 2001[1],researchers have extensively studied this phosphor[1-12],in order to determine the luminescent and trap centers,understand mechanisms of the thermoluminescence(TL)and long-lasting luminescence(LLL),and improve its luminescent properties.It is known that the SMSO∶Eu2+,Dy3+exhibits a broadband emission,which is ascribed to the electronic transitions from the excited 4f65d1to the 4f7states of Eu2+ions.Besides,the co-doping of Dy3+ions would enhance the emission intensity,but not affect the position of the emission band.

    As for the roles of native defects(anion and cation vacancies)and co-doped lanthanide ions(Dy3+,La3+,Ce3+,Er3+and so on)in the TL and LLL of the material,not only the experimental measurements[1-7]but also the theoretical calculations[8-12](such as the first-principles and empirical methods)are carried out.It is important to note hereby that the previous first-principles studies on the defective and lanthanide-doped SMSO usually identify the levels related to electron and hole traps according to the Kohn-Sham states from the calculations on band structures or the density of states(DOSs).However,these states should not be confused with the optical transition levels between the different charge states of the same defect/dopant[13],whose locations in the host band gap correspond to trap depths determined from the experimental TL curves of the long afterglow material.

    In the present work,hybrid density functional theory(DFT)calculations on formation energies and transition levels of native defects,defect complexes and lanthanide ions in the SMSO are performed in order to theoretically assign the origins of electron traps in the SMSO∶Eu2+,Dy3+.The calculated formation energies reveal the relatively easily generated defects,whose thermodynamic and optical transition energy levels are further derived.The energy differences between the conduction band minimum(CBM)and the two types of defect levels above respectively give the energies of zero-phonon lines(ZPLs)and electronic transitions for the processes of the electron exchange between native defects(or lanthanide dopants)and the CBM.It is found from this study that the thermodynamic and optical transition energy levels corresponding to the oxygen vacancies with the negative charge states are very close to the CBM.Thus,the corresponding optical transition energies agree well with the experimental trap depths in the SMSO∶Eu2+,Dy3+.This indicates that the neutral and negatively charged oxygen vacancies are related to the TL and LLL of the SMSO ∶Eu2+,Dy3+.Besides,the optical transition level of the Dy3+ion at the Sr site is also in a good agreement with the experimental results,confirming that Dy3+ions can be as electron trap centers in the material.It is hoped that the calculations presented in this work are applied to identify the trap centers and analyze the contribution of native defects and lanthanide ions to the TL and LLL of the long afterglow material.

    2 Calculation

    Geometric optimizations and electronic-structure calculations on the perfect,defective and lanthanide-doped SMSO were performed by using the hybrid DFT with the standard PBE0(Perdew-Burke-Ernzerhof-0)functional,whose exchange energy is made up of 25%exact Hartree-Fock exchange energy and 75%PBE exchange energy[14-15](as implanted in the VASP software[16-17]).Sr 4s24p65s2,Mg 3s2,Si 3s23p2,O 2s22p4and Ln 5s25p64f0-145d0-16s2(Ln=La-Lu)electrons were treated as valence electrons,their interactions with cores were described by the projected augmented wave(PAW)method[18].Geometry optimizations were performed by using the conjugate gradient technique,and the convergence criteria for total energies and atomic forces were set to be 10-5eV and 10-1eV/nm,respectively.The one Γ point was used for the sampling of the Brillouin zone in the geometric optimizations of the supercells of the SMSO in consideration of the large cost of hybrid DFT calculations with the PBE0 functional.Formation energies(ΔEf)of the native defects(vacancies and anti-site defects)and complexes in the SMSO are calculated to study their thermodynamic stabilities.The ΔEfof the defect D in the SMSO is calculated from PBE0-calculated total energies of 1×1×2 supercells,according to the following equation[19-20]:

    where D is in the charge state of q.Etot[Dq]is the total energy of the defective 1×1×2 supercell containing the Dq,and Etot[perfect]is the total energy of the perfect 1×1×2 supercell which contains 48 atoms.nirepresents the number of the atom i which is doped into(ni>0)or extracted from(ni<0)the perfect 1×1×2 supercell.nirepresents the chemical potential of the corresponding atoms.EFis the Fermi level and εVBMis the position of the valence band maximum(VBM).The chemical potentials of the Sr(μSr), Mg(μMg), Si(μSi)and Ln(μLn)are taken from the PBE0-calculated energies per atom in unit cells of the related bulk materials.The chemical potential of the O atom(μO)is derived from the thermal equilibrium conditions for reducing atmospheres(such as H2/Ar atmospheres[2]):

    where μSMSOis the PBE0-calculated total energy of each formula unit of the compound SMSO.

    The thermodynamic transition energy level ε(q2/q1)of the D in the SMSO(as shown in Fig.1(a))is defined as the position of the EF,where the formation energies of the D in the charge states of q1 and q2(q1<q2)are equal[20]:

    where ΔEf[Dq1, EF=0]and ΔEf[Dq2, EF=0]are the PBE0-calculated ΔEfof the Dq1and Dq2, respectively,when the EFis at the VBM.In the equation(3),the adopted supercells containing the Dq1and Dq2are in their respective equilibrium configurations.The optical transition energy level εopt(q2/q1)of the D in the SMSO is defined similarly,except for that the configuration of the final state is the same as the counterpart of the initial state(as shown in Fig.1(b)).The processes of the electron exchange between the defect/dopant and the conduction band(CB)are studied according to the locations of the levels ε(q2/q1)and εopt(q2/q1)of the D in the band gap of the host.It is seen that the energy of the ZPL(Ezpl)for the above process equals to the energy difference between the CBM and the levelε(q2/q1).Similarly,the energy(Eabs)of the absorption process corresponds to the energy difference between the CBM and the levelεopt(q2/q1).

    Fig.1 (a)Schematic representations for the absorption and emission processes associated with the electron exchange between the defect level of the D and the CB.(b)Configuration-coordinate descriptions for the optical transition processes“1” and “2”.

    3 Results and Discussion

    The SMSO crystallizes in the tetragonal system and belongs to themspace group(No.113),as shown in Fig.2.The lattice parameters obtained from DFT geometric optimizations with the standard PBE0 hybrid functional are listed in Tab.1,along with the experimental values[21].The two sets of values are quite consistent,with relative deviations of less than 0.1%,indicating that the superiority of the PBE0 functional.There are one type of Sr,Mg and Si sites as well as three types of O(labeled as O(1),O(2)and O(3),respectively)sites in the SMSO.The coordination number(CN)of the Sr is eight.The averaged bond length of the Sr—O from the experiment and calculation is 0.267 3 nm and 0.266 8 nm,respectively.Both the Mg and Si are coordinated by four O.The averaged bond length of Mg—O and Si—O from the experiment is 0.189 1 nm and 0.165 5 nm,respectively, with their optimized values of 0.193 8 nm and 0.163 0 nm,respectively.The ionic radii of eight-coordinated Sr2+and four-coordinated Mg2+are 0.126 0 nm and 0.057 0 nm,respectively[22].The ionic radii of the eight-coordinatedLn3+ions(Ln=La-Lu)are ranging from 0.116 nm to 0.097 7 nm.Besides,the ionic radius of the eight-coordinated Eu2+ion is 0.125 nm.In con-sideration of the CN and ionic radii of host cations,lanthanide ions are placed at Sr2+sites when their thermodynamic and optical transition energy levels are calculated in order to assign the origins of electron traps in the SMSO.

    Fig.2 Schematic diagrams of the unit cell of the SMSO and the local structure around the Sr site

    Tab.1 PBE0-optimized and experimental lattice parameters of the SMSO

    The PBE0-calculated formation energies ΔEfof native defects and defect complexes in the SMSO are listed in Tab.2.The ΔEfof the vacancies at Sr, Mg and Si sites(VSr,VMgand VSi)are larger than 10.0 eV,indicating that they are not easily generated in undoped SMSO samples prepared under reducing atmospheres.One may conclude that they are not responsible to the TL and persistent luminescence of SMSO∶Eu2+,Dy3+phosphors.Three types of oxygen vacancies(VO(1),VO(2)and VO(3))are easily generated in the host due to their small values of the ΔEf.Especially, the vacancies prefer to be at O(1)sites with the energy advantages of 31 meV and 231 meV,in comparison with O(2)and O(3)sites,respectively.It should be noted that the ΔEfof the VOin the SMSO would increase by 5.533 eV,if the O-rich condition is considered.The ΔEfof both the anti-site defects SrMgand MgSrare 1.128 eV and 2.317 eV,respectively,which means that the SrMgis much more possible in the host in comparison with the MgSr.Moreover, the ΔEfof defect complexes(VOVSr,VO-VMgand MgSr-SrMg)are also derived to study their thermodynamic stabilities.The two defects inthe complex are placed at the nearest-neighbor sites,in consideration of the mutual attraction of their opposite electrical charges of the anion vacancies(VO)and cation vacancies(VSrand VMg).It is found that the ΔEfof the complexes VO-VSrand VOVMgfor three types of the VOare relatively large,further confirming that the VSrand VMgare not easily produced in the host.The ΔEfof the SrMg-MgSris 2.569 eV,indicating that this defect complex is possibly generated in the host.This is reasonable since both the single MgSrand SrMghave the relatively low ΔEf.It should be noted that the existence of the easily generated defects in phosphors may be confirmed by various experimental measurements,such as the inductive-coupled plasma atomic-emission spectroscopy(ICP-AES)[23]and the electron paramagnetic resonance(EPR)[24].

    Tab.2 PBE0-calculated formation energies ΔEfof the single defects and defect complexes(with the neutral charge states)in the SMSO

    The PBE0-calculated pattern of the total and orbital DOSs for the perfect 1×1×2 supercell of the SMSO is illustrated in Fig.3.It is found that the top of the valence band(VB)is mainly composed of O-2p states,while the bottom of the CB is predominantly constituted by Sr-3d states with the mixture of O-2p states.The band gap of the SMSO calculated from the standard PBE0 hybrid functional is 7.18 eV,much larger than the calculated one(4.69 eV)[9]from the local density approximation(LDA)[25].According to H?ls? et al.[11], the band gap of the SMSO is estimated to be 7.1 eV from the measured synchrotron radiation excitation spectrum of the Eu2+-doped SMSO,which shows a noteworthy increase of the intensity at 175 nm because of the host absorption.The PBE0-calculated value of the band gap is thus in an excellent agreement with the experimentally determined one.It confirms that hybrid DFT calculations with the standard PBE0 functional can efficiently improve the situation of the severe underestimation of the band gaps for the LDA[25]and generalized gradient approximation(GGA)[15]methods.It is noted that an accurate value of the band gap would be crucial for the calculations on the locations of thermodynamic and optical transition energy levels of the defect/dopant in the energy band of the host,further affecting the theoretical assignment of the origins of the shallow and deep electron traps of long afterglow materials.

    Fig.3 PBE0-calculated total and orbital-projected DOSs for the 1×1×2 supercell of the SMSO.The 4×4×3 k-point was adopted for the sampling of Brillouin zone in the calculations of the DOSs.

    The PBE0-calculated defect formation energies ΔEfas a function of the EFfor the neutral and charged VO(1), VO(2), VO(3), SrMg, MgSrand SrMg-MgSrare illustrated in Fig.4.The defects shown in the figure are relatively easily produced in the SMSO prepared under reducing atmospheres.The location of the EFin the band gap of the host corresponds to the synthesis conditions of samples[26]. The EFwould be in the upper and lower part of the band gap for reducing and oxidizing atmospheres,respectively.It is in the intermediate region of the band gap when a neutral atmosphere is adopted for the synthesis of samples.In general,the doubly positively charged and neutral VOin the SMSO is the most stable when the EFis in the lower and upper part of the band gap,respectively.The doubly negative charge states become the most stable for the VO,when the EFis close to the CBM.To take the VO(1)as an example,the 2+charge state is preferred when the EFis below 2.657 eV,while the neutral charge state is the most stable when the EFis in a large region of the band gap(between 2.657 and 6.606 eV above the VBM).Above 6.606 eV,the 2-charge state is the most stable for the VO(1).The figure also reveals the high similarity between the variation trends of the most stable charge states of the SrMg,MgSrand their complex SrMg-MgSrwith respect to the EF.In the most region of the band gap,their neutral charge states are the most stable in energies.This is consistent with the expectation,considering the same valent states of Sr2+and Mg2+ions.

    Fig.4 PBE0-calculated defect formation energies ΔEfas a function of the Fermi level EFfor the neutral and charged VO(1),VO(2), VO(3), SrMg, MgSrand SrMg-MgSrin the SMSO.

    Fig.5 PBE0-calculated thermodynamic transition energy levels of the VO(1), VO(2), VO(3), MgSr, SrMgand SrMg-MgSrin the SMSO.

    The intersection between the two lines corresponding to the formation energies ΔEfof the defect with the charge states q1 and q2(as shown in Fig.4)gives the location of its thermodynamic transition energy level ε(q2/q1)in the band gap, which is also demonstrated in Fig.5.The charge state q2 is much more stable for the defect/dopant when the EFis below its level ε(q2/q1), while the charge state q1 is preferred when the EFis above the level ε(q2/q1).It is found from the calculated levels ε(q2/q1)that the VOwith neutral and singly negative charge states in the SMSO may act as electron traps and be responsible to the TL and LLL.The neutral oxygen vacancies VOare supposed to be stable in the SMSO prepared under reducing atmospheres,as described above.They can capture the electrons released by Eu2+ions when the 4f→5d excitations are carried out,and consequently become negatively charged.After losing an electron(i.e.,obtaining a hole“h”), the Eu2+ion turns into the state “Eu2++h”.The negative charge states of the VOare generally metastable except for the situation of the EFbeing extremely close to the CBM.The usual thermal activation would promote the electrons of the negatively charged VOback to the CB.These free electrons can transfer back to the “Eu2++h”, generating the 5d→4f emissions.The optical transition energies Eabsrelated to the absorption processes of the electrons from the negatively charged VO(V1-Oand V2-O)to the CBM are calculated and listed in Tab.3.The Eabscorresponding to the transformations of the charge states 1-→0,2-→0,and 2-→1-for the VO(1),VO(2)and VO(3)are in the range from 0.587 to 0.894 eV,showing a reasonably good agreement with the trap depths determined from the TL curves by Shi et al.[5](0.67-0.73 eV)and Hai et al.[2](0.688-0.710 eV).Besides,the Eabsrelated to the negatively charged MgSr,SrMgand SrMg-MgSrare larger than 1.0 eV,possibly not contributing to the TL and LLL in the SMSO∶Eu2+,Dy3+.

    Tab.3 PBE0-calculated optical transition energies of the native defects and the complex in the SMSO

    The PBE0-calculated locations of the thermodynamic transition energy levelsε(1+/0)of the dopantsLn(Ln=La-Lu)at Sr sites in the band gap of the SMSO are listed in Tab.4 and illustrated in Fig.6.The levelsε(1+/0)of theLnSrcorrespond to the transformation of trivalent and bivalent states and are conductive to analyze the valence stabilities of lanthanide ions in the host.The hybrid PBE0 calculations indicate that the variation trend of the thermodynamic transition energy levelsε(1+/0)from LaSrto EuSrshows the reasonable similarity with the counterpart from GdSrto YbSr.Among the two subseries,the Eu and Yb respectively has the lowest levelε(1+/0), which is in the lower part of the host band gap(2.794 eV and 3.054 eV above the VBM,respectively).This is ascribed to that the 4f orbitals of Eu2+and Yb2+ions are half filled and fully filled, respectively, making their binding energies of 4f electrons much stronger in comparison with the other lanthanide ions.Eu2+rather than Eu3+ions are supposed to be stable in the SMSO prepared under reducing atmospheres,which corresponds to theEFlocated in the upper part of the band gap.Eu3+ions may be achieved in the host only if the oxidizing or air atmospheres are adopted[4].The other trivalent lanthanide ions(such as Dy3+ions[1-3])are relatively easily obtained in the SMSO under the reducing atmospheres.This may explain the coexistence of bivalent Eu and trivalent Dy ions in thematerial SMSO∶Eu,Dy prepared under reducing atmospheres.Moreover,Dy ions(at Sr sites)have the level ε(1+/0)very close to the CBM, along with their energy separation of 0.781 eV.The Eabsfor the promotion of the electron from the state “Dy3++e”back to the CBM is calculated to be 0.844 eV,showing a reasonably good agreement with the experimental values(0.67-0.73 eV[5]and 0.688-0.710 eV[2])of the trap depths for the SMSO∶Eu2+,Dy3+.To sum up,the native defects VO(with the neutral and 1-charge states)and co-doped Dy3+ions can serve as electron traps and consequently play an important role in the TL and LLL of the SMSO∶Eu2+,Dy3+, according to PBE0-calculated thermodynamic and optical transition energy levels.

    Tab.4 PBE0-calculated locations of thermodynamic transition energy levels ε(1+/0)of the dopants LnSr(Ln=La-Lu)in the band gap of the SMSO

    Fig.6 PBE0-calculated thermodynamics transition energy levels ε(1+/0)of the dopants LnSr(Ln = La-Lu)in the SMSO

    4 Conclusion

    Thermodynamic stabilities and transition levels of native defects,defect complexes and lanthanide dopants in the SMSO are calculated from the hybrid DFT with the standard PBE0 functional.The band gap of the SMSO host is calculated to be 7.18 eV,agreeing well with the experimental value(of 7.1 eV)determined from the measured synchrotron radiation excitation spectrum of the Eu2+-doped SMSO.The formation energies of cation vacancies(VSr,VMgand VSi)are larger than 10.0 eV,indicating that they are not easily generated in the SMSO prepared under reducing atmospheres.Three types of oxygen vacancies(VO(1), VO(2)and VO(3)), anti-site defects(SrMgand MgSr),and the complex SrMg-MgSrare relatively easily produced under reducing atmospheres.Moreover,the PBE0-calculated thermodynamic/optical transition energy levels and the corresponding energies of the relatively easily generated native defects/complexes and lanthanide dopants demonstrate that the native defect VOand co-doped Dy3+ions(at Sr sites)can act as electron traps and consequently play an important role in the processes of TL and LLL of the SMSO∶Eu2+,Dy3+.It is important to note that the neutral and negatively charged(rather than the positively charged)VOare involved in the processes of the TL and LLL according to the calculations of this work.Besides,hybrid PBE0 calculations indicate that the variation trend of the thermodynamic transition energy levels ε(1+/0)from LaSrto EuSrshows the reasonable similarity with the counterpart from GdSrto YbSr.Especially,the location of the level ε(1+/0)of the Eu is the lowest in the band gap and about 2.794 eV above the VBM.

    猜你喜歡
    中本安徽師范大學(xué)浙江師范大學(xué)
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    比特幣的謎底,很多年后才會(huì)揭開
    Hemingway’s Marriage in Cat in the Rain
    “中本貫通”政策的邏輯、隱憂及理性實(shí)踐
    職教論壇(2016年25期)2017-01-07 00:37:26
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    中本聰?
    OV海外文摘(2014年4期)2014-04-29 00:44:03
    国产 一区 欧美 日韩| 国产伦精品一区二区三区视频9| 国产免费一级a男人的天堂| 香蕉av资源在线| 精品久久久久久久人妻蜜臀av| 两人在一起打扑克的视频| 毛片女人毛片| 国产精品久久久久久av不卡| 2021天堂中文幕一二区在线观| 成人永久免费在线观看视频| 老女人水多毛片| 久久久久性生活片| www.www免费av| 制服丝袜大香蕉在线| 国产精品免费一区二区三区在线| 免费在线观看影片大全网站| 亚洲成人免费电影在线观看| 亚洲中文日韩欧美视频| 亚洲精品乱码久久久v下载方式| 色精品久久人妻99蜜桃| 欧美日韩乱码在线| 亚洲一级一片aⅴ在线观看| 动漫黄色视频在线观看| 色视频www国产| 有码 亚洲区| 欧美zozozo另类| 99久久九九国产精品国产免费| 国产在线精品亚洲第一网站| 99热这里只有是精品在线观看| 一级黄片播放器| 午夜福利在线观看吧| 欧美性猛交╳xxx乱大交人| 哪里可以看免费的av片| 国产午夜精品久久久久久一区二区三区 | av在线蜜桃| 日韩大尺度精品在线看网址| 蜜桃久久精品国产亚洲av| 国产日本99.免费观看| 午夜激情福利司机影院| 一区二区三区免费毛片| 校园人妻丝袜中文字幕| 九九热线精品视视频播放| 国内揄拍国产精品人妻在线| 神马国产精品三级电影在线观看| 欧美不卡视频在线免费观看| 国产大屁股一区二区在线视频| 欧美色欧美亚洲另类二区| 老司机福利观看| 久99久视频精品免费| 久久亚洲真实| 观看美女的网站| 国产高清视频在线观看网站| 日本色播在线视频| 国产午夜福利久久久久久| 国产精品国产高清国产av| 黄色日韩在线| 村上凉子中文字幕在线| 婷婷精品国产亚洲av在线| 亚洲国产欧美人成| 久久久国产成人精品二区| 内射极品少妇av片p| 国产午夜精品久久久久久一区二区三区 | 亚洲精品成人久久久久久| 制服丝袜大香蕉在线| 亚洲精品456在线播放app | 春色校园在线视频观看| 波多野结衣巨乳人妻| 97碰自拍视频| 成人午夜高清在线视频| 中文字幕人妻熟人妻熟丝袜美| 在线a可以看的网站| 国产精品久久久久久精品电影| 中亚洲国语对白在线视频| 直男gayav资源| 女同久久另类99精品国产91| 国产黄a三级三级三级人| 熟女人妻精品中文字幕| 国产亚洲精品av在线| 欧美日本亚洲视频在线播放| 亚洲黑人精品在线| 免费观看精品视频网站| 午夜免费成人在线视频| 色播亚洲综合网| 精品久久久久久久久久久久久| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 国产v大片淫在线免费观看| 婷婷亚洲欧美| 国产男人的电影天堂91| bbb黄色大片| 波多野结衣巨乳人妻| 免费看a级黄色片| 亚洲av一区综合| 特大巨黑吊av在线直播| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 美女高潮的动态| 黄色配什么色好看| 深夜精品福利| 国产日本99.免费观看| 内射极品少妇av片p| 男女下面进入的视频免费午夜| 色播亚洲综合网| 高清在线国产一区| 成年女人看的毛片在线观看| 欧美一区二区亚洲| 极品教师在线视频| 免费无遮挡裸体视频| 91麻豆精品激情在线观看国产| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 美女免费视频网站| 俺也久久电影网| 国内精品久久久久精免费| 嫩草影视91久久| 18禁在线播放成人免费| 高清在线国产一区| 嫩草影视91久久| 观看美女的网站| 亚洲不卡免费看| 精品一区二区三区视频在线观看免费| 欧美性猛交╳xxx乱大交人| 精品午夜福利视频在线观看一区| 亚洲人成网站在线播放欧美日韩| 欧美性猛交黑人性爽| 性欧美人与动物交配| 又黄又爽又免费观看的视频| 有码 亚洲区| 日本黄色片子视频| 日韩中文字幕欧美一区二区| 一级毛片久久久久久久久女| 级片在线观看| 久久热精品热| 一区二区三区四区激情视频 | 又爽又黄无遮挡网站| 日韩精品中文字幕看吧| 免费电影在线观看免费观看| 能在线免费观看的黄片| 色综合色国产| 久久久久久大精品| 精品99又大又爽又粗少妇毛片 | 美女 人体艺术 gogo| 91狼人影院| 色噜噜av男人的天堂激情| 一边摸一边抽搐一进一小说| 欧美最黄视频在线播放免费| 国产不卡一卡二| 99久久精品国产国产毛片| 免费人成在线观看视频色| 亚洲精品一区av在线观看| av视频在线观看入口| 观看免费一级毛片| 搡老岳熟女国产| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 久久精品久久久久久噜噜老黄 | 99国产极品粉嫩在线观看| 久久国产亚洲av麻豆专区| 一级爰片在线观看| 欧美日韩精品成人综合77777| 一本久久精品| 久久久久久久久久成人| 亚洲av.av天堂| 欧美精品亚洲一区二区| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 秋霞在线观看毛片| 在线天堂最新版资源| 伦理电影免费视频| 新久久久久国产一级毛片| 91久久精品电影网| 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 91午夜精品亚洲一区二区三区| 国产亚洲午夜精品一区二区久久| 香蕉精品网在线| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播| 亚洲av日韩在线播放| 深爱激情五月婷婷| 国产淫语在线视频| 精品一区二区免费观看| 久久久久性生活片| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 日日啪夜夜爽| 亚洲精品,欧美精品| 能在线免费看毛片的网站| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 久久精品夜色国产| 成人亚洲精品一区在线观看 | 国产大屁股一区二区在线视频| 亚洲精品视频女| 在线观看免费高清a一片| 成人午夜精彩视频在线观看| 我的女老师完整版在线观看| 男人狂女人下面高潮的视频| 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 中文资源天堂在线| 大片电影免费在线观看免费| 欧美成人午夜免费资源| 亚洲欧美精品专区久久| 国产片特级美女逼逼视频| 十八禁网站网址无遮挡 | 女性被躁到高潮视频| 欧美人与善性xxx| 国产精品一及| 亚洲av不卡在线观看| 国产精品一区二区性色av| av国产精品久久久久影院| 亚洲三级黄色毛片| av播播在线观看一区| 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 成人国产av品久久久| 我要看日韩黄色一级片| 亚洲人成网站高清观看| 亚洲av成人精品一二三区| 乱系列少妇在线播放| 国产在线免费精品| 久久久久人妻精品一区果冻| 国产 一区 欧美 日韩| 国产午夜精品久久久久久一区二区三区| 中文字幕精品免费在线观看视频 | 国语对白做爰xxxⅹ性视频网站| 日韩在线高清观看一区二区三区| 高清av免费在线| 欧美高清性xxxxhd video| 日韩av不卡免费在线播放| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 国产精品精品国产色婷婷| 国产精品麻豆人妻色哟哟久久| 久久国产乱子免费精品| 99热全是精品| 日韩欧美 国产精品| 一二三四中文在线观看免费高清| 熟女av电影| 亚州av有码| 欧美成人精品欧美一级黄| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 一级毛片 在线播放| 国产精品伦人一区二区| 午夜福利在线在线| 日韩 亚洲 欧美在线| 久久久久久久久久人人人人人人| 亚洲欧美日韩卡通动漫| 日韩成人伦理影院| 欧美另类一区| 男人添女人高潮全过程视频| 免费不卡的大黄色大毛片视频在线观看| 干丝袜人妻中文字幕| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 日韩成人伦理影院| 亚洲精品国产成人久久av| 国产色爽女视频免费观看| 免费观看a级毛片全部| 人妻少妇偷人精品九色| 国产男女超爽视频在线观看| av国产精品久久久久影院| 国产精品国产av在线观看| 日韩三级伦理在线观看| 老熟女久久久| 欧美bdsm另类| 男人狂女人下面高潮的视频| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 大香蕉久久网| 观看美女的网站| 亚洲av中文字字幕乱码综合| 国产精品免费大片| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 麻豆乱淫一区二区| 这个男人来自地球电影免费观看 | 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 我要看日韩黄色一级片| 欧美高清成人免费视频www| 777米奇影视久久| 高清毛片免费看| 精品人妻视频免费看| 黄色视频在线播放观看不卡| 一级毛片黄色毛片免费观看视频| 好男人视频免费观看在线| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 在线观看人妻少妇| 最近最新中文字幕免费大全7| 在线亚洲精品国产二区图片欧美 | 男的添女的下面高潮视频| 一级毛片我不卡| 少妇高潮的动态图| 啦啦啦视频在线资源免费观看| 免费看不卡的av| 一边亲一边摸免费视频| 亚洲第一av免费看| 在线观看三级黄色| 亚洲国产毛片av蜜桃av| 色吧在线观看| 免费黄频网站在线观看国产| 七月丁香在线播放| 国产亚洲av片在线观看秒播厂| 精品国产三级普通话版| 欧美高清性xxxxhd video| 日本av免费视频播放| 久久精品夜色国产| 这个男人来自地球电影免费观看 | 婷婷色综合www| 女人久久www免费人成看片| 国产综合精华液| 免费看不卡的av| 免费久久久久久久精品成人欧美视频 | 国产高清不卡午夜福利| 一区二区三区四区激情视频| 黄色一级大片看看| 91精品伊人久久大香线蕉| 免费看光身美女| 深爱激情五月婷婷| 99国产精品免费福利视频| 国产亚洲最大av| 欧美97在线视频| 各种免费的搞黄视频| av黄色大香蕉| 亚洲欧美成人综合另类久久久| 婷婷色av中文字幕| 五月伊人婷婷丁香| 18禁动态无遮挡网站| 少妇人妻一区二区三区视频| 亚洲精品中文字幕在线视频 | 色婷婷av一区二区三区视频| 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 老熟女久久久| 七月丁香在线播放| 一级爰片在线观看| 2018国产大陆天天弄谢| 久久久精品免费免费高清| 欧美精品国产亚洲| 成人综合一区亚洲| 国产精品免费大片| 人人妻人人看人人澡| 欧美少妇被猛烈插入视频| 精品视频人人做人人爽| 欧美国产精品一级二级三级 | 大又大粗又爽又黄少妇毛片口| 欧美bdsm另类| 亚洲精品一区蜜桃| 亚洲av男天堂| 国产成人a区在线观看| 亚州av有码| 国产一区有黄有色的免费视频| 成人国产av品久久久| 一级黄片播放器| 男女边摸边吃奶| 午夜激情福利司机影院| 国产精品福利在线免费观看| 国产无遮挡羞羞视频在线观看| 免费高清在线观看视频在线观看| 久久99热6这里只有精品| 久久99精品国语久久久| 干丝袜人妻中文字幕| 国产真实伦视频高清在线观看| 三级国产精品片| 自拍偷自拍亚洲精品老妇| 美女高潮的动态| 日本av免费视频播放| 国产精品伦人一区二区| 亚洲欧洲国产日韩| 亚洲不卡免费看| 久久久成人免费电影| av线在线观看网站| 99久久中文字幕三级久久日本| 精品亚洲成国产av| 大片电影免费在线观看免费| 午夜免费男女啪啪视频观看| 久久影院123| 亚洲,欧美,日韩| 久久人人爽av亚洲精品天堂 | 日本一二三区视频观看| 国产高潮美女av| 黄色视频在线播放观看不卡| 只有这里有精品99| 久久久久久久大尺度免费视频| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 十分钟在线观看高清视频www | 亚洲性久久影院| 校园人妻丝袜中文字幕| .国产精品久久| 欧美成人一区二区免费高清观看| 午夜福利在线观看免费完整高清在| 亚洲四区av| 91久久精品电影网| 天堂俺去俺来也www色官网| 久久99蜜桃精品久久| 91精品国产九色| 又大又黄又爽视频免费| 一个人免费看片子| 精品久久久久久久久av| 人妻一区二区av| 久久精品久久精品一区二区三区| 久久国产精品大桥未久av | 国产色爽女视频免费观看| 国产男人的电影天堂91| 18+在线观看网站| 国产精品女同一区二区软件| 女性生殖器流出的白浆| 美女cb高潮喷水在线观看| 制服丝袜香蕉在线| 亚洲精品成人av观看孕妇| 日本av免费视频播放| 中文字幕免费在线视频6| 一区二区av电影网| 久久国产精品男人的天堂亚洲 | 色综合色国产| 日本一二三区视频观看| 中文字幕av成人在线电影| 人妻系列 视频| 日本午夜av视频| 高清毛片免费看| 18禁裸乳无遮挡动漫免费视频| 日韩电影二区| 免费大片18禁| 久久女婷五月综合色啪小说| 久久国内精品自在自线图片| 天堂中文最新版在线下载| 国产精品一区www在线观看| 亚洲av中文av极速乱| 亚洲av综合色区一区| 最黄视频免费看| 精品人妻一区二区三区麻豆| 一级a做视频免费观看| 国产伦理片在线播放av一区| 91精品伊人久久大香线蕉| 日本免费在线观看一区| 亚洲人与动物交配视频| 少妇人妻一区二区三区视频| 极品少妇高潮喷水抽搐| 欧美国产精品一级二级三级 | 美女主播在线视频| 免费黄频网站在线观看国产| a级毛片免费高清观看在线播放| 熟女av电影| 国产成人免费无遮挡视频| 在线天堂最新版资源| 国产人妻一区二区三区在| 国产精品福利在线免费观看| 精品亚洲乱码少妇综合久久| 一级a做视频免费观看| 国产伦在线观看视频一区| 国产成人免费无遮挡视频| 欧美三级亚洲精品| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 久久国产精品男人的天堂亚洲 | 亚洲av二区三区四区| 我要看黄色一级片免费的| 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 日韩电影二区| 日本爱情动作片www.在线观看| 黑丝袜美女国产一区| 国产人妻一区二区三区在| 国产精品无大码| 老熟女久久久| 多毛熟女@视频| 日本黄色日本黄色录像| 最后的刺客免费高清国语| 两个人的视频大全免费| 免费看日本二区| 久久久久久伊人网av| 午夜免费观看性视频| 天美传媒精品一区二区| 欧美日韩一区二区视频在线观看视频在线| 最近的中文字幕免费完整| 日韩中字成人| 亚洲第一av免费看| 欧美日韩视频高清一区二区三区二| 欧美最新免费一区二区三区| 国产黄色视频一区二区在线观看| 久久精品久久久久久噜噜老黄| 国产成人a区在线观看| 青春草亚洲视频在线观看| 少妇高潮的动态图| 亚洲国产色片| 3wmmmm亚洲av在线观看| 成人综合一区亚洲| 日本av手机在线免费观看| 最近中文字幕2019免费版| 狂野欧美白嫩少妇大欣赏| 看非洲黑人一级黄片| 久久国产精品男人的天堂亚洲 | 精品国产露脸久久av麻豆| 久久精品夜色国产| 国产精品秋霞免费鲁丝片| 亚洲丝袜综合中文字幕| 亚洲欧美日韩卡通动漫| 国产高潮美女av| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 亚洲精品一二三| 一区二区三区免费毛片| 国产黄色免费在线视频| 日日啪夜夜爽| 国产精品一区二区在线不卡| 亚洲成人av在线免费| 亚洲精品第二区| 国产精品秋霞免费鲁丝片| 秋霞伦理黄片| 午夜福利视频精品| 中文字幕av成人在线电影| 亚洲人成网站在线播| 少妇精品久久久久久久| 日日撸夜夜添| 日韩成人伦理影院| 性色avwww在线观看| 亚洲精品久久久久久婷婷小说| 免费黄网站久久成人精品| 一级a做视频免费观看| 亚洲综合精品二区| 亚洲av中文av极速乱| 亚洲av在线观看美女高潮| 精品久久国产蜜桃| 网址你懂的国产日韩在线| 国产成人aa在线观看| 成人国产麻豆网| 久久久精品免费免费高清| 91精品伊人久久大香线蕉| 日韩人妻高清精品专区| 99久久人妻综合| 精品一区在线观看国产| 色网站视频免费| 麻豆精品久久久久久蜜桃| 我的女老师完整版在线观看| 国产伦在线观看视频一区| 毛片女人毛片| 婷婷色综合大香蕉| 精品视频人人做人人爽| 国产免费视频播放在线视频| 日韩一本色道免费dvd| 国产深夜福利视频在线观看| 国产精品爽爽va在线观看网站| 色网站视频免费| 建设人人有责人人尽责人人享有的 | 大片免费播放器 马上看| 日韩av在线免费看完整版不卡| 亚洲av在线观看美女高潮| 舔av片在线| 亚洲电影在线观看av| 欧美3d第一页| 久久久国产一区二区| 性高湖久久久久久久久免费观看| 色婷婷久久久亚洲欧美| 日韩伦理黄色片| av视频免费观看在线观看| 亚洲成人手机| 亚洲av国产av综合av卡| 国产大屁股一区二区在线视频| 青青草视频在线视频观看| 国产精品一区二区性色av| 久久久久久久国产电影| 激情五月婷婷亚洲| 全区人妻精品视频| 啦啦啦啦在线视频资源| 国产亚洲欧美精品永久| 精品酒店卫生间| 午夜激情福利司机影院| 一本—道久久a久久精品蜜桃钙片| 亚洲在久久综合| 下体分泌物呈黄色| 九九久久精品国产亚洲av麻豆| 日韩成人伦理影院| 久久久色成人| 亚洲av成人精品一二三区| 亚洲欧美成人精品一区二区| 免费观看的影片在线观看| 最黄视频免费看| 少妇的逼水好多| 欧美成人一区二区免费高清观看| 亚洲欧美精品专区久久| 免费人成在线观看视频色| 18禁在线无遮挡免费观看视频| 久久99精品国语久久久| 精品一区二区三卡| 亚洲高清免费不卡视频| 国产黄频视频在线观看| 免费少妇av软件| 毛片一级片免费看久久久久| freevideosex欧美| 日本欧美视频一区| 六月丁香七月| 亚洲美女黄色视频免费看| 联通29元200g的流量卡| 国产精品久久久久久av不卡| 在线观看免费日韩欧美大片 | 国产亚洲av片在线观看秒播厂| 日本爱情动作片www.在线观看| 男女啪啪激烈高潮av片| 丝袜喷水一区| 久久6这里有精品| 亚洲精品自拍成人| 一级爰片在线观看| 六月丁香七月| 亚洲熟女精品中文字幕| 赤兔流量卡办理| 99久国产av精品国产电影| 视频区图区小说| 久久亚洲国产成人精品v|