李文啟, 高東學, 李朝暉, 饒宇飛, 顧 波
(1.國網(wǎng)河南省電力公司, 河南 鄭州 450000;2.國網(wǎng)河南省電力公司電力科學研究院, 河南 鄭州 450052;3.華北水利水電大學, 河南 鄭州 450045)
鋰離子電池具有能量密度高、輸出功率大、充放電壽命長等優(yōu)點,在分布式清潔能源發(fā)電和新能源汽車等領(lǐng)域得到了廣泛利用[1-2]。鋰離子電池的安全穩(wěn)定運行已經(jīng)成為這些行業(yè)發(fā)展的重要組成部分。為此,不少學者對鋰離子電池的運行狀態(tài)特性開展研究,希望能夠開發(fā)出智能、高效的電池管理系統(tǒng)(Battery Management System,BMS),實現(xiàn)鋰離子電池的安全、可靠和高效運行[3]。
電池荷電狀態(tài)(State of Charge,SOC)表征電池當前的剩余電量,是電池管理系統(tǒng)中最為重要的參數(shù)之一。電池SOC的準確預測是實現(xiàn)電池均衡、防止電池過充電或過放電、延長電池使用壽命和提高電池利用效率的前提[4]。目前,常用的鋰離子電池SOC預測方法包括開路電壓法、安時積分法、卡爾曼濾波法和神經(jīng)網(wǎng)絡法等[4-6]。
神經(jīng)網(wǎng)絡和支持向量機等統(tǒng)計預測模型具有很強的數(shù)據(jù)挖掘和非線性映射能力,使得利用電池歷史運行數(shù)據(jù)預測SOC成為可能。文獻[7-8]以鋰離子電池的溫度、電流和電壓等信息作為輸入,利用BP神經(jīng)網(wǎng)絡來預測鋰離子電池SOC,結(jié)果表明該預測方法的誤差值小于3%。綜合考慮鋰離子電池的電壓、溫度及電流等因素對SOC的影響,利用支持向量機來預測鋰離子電池SOC,結(jié)果表明該方法可獲得較高的預測精度[9-10]。為了進一步提高模型的預測精度,將兩種或多種預測模型組合來對鋰離子電池SOC進行預測,結(jié)果表明組合預測模型比單一預測模型的預測精度要高[11-13]。
隨著人工智能的發(fā)展,一些新的智能學習算法被提出,進一步促進了鋰離子電池SOC預測技術(shù)的發(fā)展。深度學習算法作為一種新型的智能學習算法,具有時間記憶功能,能夠較好地適用于具有時間序列性質(zhì)的鋰離子電池SOC預測,且收斂速度快和預測精度高。常見的深度學習算法包括遞歸神經(jīng)網(wǎng)絡、K最近鄰神經(jīng)網(wǎng)絡和卷積神經(jīng)網(wǎng)絡等[14]。長短期記憶(Long-Short Term Memory,LSTM)模型是循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Network,RNN)網(wǎng)絡的一種改進,具有時間記憶功能可控等優(yōu)點,在多個領(lǐng)域得到了廣泛的應用[15-16]。
采用非參數(shù)核密度估計(Nonparametric Kernel Density Estimation,NPKDE),提出一種基于LSTM -NPKDE的鋰離子電池SOC預測與不確定性分析方法。該方法以電池的充放電電流和電壓作為輸入來對鋰離子電池SOC進行預測,并對LSTM模型、BP神經(jīng)網(wǎng)絡、BP-PSO混合模型和小波神經(jīng)網(wǎng)絡等預測模型的預測結(jié)果進行對比分析;在此基礎(chǔ)上,用基于NPKDE的置信區(qū)間對預測的不確定性進行定量計算。
LSTM是為了解決RNN模型迭代優(yōu)化過程中梯度消失和爆炸問題,基于RNN模型發(fā)展而來的[17]。LSTM傳播過程和內(nèi)部結(jié)構(gòu)如圖1所示。圖1(a)的3個模塊分別表示模型單元在t-1、t和t+1時刻的傳播狀態(tài);圖1(b)為t時刻LSTM單元的內(nèi)部結(jié)構(gòu)。
圖1(b)中各符號的具體含義如下:
(2)ht-1和ht分別表示t-1和t時刻單元的隱藏狀態(tài)。
(3)xt是t時刻的輸入變量。
(5)σ和tanh為激勵函數(shù)。
LSTM與RNN不同之處在于:LSTM通過引入輸入門、遺忘門和輸出門,使LSTM的權(quán)值在迭代優(yōu)化過程中不斷調(diào)整,從而有效解決了RNN在迭代優(yōu)化過程中出現(xiàn)的梯度消失或爆炸問題。
LSTM模型的運行原理是將內(nèi)部的信息流狀態(tài)分為單元狀態(tài)和輸入狀態(tài),信息流的主線是單元狀態(tài),貫穿整個狀態(tài)單元,只有少量的線性交互,其目的是維持信息的穩(wěn)定性。分線是門控制的輸入狀態(tài),用于向單元狀態(tài)添加或者刪除信息。LSTM的單元狀態(tài)如圖2所示。圖2中虛線Ct-1-Ct表示t-1時刻的單元狀態(tài)Ct-1經(jīng)過計算之后變?yōu)閠時刻的單元狀態(tài)Ct。
LSTM的遺忘門用于決定t時刻的輸入變量xt和t-1時刻的隱藏狀態(tài)ht-1的信息保留程度。LSTM遺忘門的結(jié)構(gòu)如圖3中虛線部分所示。
遺忘門的計算如式(1)所示:
ft=σ{Wf[ht-1,xt]+bf}
(1)
bf——遺忘門的偏置項;
σ——激活函數(shù),計算中通常使用Sigmoid函數(shù);
[ht-1,xt]——把ht-1向量和xt向量組合成為一個新向量。
LSTM的輸入門用于決定t時刻的輸入變量xt中有多少信息能夠保存到單元狀態(tài)Ct中。輸入門的結(jié)構(gòu)如圖4中虛線部分所示。輸入門的計算式:
it=σ{Wi[ht-1,xt]+bi}
(2)
(3)
(4)
式中:Wi、Wc——輸入門的權(quán)值矩陣;
bi、bc——輸入門的偏置項;
σ、tanh——激活函數(shù)。
LSTM的輸出門主要用于輸出單元的隱藏狀態(tài),如圖5中虛線部分所示。
輸出門的計算式:
張連長不知把哪個知青的行李扛在肩頭,手拎網(wǎng)兜。盡管如此,他的步速還是比知青們快許多。徐進步、王凱和孫敬文拖著各自的大包小包走在最后邊。徐進步的軍綠色大書包背在身后。王凱盡量讓自己的步速跟他保持一致,邊走邊從徐進步背包的縫隙里掏糖,邊掏邊往自己兜里揣,徐進步渾然不覺。
ot=σ{Wo[ht-1,xt]+bo}
(5)
ht=ottanh(Ct)
(6)
式中:Wo——輸出門的權(quán)值矩陣;
bo——輸出門的偏置項。
鋰離子電池SOC預測的不確定性是不可避免的,準確分析鋰離子電池SOC預測的不確定性,是進一步提高鋰離子電池管理系統(tǒng)性能的關(guān)鍵。本文在進行鋰離子電池SOC預測不確定性計算時,采用NPKDE的置信區(qū)間來量化計算鋰離子電池SOC預測的不確定性。
NPKDE方法是一種從數(shù)據(jù)樣本本身出發(fā)研究數(shù)據(jù)分布特征的方法。該方法不需要掌握相關(guān)數(shù)據(jù)分布的先驗知識,對數(shù)據(jù)分布不附加任何假定,具有廣泛的實用價值。在NPKDE方法中,核函數(shù)的準確選擇是實現(xiàn)NPKDE的關(guān)鍵要素。由于高斯核函數(shù)在NPKDE方面具有較多優(yōu)勢,為此,本文采用高斯核函數(shù)作為NPKDE的核函數(shù)。
高斯核函數(shù)的表達式:
(7)
式中:g(x)——高斯核函數(shù);
μ——均值;
σ——標準差。
NPKDE的概率密度分布:
(8)
式中:N——區(qū)間樣本數(shù);
h——帶寬系數(shù);
xi——第i樣本。
通過NPKDE獲得鋰離子電池SOC預測誤差的概率密度分布之后,即可采用置信區(qū)間對概率密度分布進行定量計算。
鋰離子電池SOC預測誤差e為某一時刻點的鋰離子電池SOC預測值Pfore和鋰離子電池SOC際值Ptrue之差:
e=Pfore-Ptrue
(9)
對于鋰離子電池SOC預測誤差e,其置信水平(置信度)用式(10)進行計算。
P(elow (10) 式中: [elow,eup]——置信水平為1-θ下的置信區(qū)間; elow——置信區(qū)間的下限; eup——置信區(qū)間的上限; P(elow 因此,SOC預測的置信區(qū)間為[Pfore-|eup|,Pfore+|elow|]。 數(shù)據(jù)來源于某公司的鋰離子電池連續(xù)充放電試驗數(shù)據(jù),電池容量為2 700 mAh,充滿電時電壓為4.35 V,放電時的截止電壓為3 V。實驗過程中保持溫度恒定不變,采集到的數(shù)據(jù)有電池的電壓、電流和SOC。鋰離子電池充電過程分為兩個階段,開始階段電池以2 700 mA的電流恒流充電,當電壓達到4.35 V時,轉(zhuǎn)變?yōu)楹銐撼潆?直至電池充滿。在放電過程中,電池以1 890 mA恒流放電,直至電壓降至3 V時,放電過程結(jié)束。 算例數(shù)據(jù)采集的相關(guān)信息如表1所示。 表1 算例數(shù)據(jù)采集的相關(guān)信息 根據(jù)訓練數(shù)據(jù)特性,對LSTM模型的相關(guān)參數(shù)進行設(shè)置。LSTM模型參數(shù)設(shè)置如表2所示。 表2 LSTM模型參數(shù)設(shè)置 TM-NPKDE的鋰離子電池SOC預測流程如圖6所示。 充電過程的鋰離子電池SOC預測如圖7所示。預測結(jié)果包括整個充電過程。預測模型包括LSTM模型、小波神經(jīng)網(wǎng)絡、BP神經(jīng)網(wǎng)絡和PSO-BP混合模型。 由于4種模型的預測誤差值都較小,很難從圖形中看出預測結(jié)果的優(yōu)良。為此,對圖形進行了局部放大。由圖7中局部放大圖可知,LSTM模型的預測結(jié)果與實際的鋰離子電池SOC值更為接近,證明了LSTM模型的預測精度高于小波神經(jīng)網(wǎng)絡、BP神經(jīng)網(wǎng)絡和PSO-BP混合模型的預測精度。 放電過程的鋰離子電池SOC預測如圖8所示。預測結(jié)果包括整個放電過程。 由圖8中的局部放大可知,LSTM模型的預測結(jié)果與實際的鋰離子電池SOC值更為接近,證明了LSTM模型的預測結(jié)果好于其他3種模型的預測結(jié)果。 各種模型充放電過程預測結(jié)果的RMSE、MAE和SDE值如表3所示。由表3可知,LSTM 表3 預測模型的RMSE、MAE和SDE值 % 充放電模型RMSEMAESDE充電LSTM0.120.100.12BP0.320.250.32BP-PSO0.310.240.31小波神經(jīng)網(wǎng)絡0.530.320.41放電LSTM0.290.250.25BP0.420.340.29BP-PSO0.410.320.28小波神經(jīng)網(wǎng)絡0.700.600.69 模型預測誤差的RMSE、MAE和SDE值均小于小波神經(jīng)網(wǎng)絡、BP神經(jīng)網(wǎng)絡和PSO-BP混合模型。 為了定量計算鋰離子電池SOC預測誤差的分布特性,本文利用置信區(qū)間來定量計算鋰離子電池SOC真實值相對于預測值的不確定性分布范圍。 為了計算鋰離子電池SOC預測的置信區(qū)間,需要先確定預測誤差的概率密度分布特性。本文利用2.1節(jié)介紹的NPKDE方法來確定鋰離子電池SOC預測誤差的概率密度分布特性。鋰離子電池SOC預測誤差的概率密度分布如圖9所示。 在圖9中,直方圖表示鋰離子電池SOC預測的誤差分布,虛線為參數(shù)估計方法得到的鋰離子電池SOC預測誤差的概率密度分布,實線為NPKDE方法得到的鋰離子電池SOC預測誤差的概率密度分布。由圖9可知,利用NPKDE方法得到的概率密度分布能夠更為準確地描述鋰離子電池SOC預測誤差的分布特性。 在得到鋰離子電池SOC預測誤差的概率密度分布之后,即可利用2.2節(jié)的內(nèi)容來計算鋰離子電池SOC預測值的置信區(qū)間。鋰離子電池充電過程在97.5%、95.0%、90.0%和85.0%置信水平下的置信區(qū)間分布如圖10所示。由圖10的放大區(qū)域可發(fā)現(xiàn),部分鋰離子電池SOC的真實值落在了置信區(qū)間的外面,表明在該預測點附近的真實值和預測值差別較大。 鋰離子電池放電過程在97.5%、95.0%、90.0%和85.0%置信水平下的置信區(qū)間分布如圖11所示。由圖11的放大區(qū)域可知,鋰離子電池SOC的真實值和預測值均落在置信區(qū)間范圍內(nèi)。同時,隨著置信水平的增加,置信區(qū)間的寬度在增大。 鋰離子電池SOC預測值在不同置信水平下置信區(qū)間覆蓋率如表4所示。由表4可知,覆蓋率δp均高于置信水平,鋰離子電池SOC真實值的整體仍以大于置信水平的概率落在置信區(qū)間內(nèi),即從而驗證了基于非參數(shù)核密度估計的置信區(qū)間計算方法能夠準確描述鋰離子電池SOC預測誤差的分布特性。 表4 鋰離子電池SOC預測值在不同置信水平下置信區(qū)間覆蓋率 % 置信水平置信區(qū)間覆蓋率充電放電97.598.710095.098.710090.094.210085.090.1100 本文提出了一種基于LSTM-NPKDE的鋰離子電池SOC預測與不確定性分析方法,利用LSTM模型對鋰離子電池SOC進行預測,利用NPKDE方法計算鋰離子電池SOC預測誤差的分布特性,并據(jù)此計算鋰離子電池SOC預測的置信區(qū)間。實例計算結(jié)果表明: (1) 由于LSTM模型具有時間遞歸特性,使得LSTM模型在預測具有時間序列特性的鋰離子電池SOC方面優(yōu)勢明顯。充電過程LSTM模型預測誤差的RMSE、MAE和SDE分別為0.12%、0.10%和0.12%,放電過程分別為0.29%、0.25%和0.25%,預測精度高于BP神經(jīng)網(wǎng)絡、BP-PSO混合模型和小波神經(jīng)網(wǎng)絡。 (2) 基于NPKDE的置信區(qū)間能夠準確計算鋰離子電池SOC預測不確定性的分布特性,在置信水平為97.5%、95.0%、90.0%和85.0%下充電過程SOC預測的覆蓋率分別為98.7%、98.7%、94.2%和90.1%,放電過程的覆蓋率均為100%。3 算例分析
3.1 數(shù)據(jù)來源與模型參數(shù)設(shè)置
3.2 鋰離子電池SOC預測分析
4 鋰離子電池SOC預測的不確定性分析
4.1 預測誤差的NPKDE
4.2 鋰離子電池SOC預測的置信區(qū)間
5 結(jié) 語