• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of irregular particles with superquadric equation in DEM

    2020-06-06 07:27:50SiqingWngDzinisMrmyshShunyingJi

    Siqing Wng, Dzinis Mrmysh, Shunying Ji,c,*

    a State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China

    b Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk 22073, Belarus

    c DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116023, China

    keywords:Discrete element model Multi-superquadric elements Poly-superquadric elements Irregular particles Granular bed

    ABSTRACT Non-spherical particles are widely present in industrial production, and significantly affect the macro and micro characteristics of granular materials. Although the superquadric equation can be used to construct non-spherical particles, its disadvantage is that the particle shape is geometrically symmetric and strictly convex. In this study, two composed approaches are used to describe geometrically asymmetric and concave particle shapes, including a multi-superquadric model and a poly-superquadric model. The multi-superquadric model is a combination of several superquadric elements, and can construct concave and geometrically asymmetric particle shapes.The poly-superquadric model is a combination of eight one-eighth superquadric elements, and can construct convex and geometrically asymmetric particle shapes. Both composed models are based on superquadric equations, and Newton's iterative method is used to calculate the contact force between the elements. Furthermore, superquadric elements, multi-superquadric elements,and poly-superquadric elements are applied for the formation of complex granular beds, and the influences of particle shape on the packing fraction can be successfully captured by the proposed models.

    The discrete element method (DEM) is one of the effective tools to study the potential mechanical properties of granular materials [1-3]. In this approach, two-dimensional discs and three-dimensional spheres were initially applied to DEM simulations because of the simplicity of the calculation and the efficient operation [4, 5]. However, the particle shape significantly affects the dynamic characteristics of the granular systems [6, 7].Meanwhile, the conclusions obtained from spherical systems are difficult to apply directly to non-spherical systems [8]. To reasonably describe the irregular particle shapes, different construction methods have been developed, including multi-sphere method [9, 10], dilated polyhedron elements [11, 12], superquadric equations [13, 14], and spherical harmonic function representations [15, 16]. Among them, the superquadric equation is a common approach for mathematically describing non-spherical particles, and can construct 80% of the solid shapes in nature [17]. However, the particle shapes with different aspect ratios and surface sharpness constructed by the superquadric equations are geometrically symmetrical and strictly convex,which limits the further engineering application of the superquadric element.

    In recent years, the composed element method has been well developed, and the basic element is not limited to spherical particles [18]. Arbitrarily shaped particles can be composed of several spheres of varying sizes [19, 20]. A true cylinder was a combination of a cylindrical surface and two circular planes, and a spherocylinder model is a combination of a cylindrical surface and two hemi-spheres [21, 22]. Moreover, cobblestone-shaped particles consist of eight one-eighth ellipsoidal elements [23, 24].However, little effort has been devoted to the detailed description of composed superquadric models.

    In this letter, the multi-superquadric model and the poly-superquadric model are introduced in detail and used to describe concave and geometrically asymmetric particle shapes. DEM is applied to simulate the formation of complex granular beds.Therefore, the traditional superquadric equation can be expressed as [25]

    where a, b, and c are the semi-axis lengths of the superquadric elements along the major axis, respectively. n1and n2are the blockiness parameters and used to determine the particle shape.Figure 1 shows the basic particle model with different aspect ratios and surface sharpness obtained from the superquadric equation. A sphere or ellipsoid is obtained if n1= n2= 2, a cylinder-like particle is obtained if n1> n2= 2, a cube-like particle is obtained if n1= n2> 2. The particle shape theoretically becomes closer to real cylinders and cubes with sharp vertices and flat planes as the block parameters increase. However, the block parameters cannot be increased infinitely and need to be within a reasonable range, because it is limited by the search algorithm between superquadric elements.

    Moreover, a multi-superquadric model is a combination of several superquadric elements [26], and the shape of the basic element is determined by Eq. (1). The basic elements can have different shapes, and there are different amounts of overlap between them. This model can be used to describe the concave,convex, and geometrically asymmetric particle shapes. Therefore, a multi-superquadric equation can be expressed as

    where aα, bα, cα, n1α, and n2αare shape parameters of the α-th superquadric equation. If a multi-superquadric model is composed of Nssuperquadric elements, a total of 5Nsshape parameters are required to represent the particle shape. Figure 2 shows the arbitrary shaped particles constructed by multisuperquadric models.

    Another composed element method is a poly-superquadric model, which is a combination of eight one-eighth superquadric elements [27]. The shape of the basic element is controlled by Eq. (1), and this model can be used to construct convex and geometrically asymmetric shapes. A poly-superquadric equation can be expressed as

    where aβ, bβ, cβ, n1β, and n2β(β = 1, 2, …, 8) are shape parameters of the β-th super-quadric equation. Therefore, 40 shape parameters are needed for describing a poly-superquadric model. Considering the smoothness and continuity of the particle surface, eight governing equations need to be satisfied

    Considering the complexity of contact detection between multi-superquadric elements or between poly-superquadric elements, both composed models can be divided into several superquadric elements. Therefore, the contact detection between the composed elements can be transformed into the contact detection between the superquadric elements. It is worth noting that the contact forces between superquadric elements belonging to the same composed element are not calculated. Moreover,the midway point approach is used to calculate the contact force between adjacent elements i and j, and the corresponding nonlinear equations can be expressed as [28]

    Fig. 1. Differently shaped particles constructed by superquadric equations.

    Fig. 2. Differently shaped particles constructed by multi-superquadric models.

    where X(k+1)=X(k)+dX(k)and λ(k+1)=λ(k)+dλ(k). If the midway point X0satisfies Fi(X0)<0 and Fj(X0)<0, the elements i and j are in contact. The normal direction can be obtained by n=?Fi(X)/?Fi(X), as shown in Fig. 4. Then, the surface points Xiand Xjsatisfy Xi= X0+ γn and Xj= X0+ τn, respectively. The unknown parameters γ and τ can be obtained by Newton iterative method [29]:andFinally, the normal overlap can be obtained by δn= Xi- Xj.

    In DEM simulations, spherical non-linear contact models have been well established and successfully extended to nonspherical granular systems [30, 31]. The normal forces between the elements include elastic and damping forces, which can be expressed as

    Fig. 3. Differently shaped particles constructed by poly-superquadric models.

    The tangential contact force ( Ft) includes the elastic forceand the damping force, which are expressed as:

    where μsandare the sliding friction coefficient and the tangential unit vector, respectively. δtis the tangential relative displacement, which is obtained by δt= δt+ vt,ij·dt. vt,ijis the tangential relative speed. δt,maxis the maximum tangential displacement, which is determined by δt,max=μs(2-υ)/[2(1-υ)·δn].

    The rolling friction coefficient ( Mr) is used to hinder the relative rotation between the elements, which is expressed as

    where μris the rolling friction coefficient.is the relative rotating speed, which is obtained by

    To examine the applicability of the multi-superquadric model and poly-superquadric model, the formation of the nonspherical granular bed was simulated by DEM. Differently shaped particles have the same mass, and the diameter of a volume equivalent sphere is 5 mm. The total number of particles is 1500. The cubic container has a length and width of 60 mm and a height of 60 mm. The main DEM simulation parameters are listed in Table 1. Figure 5 shows the differently shaped particles constructed by a superquadric element, a poly-superquadric element, and a multi-superquadric element. They have random positions and orientations at the initial moment, and form a non-spherical granular bed under gravity, as shown in Fig. 6. It can be found that the particle shape significantly affects the packing characteristics of the particulate material. Concave particles have higher porosity and lower packing density compared to convex particles.

    Fig. 4. Contact detection between superquadric elements.

    Table 1 Major computational parameters of DEM simulations.

    Fig. 5. Particles constructed by different models: a superquadric elements, b poly-superquadric elements, and c multi-superquadric elements.

    Figure 7 shows the stable granular beds composed of differently shaped particles, and Fig. 8 shows the relationship between the particle shape and the packing fraction. Convex particles have a higher packing fraction than concave particles.This is because the interlocking between the concave particles causes local arching structure and more voids. As a result, the concave particles have a larger porosity and a lower packing density. Moreover, the geometric asymmetry of the particles facilitates the relative sliding between the elements and allows the particles to quickly fill the voids. As a result, geometrically asymmetric particles composed of poly-superquadric elements have a higher packing density than symmetric particles composed of superquadric elements.

    Fig. 6. Packing processes of granular beds composed of different models: a superquadric elements, b poly-superquadric elements, and c multisuperquadric elements.

    Fig. 7. Stable granular beds composed of different shaped particles: a, b superquadric elements, c, d multi-superquadric elements, and e, f poly-superquadric elements.

    Fig. 8. Relationship between the particle shape and the packing fraction.

    In this paper, we introduce a multi-superquadric model and a poly-superquadric model based on the superquadric Eq. (1),and the DEM is used to simulate the formation of the non-spherical granular beds. Multi-superquadric element is a combination of several superquadric elements, which can be used to construct concave, convex and geometrically asymmetric particles.Poly-superquadric element is a combination of eight one-eighth superquadric elements, which can be used to construct convex and geometrically asymmetric particles. For both composed models, Newton's iterative algorithm is used to calculate the overlap between elements, and the nonlinear contact model of spherical particles is used to calculate the contact force. Furthermore, the effect of particle shape on the packing fraction is investigated. The results show that the concave particles have a lower packing density than the convex particles. It is mainly because the interlocking between the elements causes locally arched structures and larger voids. In addition, geometric asymmetry makes it easier for elements to slide and reduce voids in the granular system. As a result, geometrically asymmetric elements constructed by poly-superquadric models have a higher packing density than geometrically symmetric elements constructed by superquadric models.

    Acknowledgement

    This study was financially supported by the National Key Research and Development Program of China (Grants 2018YFA0605902, 2016YFC1401505, and 2016YFC1402706), the National Natural Science Foundation of China (Grants 11872136 and 11772085) and the Fundamental Research Funds for the Central Universities (Grants DUT19GJ206 and DUT19ZD207).

    国产亚洲最大av| 亚洲天堂av无毛| 69精品国产乱码久久久| 久久久久久久久免费视频了| 妹子高潮喷水视频| 黄片小视频在线播放| 国产女主播在线喷水免费视频网站| 观看av在线不卡| 久久综合国产亚洲精品| 久久人人爽人人片av| 国产亚洲av片在线观看秒播厂| 精品酒店卫生间| 亚洲美女黄色视频免费看| 国产精品 欧美亚洲| 老司机亚洲免费影院| 亚洲在久久综合| 不卡av一区二区三区| av卡一久久| 久久久国产一区二区| 91在线精品国自产拍蜜月| 国产精品免费大片| 黑人猛操日本美女一级片| 亚洲精品久久午夜乱码| 一级毛片我不卡| av女优亚洲男人天堂| 老汉色∧v一级毛片| 秋霞伦理黄片| 老汉色av国产亚洲站长工具| 1024香蕉在线观看| 80岁老熟妇乱子伦牲交| 深夜精品福利| 考比视频在线观看| 欧美+日韩+精品| 欧美+日韩+精品| 国产一区二区激情短视频 | 久久av网站| 不卡视频在线观看欧美| 午夜福利在线免费观看网站| 亚洲,欧美精品.| 久久久久国产网址| 亚洲在久久综合| av.在线天堂| 国产极品天堂在线| 大片电影免费在线观看免费| 狂野欧美激情性bbbbbb| 两个人免费观看高清视频| 欧美精品一区二区大全| 在线观看国产h片| 一区二区三区乱码不卡18| 性色av一级| 久久亚洲国产成人精品v| 亚洲一区二区三区欧美精品| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 咕卡用的链子| 国产淫语在线视频| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 亚洲综合精品二区| 一区福利在线观看| 在线观看免费日韩欧美大片| 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 亚洲精品美女久久av网站| 五月伊人婷婷丁香| 春色校园在线视频观看| 国产淫语在线视频| 伊人亚洲综合成人网| 熟女少妇亚洲综合色aaa.| 成年人午夜在线观看视频| 男人添女人高潮全过程视频| 寂寞人妻少妇视频99o| 久久久久国产一级毛片高清牌| 春色校园在线视频观看| 成年女人在线观看亚洲视频| 国产黄频视频在线观看| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线| www.av在线官网国产| 91国产中文字幕| 久久人人爽av亚洲精品天堂| 国产精品蜜桃在线观看| 99精国产麻豆久久婷婷| 国产精品三级大全| 蜜桃国产av成人99| 欧美日韩综合久久久久久| 99久久中文字幕三级久久日本| 婷婷色综合www| 国产免费又黄又爽又色| 亚洲人成电影观看| 丝袜在线中文字幕| 伦精品一区二区三区| 男人操女人黄网站| 午夜91福利影院| 老女人水多毛片| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 国产老妇伦熟女老妇高清| 国产淫语在线视频| 两性夫妻黄色片| 亚洲精品av麻豆狂野| 亚洲av在线观看美女高潮| 黑丝袜美女国产一区| 精品久久蜜臀av无| 韩国高清视频一区二区三区| 在线天堂中文资源库| 日韩不卡一区二区三区视频在线| www日本在线高清视频| 久久精品aⅴ一区二区三区四区 | 国产黄色视频一区二区在线观看| 亚洲精品美女久久久久99蜜臀 | 久久99蜜桃精品久久| 亚洲情色 制服丝袜| 晚上一个人看的免费电影| 性高湖久久久久久久久免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 9热在线视频观看99| 久久毛片免费看一区二区三区| 精品久久久久久电影网| 精品一区二区免费观看| 水蜜桃什么品种好| 欧美人与善性xxx| 欧美人与性动交α欧美精品济南到 | 嫩草影院入口| 在线观看一区二区三区激情| 久久99精品国语久久久| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 一级,二级,三级黄色视频| 精品第一国产精品| 亚洲图色成人| 亚洲欧美精品自产自拍| 伦理电影免费视频| 男人舔女人的私密视频| 久久久久久久久久人人人人人人| 激情五月婷婷亚洲| 在线观看www视频免费| 女性生殖器流出的白浆| 少妇的丰满在线观看| 97人妻天天添夜夜摸| 欧美黄色片欧美黄色片| 成人国产麻豆网| 春色校园在线视频观看| 久久久欧美国产精品| 亚洲精品久久久久久婷婷小说| 观看美女的网站| 男女午夜视频在线观看| 久久99精品国语久久久| 亚洲国产欧美网| 天天影视国产精品| 亚洲熟女精品中文字幕| 久久国内精品自在自线图片| a级片在线免费高清观看视频| 看非洲黑人一级黄片| 欧美人与性动交α欧美软件| 亚洲精品美女久久久久99蜜臀 | 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 免费少妇av软件| 麻豆av在线久日| 天美传媒精品一区二区| 波多野结衣av一区二区av| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 老女人水多毛片| 日韩人妻精品一区2区三区| 人人澡人人妻人| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 欧美精品高潮呻吟av久久| 亚洲av中文av极速乱| 男男h啪啪无遮挡| 美女中出高潮动态图| 久久精品亚洲av国产电影网| 一本久久精品| 黄片小视频在线播放| 欧美日韩一级在线毛片| av不卡在线播放| 黄片小视频在线播放| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| 国产男人的电影天堂91| 热99国产精品久久久久久7| 如何舔出高潮| 亚洲精品av麻豆狂野| 啦啦啦啦在线视频资源| 两个人免费观看高清视频| 亚洲精品美女久久av网站| 亚洲精品视频女| 国产激情久久老熟女| 观看美女的网站| 亚洲欧美中文字幕日韩二区| 少妇被粗大的猛进出69影院| 国产在线视频一区二区| 欧美精品一区二区大全| 久久久久国产一级毛片高清牌| 国产一区二区 视频在线| 两个人看的免费小视频| 欧美精品亚洲一区二区| 中文字幕制服av| 亚洲成av片中文字幕在线观看 | 99热国产这里只有精品6| 国产精品 欧美亚洲| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 国产男女超爽视频在线观看| 最新中文字幕久久久久| 久久青草综合色| 亚洲精品中文字幕在线视频| 国产在线视频一区二区| 欧美日韩视频精品一区| av在线播放精品| 狠狠精品人妻久久久久久综合| 国产女主播在线喷水免费视频网站| 大香蕉久久成人网| 最近中文字幕高清免费大全6| 精品亚洲成国产av| 国产国语露脸激情在线看| 高清欧美精品videossex| 伦精品一区二区三区| av又黄又爽大尺度在线免费看| 蜜桃国产av成人99| 婷婷色麻豆天堂久久| 飞空精品影院首页| 久久亚洲国产成人精品v| 久久99一区二区三区| 免费在线观看完整版高清| 在线亚洲精品国产二区图片欧美| 日韩一区二区视频免费看| 欧美激情高清一区二区三区 | 婷婷色麻豆天堂久久| 欧美精品国产亚洲| 国产老妇伦熟女老妇高清| 久久久久久久久免费视频了| 香蕉精品网在线| 久久久久久久久久久免费av| 成人国产av品久久久| 亚洲中文av在线| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 我的亚洲天堂| 一本大道久久a久久精品| 亚洲少妇的诱惑av| 你懂的网址亚洲精品在线观看| 日韩一卡2卡3卡4卡2021年| 色播在线永久视频| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 亚洲伊人久久精品综合| av国产久精品久网站免费入址| 丁香六月天网| 亚洲成色77777| 成人国产av品久久久| 视频区图区小说| 一本久久精品| 亚洲欧美成人精品一区二区| 日本猛色少妇xxxxx猛交久久| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 亚洲精品国产av成人精品| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 日本欧美视频一区| 最近最新中文字幕免费大全7| 香蕉精品网在线| 亚洲精品视频女| 不卡av一区二区三区| 女性生殖器流出的白浆| 国产av国产精品国产| 久久久精品免费免费高清| 七月丁香在线播放| 伊人久久国产一区二区| 亚洲欧美成人综合另类久久久| 99热全是精品| 午夜日本视频在线| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 久久久久网色| 丝袜美腿诱惑在线| av国产久精品久网站免费入址| 亚洲在久久综合| www.熟女人妻精品国产| 午夜福利一区二区在线看| av片东京热男人的天堂| 丝瓜视频免费看黄片| 超色免费av| 中文乱码字字幕精品一区二区三区| 90打野战视频偷拍视频| 免费观看无遮挡的男女| 九草在线视频观看| 久久99热这里只频精品6学生| 午夜免费男女啪啪视频观看| 高清av免费在线| 极品少妇高潮喷水抽搐| 性少妇av在线| 乱人伦中国视频| 成人黄色视频免费在线看| 国产精品99久久99久久久不卡 | 日韩中文字幕视频在线看片| 亚洲少妇的诱惑av| 亚洲av男天堂| 亚洲伊人色综图| 国产熟女午夜一区二区三区| 在线观看www视频免费| 视频在线观看一区二区三区| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区黑人 | 一级片免费观看大全| 免费在线观看视频国产中文字幕亚洲 | 精品一区在线观看国产| 日韩一区二区视频免费看| 国产一区亚洲一区在线观看| 99久久人妻综合| av福利片在线| 男人舔女人的私密视频| 日本午夜av视频| 热re99久久精品国产66热6| 亚洲精品日韩在线中文字幕| 韩国av在线不卡| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 国产男女超爽视频在线观看| 热re99久久国产66热| 看免费成人av毛片| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 啦啦啦中文免费视频观看日本| 欧美+日韩+精品| 亚洲av电影在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 人妻 亚洲 视频| 亚洲精品国产一区二区精华液| 免费黄频网站在线观看国产| 一级毛片 在线播放| 黑人巨大精品欧美一区二区蜜桃| 日韩制服骚丝袜av| 自线自在国产av| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线| 视频区图区小说| 狠狠精品人妻久久久久久综合| 五月伊人婷婷丁香| 午夜精品国产一区二区电影| 精品国产乱码久久久久久小说| 国产一级毛片在线| 欧美bdsm另类| 亚洲国产精品国产精品| 99热网站在线观看| 国产一区有黄有色的免费视频| 中国三级夫妇交换| 高清在线视频一区二区三区| 日日撸夜夜添| 国产在线一区二区三区精| 亚洲国产av新网站| 午夜福利视频在线观看免费| 各种免费的搞黄视频| 国产乱人偷精品视频| 亚洲av成人精品一二三区| 午夜精品国产一区二区电影| 菩萨蛮人人尽说江南好唐韦庄| av线在线观看网站| av片东京热男人的天堂| 国产日韩欧美在线精品| 久久久国产一区二区| 久久狼人影院| 夫妻午夜视频| 国产精品不卡视频一区二区| 校园人妻丝袜中文字幕| 精品少妇一区二区三区视频日本电影 | 久久女婷五月综合色啪小说| 好男人视频免费观看在线| 久久精品人人爽人人爽视色| 丝袜美足系列| 黑丝袜美女国产一区| 日韩欧美精品免费久久| 最近最新中文字幕大全免费视频 | 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 99久久精品国产国产毛片| 日本免费在线观看一区| 女性被躁到高潮视频| 天天操日日干夜夜撸| 9热在线视频观看99| 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 汤姆久久久久久久影院中文字幕| 久久久久久免费高清国产稀缺| 欧美日韩视频精品一区| 黑人巨大精品欧美一区二区蜜桃| 成人国语在线视频| 秋霞伦理黄片| 黑人欧美特级aaaaaa片| www.av在线官网国产| av卡一久久| 99国产综合亚洲精品| av电影中文网址| 一级毛片黄色毛片免费观看视频| 亚洲国产精品成人久久小说| 久久99精品国语久久久| 妹子高潮喷水视频| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 国产男人的电影天堂91| 免费看不卡的av| 综合色丁香网| 伦理电影大哥的女人| 99九九在线精品视频| 香蕉丝袜av| 亚洲四区av| 亚洲av欧美aⅴ国产| 一级黄片播放器| 亚洲精品,欧美精品| 丝袜在线中文字幕| 久久久久久伊人网av| 日本欧美视频一区| 国产视频首页在线观看| 看免费成人av毛片| 午夜福利影视在线免费观看| 永久免费av网站大全| 亚洲欧美日韩另类电影网站| 日本色播在线视频| 乱人伦中国视频| 成年女人毛片免费观看观看9 | 免费看av在线观看网站| 亚洲av成人精品一二三区| 一区二区三区激情视频| 美女大奶头黄色视频| 热99国产精品久久久久久7| 国产免费又黄又爽又色| www.av在线官网国产| 中文字幕最新亚洲高清| 亚洲人成网站在线观看播放| 国产片内射在线| 久久婷婷青草| 免费久久久久久久精品成人欧美视频| 亚洲成人一二三区av| 国产成人精品无人区| 一级毛片我不卡| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 国产又色又爽无遮挡免| 日韩一卡2卡3卡4卡2021年| 久久久久久免费高清国产稀缺| 亚洲精品久久久久久婷婷小说| 日韩一区二区三区影片| 丝袜美腿诱惑在线| 一区二区三区四区激情视频| 18+在线观看网站| 97在线视频观看| 波多野结衣av一区二区av| 一区二区av电影网| 久久久久久久大尺度免费视频| 熟女少妇亚洲综合色aaa.| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 国产av一区二区精品久久| 国产一区亚洲一区在线观看| 亚洲少妇的诱惑av| 人人妻人人澡人人看| 婷婷色av中文字幕| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 国产成人精品无人区| 亚洲av免费高清在线观看| 日本免费在线观看一区| 性色avwww在线观看| 最近中文字幕2019免费版| 人人澡人人妻人| 国产一区二区三区综合在线观看| 又黄又粗又硬又大视频| 亚洲av国产av综合av卡| 亚洲美女搞黄在线观看| 国产精品免费大片| 99国产精品免费福利视频| 午夜老司机福利剧场| 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 少妇人妻久久综合中文| 久热这里只有精品99| 啦啦啦中文免费视频观看日本| 在线天堂最新版资源| 免费黄色在线免费观看| 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 免费观看无遮挡的男女| 纵有疾风起免费观看全集完整版| 妹子高潮喷水视频| 18禁裸乳无遮挡动漫免费视频| 成人午夜精彩视频在线观看| 一二三四中文在线观看免费高清| 最近最新中文字幕大全免费视频 | 国精品久久久久久国模美| 在线天堂最新版资源| 少妇熟女欧美另类| 视频区图区小说| 青春草视频在线免费观看| 我的亚洲天堂| 永久网站在线| 在线观看www视频免费| 日日撸夜夜添| 久久亚洲国产成人精品v| 精品国产国语对白av| 精品人妻偷拍中文字幕| 999久久久国产精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美+日韩+精品| 夜夜骑夜夜射夜夜干| 亚洲av中文av极速乱| 韩国精品一区二区三区| 一级毛片电影观看| 亚洲经典国产精华液单| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 亚洲精华国产精华液的使用体验| 亚洲成人手机| 亚洲av国产av综合av卡| 极品少妇高潮喷水抽搐| 久久热在线av| 黄频高清免费视频| 老汉色∧v一级毛片| 日韩中文字幕视频在线看片| 亚洲在久久综合| 99久国产av精品国产电影| 一区二区三区精品91| 日日啪夜夜爽| 成人漫画全彩无遮挡| 欧美激情高清一区二区三区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇被粗大的猛进出69影院| 丝袜美足系列| 亚洲精品久久久久久婷婷小说| 亚洲少妇的诱惑av| 成人漫画全彩无遮挡| 香蕉丝袜av| 亚洲三区欧美一区| 一级毛片 在线播放| 亚洲国产精品999| 日韩欧美精品免费久久| 青草久久国产| 日韩视频在线欧美| 国产成人免费无遮挡视频| 精品人妻偷拍中文字幕| 亚洲伊人色综图| 在线观看国产h片| 国产熟女欧美一区二区| 亚洲av综合色区一区| 中文字幕色久视频| 久久久久国产网址| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人综合另类久久久| 另类亚洲欧美激情| 一区二区三区乱码不卡18| 亚洲美女黄色视频免费看| 青春草视频在线免费观看| 久久精品久久精品一区二区三区| 久久99一区二区三区| 国产爽快片一区二区三区| 色哟哟·www| 久久国产精品大桥未久av| 韩国av在线不卡| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品999| 免费日韩欧美在线观看| 最黄视频免费看| 久久精品熟女亚洲av麻豆精品| 天美传媒精品一区二区| 人成视频在线观看免费观看| av线在线观看网站| 久久热在线av| 高清黄色对白视频在线免费看| 18禁动态无遮挡网站| 欧美少妇被猛烈插入视频| 叶爱在线成人免费视频播放| 超碰97精品在线观看| 亚洲精品国产一区二区精华液| 久久女婷五月综合色啪小说| 久久久精品区二区三区| 大片电影免费在线观看免费| 人人妻人人澡人人爽人人夜夜| 精品少妇一区二区三区视频日本电影 | 午夜av观看不卡| 男女无遮挡免费网站观看| 午夜日韩欧美国产| 街头女战士在线观看网站| 欧美97在线视频| 少妇猛男粗大的猛烈进出视频| 汤姆久久久久久久影院中文字幕| 一级爰片在线观看| 国产成人a∨麻豆精品| 一区二区三区精品91| 亚洲国产看品久久| 国产免费一区二区三区四区乱码| 国产精品无大码| 久久这里有精品视频免费| av电影中文网址| 看非洲黑人一级黄片| 亚洲视频免费观看视频| 在现免费观看毛片| 少妇人妻 视频| 欧美老熟妇乱子伦牲交| 老司机亚洲免费影院| 国产麻豆69| 精品少妇黑人巨大在线播放| 欧美精品亚洲一区二区| 18禁裸乳无遮挡动漫免费视频| 国产成人精品福利久久| 麻豆精品久久久久久蜜桃| 大码成人一级视频| 亚洲av电影在线进入|