• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of deformation processes in rock massif in the vicinity of underground goafs considering the formation of discontinuity zones

    2020-06-06 07:28:16MichaelZhuravkovShunyingJiAlegKanavalau

    Michael Zhuravkov*, Shunying Ji, Aleg Kanavalau

    a Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk 220030, Belarus

    b DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116023, China

    c State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China

    d Research laboratory of information technologies and computer graphics, Belarusian State University, Minsk 220030, Belarus

    K eywords:Block-layered structure Rock massif Stress-strain state Destruction and limit criteria Negative Poisson's ratio

    ABSTRACT The construction of mechanical-mathematical model and numerical method for the deformation processes of rock massifs with goafs and underground structures is very complex and also important task in modern rock mechanics. In this study, the mechanical-mathematical model is developed for rock massif in vicinity of underground goafs considering the internal block-layered structure of the rock massif. A new constitutive model is introduced in this study to describe the negative Poisson's ratio for the lock-layered structure. Two types of defining equations systems for studying the state of a rock massif taking into account the block-layered structure are described.Finally, several examples are given using the present mechanical-mathematical model.

    The relationship between the rock massifs deformation and theirs internal structure belongs to the actual problems of modern rock mechanics. Construction of relative mechanical-mathematical and numerical models for these deformation processes of rock massifs is one of the most important and complex task of rock mechanics.

    In general, different structural states are generated in the rock massif of underground structures [1]. In discontinuity areas of the rock massif in the vicinity of underground workings, block structures can be formed [2]. Deformation of such structure occurs due to the sliding between blocks and their rotations. It is obvious that the resistance of the rock massif decreases during its deformation when a block structure is generated, but still remains finite. This phenomenon is characterized by the appearance of a descending branch in the stress-strain diagram. Obviously, the relationship between stresses and strains of the rock massif under this new state is different from the standard one.The relationship between stresses and strains is not unambiguous in the descending branch, but can be determined independently and separately from the basic laws of mechanics [3].

    Since the formation of the block structure is generated at different scales with the similarity property, the present arguments are suitable for describing the processes both around single goafs and in areas with a large-scale system of underground structures.

    Areas of discontinuity are formed in the rock massif when the shear stresses reach their limit values. The rock massif domain is divided by slip lines to form a block structure. This structure has its own durability τ*. The interactions between the blocks are characterized as slip and friction, as well as adhesion between adjacent blocks.

    The following algorithm can be adopted to determine the block structure region, where the classical elastic relations cannot be suitable. A development approach for the mechanicalmathematical models can be introduced to study the deformation processes of rock massifs considering the presence of domains under the ultimate condition.

    We accept the following assumptions [3, 4]. The directions of the principal stresses remain constant after the formation of underground cavities in the rock massif. The principal directions are related to the direction of gravity σgand directions perpendicular to the direction of gravity. When the shear stress exceeds its strength, slip sites appear in the considered area of the rock massif and the allocated volume is divided into blocks.

    In accordance with the introduced assumptions, it is physically justified to assume the existence of limit values Tland Γlfor invariants of the strain Γ and stress T states or principal shear stresses and principal shear strains, which can be defined in the three-dimensional case as:In the case of 2D-deformation, we haveand

    Thus, the invariants of the strain and stress can be written as[4]:

    In the destruction areas, there are no connections between stresses and strains in the conventional sense. Therefore, the two criteria of Eq. (1) are independent in the general cases. In the fracture region, the stress and strain tensors are not coaxial. At the boundary points of the fracture region, the principal directions are rotated to take strains remain joint.

    Therefore, to study the mechanical behavior of rock massifs in the deformation diagram at the post-peak stage, it is convenient to adopt the following three functions instead of the standard invariants as [5]:

    where σnis the normal stress, μσis the Lode-Nadai parameter.

    T he parameters T and σncharacterizes the massif strength at the site of force T13; the parameter μσcharacterizes the massif strength on the other two sites of T12and T23since it can be expressed as μσ=(T23-T21)/T.

    In accordance with the observation on the independence of criteria in Eq. (1), Eq. (2) is insufficient to obtain complete information about the exhaustion of the bearing capacity of the rock massif in a particular situation. An additional condition of the principal strains ε1>ε2>ε3is adopted to study the post-peak in rock behaviors. Since the stresses and strains are not connected by a single-valued dependence in the post-peak state, it is necessary to introduce the following three new invariants to describe the irreversible deformations and fracture by:

    So, the mechanical-mathematical formulation of the block structure in the rock massif includes the following equations.The criterion for the block structure formation: Γ=Γl; the strains εx,εy,εzsatisfy the Saint-Venant compatibility condition to describe the deformations in the area of rock massif discontinuity. The stresses are determined from a system including the equilibrium equations and the extreme condition T=Tl. The formulation above can be applied to study the deformation processes at various scales. The formulation above shows that the coincidence of the basic equations with the equations for the elastic-plastic state of the deformed body.

    Considering the deformation process of the solid deformable block structure with various internal connections, the elements are individual blocks, and the links are interblock spaces.The essential portion is the choice of the blocks and interblock space behavior laws. Blocks can be considered as rigid or as elastic bodies. The interblock space can be considered as an elastic coupling between neighboring blocks. During the description of the deformation of the rock mass block structure, it is necessary to know the physical-mechanical properties of individual elements and interblock space, to determine the conditions of static or dynamic equilibrium of the blocks system at a given type of loading, and to set the sequence of loads application not only at each boundary point of the blocks set but also within the block structure at the interblock spacing [6].

    In this study, a three-dimensional element of a layered rock massif in the form of a cube is considered. The layers are parallel to each other and have the same roughness. The planes of the layers are defined by the normal vector

    Under the global coordinate system O-xyx, a local coordinate system with axes 1, 2, 3 is introduced. The direction of axis 2 is determined by the vector n2. Axes 1 and 3 are defined so that they are parallel to the layer planes and perpendicular to the Ox and Oy axes, respectively. Their directions are given respectively by vector n1and n3(as shown in Fig. 1), and can be written as:

    Let the initial state of the body is under the action of compressive forces Nx, Ny, Nz, attracting layers to each other, and the body is in a state of static equilibrium. Then, for example, the normal load N2and the tangental loads N21and N23acting on the interblock spaces can be written as:

    Fig. 1. Geometric interpretation of layered rock massif in the three dimensions

    To determine the relationship between stresses and strains,the physical equations can be written as [6]:

    Thus, Eqs. (6) and (7) descript the deformation behavior of a rock massif with block structure in the three-dimensions when|σ2|?N2. This means compared to the effect of N2on the shift process, the effect of σ2is negligible.

    Compared with the classical deformable media, block structures perform non-standard mechanical properties, including the negative Poisson's ratio. Based on the knowledge of solid mechanics, the negative ν are possible under the condition μ >3K/2, here μ is the shear modulus and K is the bulk deformation modulus. This means the effective shear modulus of the medium is one and half times larger than its bulk deformation modulus. This situation possibly depends on the internal structure of the block medium. A block structure in a rock massif can be formed in such pattern. The rock massif continuity is kept,and its deformation occurs due to the sliding and rotations.

    The phenomenon of dilatancy can be described as the behavior of a material with a negative Poisson ratio. Negative values of v were measured in experiments with samples of granite rocks containing microcracks. In addition, this anomaly was also observed in soils, such as porous sandstones.

    We can consider a mechanical-mathematical model of a block medium with negative Poisson's ratio. The structural unit of the block medium is modeled by a system of elastic rod elements (as shown in Fig. 2a). The general relationship between the stress and strain tensors for such medium are obtained with equations relating the forces and displacements for this rod system. The behavior of the material can be described if you know the deformation law of the structural unit ABC (Fig. 2a). To construct the deformation law of the ABC fragment, we distinguish it as a body in equilibrium, while the bonds at the ends of rods are replaced by stretching Piand bending Qiforces (Fig. 2b).

    Based on Eq. (6), the mechanical model of the block medium as shown in Fig. 2 can be represented as [8, 9]:

    The components of the elastic modulus tensor σijare determined separately considering the equilibrium problems of the selected element ABC. Setting the value εxx, we define three coefficients of rigidity a11, a12, a13. Setting the value εyy, we define three coefficients of rigidity a13, a23, a33. Setting the value εxy, we define a12, a22, a23, respectively. Finally, the functionsandare obtained.

    For the Poisson's ratio and Young's modulus, we have:

    For example, for the values of the loading angle φ ≈0 and φ ≈π/2 when νxybecomes negative, we have:

    where r=b/a is the ratio of the lengths of the vertical and inclined rods; Niand Miare the ABC element malleability, and can be written as:

    Fig. 2. Two-dimensional model of block structure of rock massif represented by a rod system and b corresponding structural elements.

    Fig. 3. Deformation state in the vicinity of a goaf in a layered rock massif. a The presence of clay layers in the sides of the goaf, b, c the presence of clay layers in the roof of the goaf, d the presence of inclined clay layers in the sides of the goaf, e the presence of clay layers and the compensation gaps in the sides of the goaf, f the presence of clay layer and the compensation gap in the bottom of the goaf.

    here, we have

    where vmand Emare the Poisson's ratio and Young's modulus of rods material, Vfis the volume part of rods in the total volume of the element ABC.

    The area of rock massif with single underground goaf is considered with the formulation above. The rock massif is a set of layers that are parallel to each other and inclined at an angle to the horizontal plane. Different layers are separated by interlayer space. Materials in the interlayer space are clays which are more malleable than rock. Therefore, we assume that the deformations in the massif occur mainly due to the deformation of the interlayer space.

    Equations (6) and (7) were applied to describe the relationships between stresses and strains in 2D. We emphasize that Eqs. (6)-(10) are quite universal. Although they do not consider each layer separately, it is possible to take into account the main features of the layered massif deformation since the yielding strength λ1along the direction of the layers is different to the yielding strength λ2in the perpendicular direction. These equations make it possible to consider the characteristic directions of layering and weakening planes of massif.

    The values λ1and λ2can be determined from physical experiments. However, it is not always possible to reproduce the deformation process of a rock sample in the laboratory, therefore,the elastic properties of massif can be known exactly. Due to the large error in experimental data, it is recommended to use the data of in-situ experiments and computer modeling results.

    Case 1.To study the effect of the layers presence on the massif deformations around of single goaf, the compensation gaps approach is used here. The values of the main parameters of the goaf: the width -4.5 m, its height -3.0 m, the depth of the workings -800 m. For the rock layers, we set ρ=2300 kg/m3, ν =0.29,E=1.75 GPa, λ1=2/E(λ1=1/E), λ2=1/E , λ12=1/(2G),α=π/36=5°. Some simulation results are plotted in Fig. 3.

    Case 2.To study the deformation state of the layered massif,the method of longwall mining was adopted to model the cavity with two large horizontal sizes considering the placement of waste rock in the cavity. The deformation processes in the waste rock strips was made by specifying the multilinear behaviour of the waste rock. The multilinear behaviour of a waste rock material is understood since it performs linear behavior. The law of waste rock strain can be expressed as:

    where ε is the waste rock strain, %; ε0is the maximum strain of waste rock, %; q0is the compression parameter of the waste rock,MPa.

    Equation (13) in the framework of the pseudoelastic model characterizes the stiffness of the waste rock material using the equivalent elastic modulus q0. The averaged compression parameters of the waste rock material can be set ε0= 24.83%, q0=14.7 MPa. The value of the elastic modulus at each iterative step is selected depending on the current value of the equivalent strain. The numerical model was constructed using the coupled FEM-DEM technology. Some results are presented in Fig. 4. The length of the excavation is 150 m.

    Case 3.The modeling of the columnar pillar deformation and destruction.

    Equations (6) and (7) are also used to describe the relationship between stresses and strains. We simulated the behavior of a columnar pillar under load. The sequence of model problems was considered when the load on the pillar increased. The properties of the material correspond to carnallite. Example numerical simulation results are presented in Fig. 5. The model showed adequate qualitative behavior that corresponds to rigid pillar.That is, for a quite long time, the pillar is in a solid and accumulates internal destruction (as shown in Fig. 5a). Then the pillar loses its bearing capacity and is destroyed (as shown in Fig. 5b and 5c).

    Fig. 4. Distribution of vertical displacements components in the massif around of longwall mining using the mining scheme a with a waste rock and b without a waste rock .

    Fig. 5. Modeling of a columnar pillar deformation and fracture

    Acknowledgement

    This study is financially supported by the National Natural Science Foundation of China (Grant 11872136) and the Fundamental Research Funds for the Central Universities (Grants DUT19GJ206 and DUT19ZD207).

    婷婷精品国产亚洲av在线| 狠狠狠狠99中文字幕| av超薄肉色丝袜交足视频| 99久久精品国产亚洲精品| 亚洲精品久久午夜乱码| 欧美亚洲日本最大视频资源| 国产精品一区二区三区四区久久 | 色婷婷久久久亚洲欧美| 午夜影院日韩av| 岛国视频午夜一区免费看| 欧美午夜高清在线| 女生性感内裤真人,穿戴方法视频| 91精品三级在线观看| 88av欧美| 亚洲精品粉嫩美女一区| 精品乱码久久久久久99久播| 又黄又粗又硬又大视频| 国产精品98久久久久久宅男小说| 伊人久久大香线蕉亚洲五| 最好的美女福利视频网| 岛国视频午夜一区免费看| 久久中文字幕一级| 日韩欧美免费精品| 久久天躁狠狠躁夜夜2o2o| 亚洲一码二码三码区别大吗| 亚洲一区二区三区欧美精品| 亚洲av熟女| 中国美女看黄片| 欧美人与性动交α欧美精品济南到| 精品国产一区二区久久| 免费在线观看黄色视频的| 三级毛片av免费| 夜夜夜夜夜久久久久| svipshipincom国产片| 国产精品久久久av美女十八| 久久人妻福利社区极品人妻图片| 精品无人区乱码1区二区| 人人妻人人添人人爽欧美一区卜| 动漫黄色视频在线观看| 久久久水蜜桃国产精品网| 91国产中文字幕| 天堂影院成人在线观看| 亚洲国产欧美日韩在线播放| 午夜福利免费观看在线| 久久这里只有精品19| 两个人看的免费小视频| 欧美日韩亚洲高清精品| 国产成人精品在线电影| 一级作爱视频免费观看| 在线国产一区二区在线| 人人妻,人人澡人人爽秒播| 国产亚洲欧美在线一区二区| 人人妻人人澡人人看| 麻豆一二三区av精品| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 少妇 在线观看| 久热这里只有精品99| 最近最新免费中文字幕在线| 级片在线观看| 欧美一区二区精品小视频在线| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| a级毛片黄视频| 日本 av在线| 电影成人av| 日韩欧美在线二视频| 曰老女人黄片| 黄色女人牲交| 后天国语完整版免费观看| 人人妻人人添人人爽欧美一区卜| 人人妻,人人澡人人爽秒播| 国产av精品麻豆| 色婷婷av一区二区三区视频| 老司机深夜福利视频在线观看| 12—13女人毛片做爰片一| av中文乱码字幕在线| 欧美日本中文国产一区发布| 亚洲aⅴ乱码一区二区在线播放 | 韩国精品一区二区三区| 高清黄色对白视频在线免费看| 国产亚洲欧美精品永久| 午夜两性在线视频| 女生性感内裤真人,穿戴方法视频| 无人区码免费观看不卡| 日韩国内少妇激情av| 美女大奶头视频| 欧美成人性av电影在线观看| 黄色丝袜av网址大全| 九色亚洲精品在线播放| 欧美黑人欧美精品刺激| 精品久久久久久电影网| 欧美激情久久久久久爽电影 | 久久99一区二区三区| 午夜久久久在线观看| 午夜激情av网站| 黄色女人牲交| 99久久国产精品久久久| 激情在线观看视频在线高清| 十八禁网站免费在线| 99香蕉大伊视频| 日日摸夜夜添夜夜添小说| 好男人电影高清在线观看| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 亚洲专区字幕在线| 国产高清激情床上av| 午夜福利在线观看吧| 制服人妻中文乱码| 99久久久亚洲精品蜜臀av| 19禁男女啪啪无遮挡网站| aaaaa片日本免费| 日韩免费高清中文字幕av| 男女下面进入的视频免费午夜 | 精品国产美女av久久久久小说| 国产精品偷伦视频观看了| 人妻丰满熟妇av一区二区三区| 国产高清视频在线播放一区| 大陆偷拍与自拍| 狂野欧美激情性xxxx| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 99久久国产精品久久久| 一边摸一边抽搐一进一出视频| 免费av毛片视频| 波多野结衣一区麻豆| 成人精品一区二区免费| 在线观看一区二区三区| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 999久久久精品免费观看国产| 午夜精品国产一区二区电影| 国产成人欧美在线观看| √禁漫天堂资源中文www| 人妻久久中文字幕网| 国产精品一区二区在线不卡| 精品国内亚洲2022精品成人| 国产精品久久久久成人av| 国产黄色免费在线视频| 大型av网站在线播放| 一边摸一边抽搐一进一小说| 日本a在线网址| 午夜a级毛片| 成年人免费黄色播放视频| 一边摸一边抽搐一进一小说| 一级片'在线观看视频| 在线国产一区二区在线| 999精品在线视频| 免费av毛片视频| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 一级毛片高清免费大全| 丝袜在线中文字幕| 亚洲第一青青草原| 国产精品久久久久久人妻精品电影| 日本撒尿小便嘘嘘汇集6| 亚洲精品久久午夜乱码| 成人特级黄色片久久久久久久| 亚洲成人国产一区在线观看| 人妻丰满熟妇av一区二区三区| 乱人伦中国视频| 国产成人精品久久二区二区91| 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼 | 欧美日韩国产mv在线观看视频| 国产精品香港三级国产av潘金莲| 亚洲色图 男人天堂 中文字幕| 色综合婷婷激情| 国产xxxxx性猛交| 青草久久国产| 激情在线观看视频在线高清| 一个人免费在线观看的高清视频| 最近最新中文字幕大全电影3 | 一级毛片高清免费大全| 91麻豆精品激情在线观看国产 | 美女午夜性视频免费| 亚洲五月婷婷丁香| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| 欧美另类亚洲清纯唯美| 丝袜在线中文字幕| 久久天躁狠狠躁夜夜2o2o| 国产精品野战在线观看 | 夜夜躁狠狠躁天天躁| 乱人伦中国视频| a级毛片在线看网站| 国产成人免费无遮挡视频| 日韩 欧美 亚洲 中文字幕| 成年人黄色毛片网站| 9191精品国产免费久久| 亚洲精品一二三| 美女 人体艺术 gogo| 色婷婷久久久亚洲欧美| 一个人免费在线观看的高清视频| 免费av中文字幕在线| 999久久久国产精品视频| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 女性被躁到高潮视频| 天堂√8在线中文| 久久精品国产99精品国产亚洲性色 | 首页视频小说图片口味搜索| 欧美日韩亚洲高清精品| 69av精品久久久久久| 亚洲精品av麻豆狂野| 男女下面进入的视频免费午夜 | 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 亚洲伊人色综图| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 亚洲男人天堂网一区| 桃色一区二区三区在线观看| 老司机靠b影院| cao死你这个sao货| 久久精品亚洲精品国产色婷小说| 国产精品九九99| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三区在线| 久久精品成人免费网站| 欧美人与性动交α欧美软件| 琪琪午夜伦伦电影理论片6080| 精品久久久久久成人av| 亚洲欧美日韩无卡精品| 黄色片一级片一级黄色片| 国产精品1区2区在线观看.| 91成年电影在线观看| 久久伊人香网站| 日韩欧美国产一区二区入口| 69精品国产乱码久久久| 亚洲欧美激情在线| 大型av网站在线播放| 99国产精品99久久久久| 婷婷六月久久综合丁香| 国产极品粉嫩免费观看在线| 亚洲 欧美 日韩 在线 免费| 亚洲黑人精品在线| 好看av亚洲va欧美ⅴa在| 国产精品免费一区二区三区在线| 亚洲精品国产一区二区精华液| 纯流量卡能插随身wifi吗| 亚洲精华国产精华精| 亚洲国产欧美网| 午夜福利,免费看| 久久精品国产99精品国产亚洲性色 | 亚洲自偷自拍图片 自拍| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 日韩成人在线观看一区二区三区| 日本一区二区免费在线视频| 免费在线观看影片大全网站| 色精品久久人妻99蜜桃| 欧美不卡视频在线免费观看 | 国产精品乱码一区二三区的特点 | 午夜老司机福利片| 精品一区二区三区视频在线观看免费 | 最新在线观看一区二区三区| 超碰97精品在线观看| 欧美在线一区亚洲| 亚洲专区字幕在线| 极品教师在线免费播放| 99国产精品99久久久久| 99在线人妻在线中文字幕| 国产精品久久电影中文字幕| 国产xxxxx性猛交| 热99re8久久精品国产| 动漫黄色视频在线观看| 久久久久九九精品影院| 中文字幕av电影在线播放| 少妇粗大呻吟视频| 国产深夜福利视频在线观看| 国产精品乱码一区二三区的特点 | 777久久人妻少妇嫩草av网站| 另类亚洲欧美激情| 久久午夜亚洲精品久久| 丝袜美足系列| 国产真人三级小视频在线观看| 国产精品久久视频播放| 国产精品一区二区免费欧美| 日韩精品青青久久久久久| 免费观看人在逋| 国内久久婷婷六月综合欲色啪| 午夜两性在线视频| 亚洲精品粉嫩美女一区| 成人国语在线视频| 欧美日韩精品网址| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 12—13女人毛片做爰片一| 国产黄色免费在线视频| 一级黄色大片毛片| 中国美女看黄片| 欧美精品啪啪一区二区三区| 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 99精国产麻豆久久婷婷| 国产人伦9x9x在线观看| 精品国产美女av久久久久小说| 国产成人精品在线电影| 美女福利国产在线| 19禁男女啪啪无遮挡网站| 精品第一国产精品| 一进一出好大好爽视频| 午夜成年电影在线免费观看| 一边摸一边做爽爽视频免费| 国产精品久久久人人做人人爽| 黄色 视频免费看| 深夜精品福利| 欧美精品一区二区免费开放| 丰满迷人的少妇在线观看| 一级a爱视频在线免费观看| 日韩精品青青久久久久久| 性色av乱码一区二区三区2| svipshipincom国产片| 午夜精品国产一区二区电影| 午夜亚洲福利在线播放| 欧美大码av| 韩国精品一区二区三区| 日韩av在线大香蕉| 99精品在免费线老司机午夜| 丁香欧美五月| 午夜免费激情av| 午夜日韩欧美国产| 亚洲国产看品久久| 99在线视频只有这里精品首页| 热99国产精品久久久久久7| 欧美日韩中文字幕国产精品一区二区三区 | 一级,二级,三级黄色视频| 女性被躁到高潮视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久成人av| 黄色视频,在线免费观看| 中文字幕高清在线视频| 视频区欧美日本亚洲| 午夜免费鲁丝| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 黄片小视频在线播放| 级片在线观看| 亚洲av美国av| 日韩大尺度精品在线看网址 | 欧美人与性动交α欧美精品济南到| 丰满饥渴人妻一区二区三| 亚洲国产欧美一区二区综合| av免费在线观看网站| 啪啪无遮挡十八禁网站| 又紧又爽又黄一区二区| 久久精品成人免费网站| 日本黄色视频三级网站网址| 国产欧美日韩一区二区精品| 午夜精品国产一区二区电影| 精品久久久久久电影网| 波多野结衣av一区二区av| 老司机午夜十八禁免费视频| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 国产xxxxx性猛交| 精品欧美一区二区三区在线| 天天影视国产精品| 大码成人一级视频| 亚洲国产看品久久| www.熟女人妻精品国产| 99热只有精品国产| 淫妇啪啪啪对白视频| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区av网在线观看| 成年人免费黄色播放视频| 国产激情欧美一区二区| 午夜福利在线免费观看网站| 中文字幕精品免费在线观看视频| 久久久久久久精品吃奶| 水蜜桃什么品种好| 这个男人来自地球电影免费观看| 丰满饥渴人妻一区二区三| 国产色视频综合| 成人特级黄色片久久久久久久| 国产精品偷伦视频观看了| 精品国产亚洲在线| 欧美色视频一区免费| 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产深夜福利视频在线观看| 性欧美人与动物交配| 免费少妇av软件| 中出人妻视频一区二区| 精品人妻在线不人妻| 多毛熟女@视频| 日韩欧美一区视频在线观看| 久久热在线av| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频 | av片东京热男人的天堂| 成人三级黄色视频| 99久久综合精品五月天人人| 他把我摸到了高潮在线观看| 亚洲欧美日韩高清在线视频| videosex国产| 亚洲av成人一区二区三| 午夜亚洲福利在线播放| av免费在线观看网站| www.www免费av| 亚洲熟女毛片儿| 亚洲色图 男人天堂 中文字幕| 国产高清视频在线播放一区| 操美女的视频在线观看| 一a级毛片在线观看| 国内久久婷婷六月综合欲色啪| 国产蜜桃级精品一区二区三区| 国产aⅴ精品一区二区三区波| 黄片小视频在线播放| 高潮久久久久久久久久久不卡| 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频 | 国产精华一区二区三区| 亚洲全国av大片| 两人在一起打扑克的视频| 在线观看一区二区三区激情| 成人三级做爰电影| 久久精品国产亚洲av香蕉五月| 午夜成年电影在线免费观看| 亚洲第一青青草原| 国产成人免费无遮挡视频| 黄色视频,在线免费观看| 在线十欧美十亚洲十日本专区| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 欧美人与性动交α欧美精品济南到| 九色亚洲精品在线播放| 欧美日韩精品网址| 亚洲一区二区三区欧美精品| 国产无遮挡羞羞视频在线观看| 99热国产这里只有精品6| 亚洲av成人不卡在线观看播放网| 十分钟在线观看高清视频www| 一a级毛片在线观看| 国产精品一区二区在线不卡| 老汉色av国产亚洲站长工具| 好看av亚洲va欧美ⅴa在| 亚洲精品中文字幕一二三四区| 黄色成人免费大全| 99在线视频只有这里精品首页| 18禁观看日本| 大码成人一级视频| 免费av毛片视频| 日韩大尺度精品在线看网址 | 久久亚洲真实| 国产无遮挡羞羞视频在线观看| 人人妻人人澡人人看| 日韩成人在线观看一区二区三区| 国产激情久久老熟女| 免费在线观看完整版高清| 我的亚洲天堂| 久久中文字幕一级| 侵犯人妻中文字幕一二三四区| 久久久久国内视频| 纯流量卡能插随身wifi吗| 国产精品秋霞免费鲁丝片| 亚洲av成人av| 成人永久免费在线观看视频| a级毛片在线看网站| 精品国产亚洲在线| 日本vs欧美在线观看视频| 午夜福利欧美成人| 搡老乐熟女国产| 亚洲av成人av| 香蕉久久夜色| 丝袜人妻中文字幕| 波多野结衣高清无吗| 中出人妻视频一区二区| 99热只有精品国产| 看片在线看免费视频| 极品教师在线免费播放| 在线观看66精品国产| 久久午夜亚洲精品久久| 最好的美女福利视频网| www.精华液| 亚洲av成人av| 国产精品久久久久成人av| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 欧美黑人精品巨大| 亚洲精品av麻豆狂野| 香蕉丝袜av| 亚洲精品成人av观看孕妇| av福利片在线| 啦啦啦免费观看视频1| 两个人看的免费小视频| 亚洲狠狠婷婷综合久久图片| 成年版毛片免费区| 国产熟女午夜一区二区三区| 国产男靠女视频免费网站| 法律面前人人平等表现在哪些方面| 人人妻人人爽人人添夜夜欢视频| 91九色精品人成在线观看| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 可以免费在线观看a视频的电影网站| 丰满的人妻完整版| 男女高潮啪啪啪动态图| 亚洲伊人色综图| 国产av一区二区精品久久| 国产成人一区二区三区免费视频网站| 久久香蕉精品热| av超薄肉色丝袜交足视频| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 日日夜夜操网爽| 欧美午夜高清在线| 午夜成年电影在线免费观看| 欧美日本亚洲视频在线播放| 国产亚洲欧美98| 欧美日韩亚洲高清精品| 69精品国产乱码久久久| 超碰97精品在线观看| 香蕉国产在线看| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 757午夜福利合集在线观看| 久久久精品欧美日韩精品| 两个人看的免费小视频| 亚洲第一青青草原| 国产人伦9x9x在线观看| 1024香蕉在线观看| 免费av中文字幕在线| 国产主播在线观看一区二区| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 国产又色又爽无遮挡免费看| 久久久国产一区二区| 日本 av在线| 国产av一区在线观看免费| 欧美老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 欧美黑人欧美精品刺激| 精品久久久久久久久久免费视频 | 久久久国产精品麻豆| 看黄色毛片网站| 国产有黄有色有爽视频| 又黄又粗又硬又大视频| 51午夜福利影视在线观看| 欧美激情久久久久久爽电影 | 日韩有码中文字幕| 国产精品香港三级国产av潘金莲| 国产1区2区3区精品| 亚洲五月天丁香| 自线自在国产av| 伦理电影免费视频| 成在线人永久免费视频| 国产亚洲精品久久久久久毛片| 亚洲免费av在线视频| 他把我摸到了高潮在线观看| 美国免费a级毛片| 香蕉国产在线看| 天天影视国产精品| 一级毛片精品| 免费看十八禁软件| 国产男靠女视频免费网站| 亚洲情色 制服丝袜| 性色av乱码一区二区三区2| 999久久久精品免费观看国产| 亚洲欧美精品综合久久99| 久久香蕉国产精品| 亚洲午夜精品一区,二区,三区| 视频区图区小说| 91麻豆精品激情在线观看国产 | a级毛片在线看网站| 人人妻,人人澡人人爽秒播| 中文字幕最新亚洲高清| 午夜亚洲福利在线播放| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久成人av| 亚洲狠狠婷婷综合久久图片| 精品国产超薄肉色丝袜足j| www国产在线视频色| 国产午夜精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 三级毛片av免费| 亚洲,欧美精品.| 热99国产精品久久久久久7| 午夜精品久久久久久毛片777| 男女做爰动态图高潮gif福利片 | 老司机在亚洲福利影院| 久久这里只有精品19| 岛国视频午夜一区免费看| 亚洲国产精品合色在线| 精品无人区乱码1区二区| 亚洲成人国产一区在线观看| 免费日韩欧美在线观看| 国产成人一区二区三区免费视频网站| 精品国产美女av久久久久小说| 中文字幕精品免费在线观看视频| 99香蕉大伊视频| 久热这里只有精品99| 日韩免费高清中文字幕av| 在线观看日韩欧美| 日韩欧美一区二区三区在线观看| 咕卡用的链子| 一级作爱视频免费观看| 国产av一区二区精品久久| 亚洲专区字幕在线| 免费在线观看黄色视频的| 国产av一区二区精品久久| 高清欧美精品videossex| 女警被强在线播放| 精品乱码久久久久久99久播| 色婷婷久久久亚洲欧美| 极品人妻少妇av视频| 天堂√8在线中文|