• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GTH Algorithm, Censored Markov Chains, and RG-Factorization

    2020-06-04 06:41:52YiqiangZhao

    Yiqiang Q. Zhao

    (School of Mathematics and Statistics, Carleton University, Ottawa, ON Canada K1S 5B6)

    Abstract In this paper, we provide a review on the GTH algorithm, which is a numerically stable algorithm for computing stationary probabilities of a Markov chain. Mathematically the GTH algorithm is an rearrangement of Gaussian elimination, and therefore they are mathematically equivalent. All components in the GTH algorithm can be interpreted probabilistically based on the censoring concept and each elimination in the GTH algorithm leads to a censored Markov chain. The RG-factorization is a counterpart to the LU-decomposition for Gaussian elimination. The censored Markov chain can also be treated as an extended version of the GTH algorithm for a system consisting of infinitely many linear equations. The censored Markov chain produces a minimal error for approximating the original chain under the l1-norm.

    Key words GTH method Gaussian elimination Markov chain Censored Markov chain RG-factorization Stationary probability Numerical stable algorithm

    1 Introduction

    Stationary probabilities are crucial for stationary behaviour of stochastic systems, which can be often modeled as a Markov chain. Explicit expressions for the stationary distribution are available for a small set of problems. In most of applications, simulation or numerical computations are main tools for a solution. Therefore, computational methods for Markov chains are very important. Algorithms are usually presented for a finite-state Markov chain, since computers can only deal with finite-many states. When using finite-state Markov chains to approximate an infinite-state Markov chain, convergence and the approximation error are among fundamental questions to answer.

    The GTH algorithm discussed in this paper was proposed by Grassmann, Taksar and Heyman in 1985 [7]. Then, it became very attracted to many researchers. A list of publications by 1993, in which the GTH algorithm was used, can be found in Grassmann [5], including: Kohlas [14], Heyman [10], Heyman and Reeves [11], Grassmann and Heyman [6], Stewart [24], O’Cinneide [22]. The list of references closely related to the GTH algorithm, published after 1993, is so large, and only a small sample is included here: Stewart [25], Dayar and Stewart [2], Grassmann and Zhao [8], Sonin and Thornton [23], Dayar and Akar [1], Hunter [12]. Therein from the above publications, many more references can be found.

    The GTH algorithm is a numerically stable version of Gaussian elimination, or a rearrangement of Gaussian elimination. Through the rearrangement, subtractions are avoided in the algorithm, which are often the reason causing computational instability. The rearrangement makes the elimination process start with the largest state that controls the error in computations. The GTH algorithm possesses a probabilistic interpretation. This interpretation becomes very clear in terms of the censoring concept of the Markov chain. Two important measures, the RG-measures, for Markov chains are invariant under the censoring Based on this property one can prove that the GTH algorithm is equivalent to the RG-factorization, which is a counterpart to the LU-decomposition for Gaussian elimination. The censored Markoc chain also serves as a tool to deal with a countable-state Markov chain. The convergence property given in Section 5 can be used in many cases to construct a modified countable-state Markov chain such that the GTH algorithm can be performed in the approximation. This convergence property, together with the fact that the censored Markov chain provides an approximation with a minimal error under thel1-norm, leads to efficient stable computations using the GTH algorithm.

    The rest of the paper is organized as follows: the GTH algorithm is introduced and discussed in Section 2; the censored Markov chain is reviewed in Section 3, in which we show that each elimination through using the GTH algorithm results in a censored Markov chain; the RG-factorization is presented in Section 4, which is a probabilistic counterpart to the LU-decomposition for Gaussian elimination; the RG-factorization can be considered as an extended version of the GTH algorithm for a system consisting of infinitely many linear equations.

    2 GTH algorithm

    The GTH algorithm is a numerical algorithm for computing the stationary distribution of a finite-state Markov chain. Mathematically, GTH algorithm is a rearrangement of Gaussian elimination. The GTH algorithm is numerically stable, since it starts with smallest entities and subtractions are avoided after the rearrangement, while Gaussian elimination can become numerically unstable if the number of states becomes large. The GTH algorithm also possesses a probabilistic interpretation in terms of the censoring process.

    We start the GTH algorithm with introducing the Markov chain.

    Definition 2.1(Markov chain) A discrete time stochastic process {Xn,n=0,1,2,…}, whereXntakes values on a finite or countable set, sayS={1,2,…}, referred to as the state space, is called a Markov chain if the following Markovian property holds:

    P(Xn+1=j|Xn=i,Xn-1=in-1,…,X1=i1,X0=i0)=pi,j

    for all statesi0,i1, …,in-1,i,jand alln≥0. The Markov chain is called a finite-state Markov chain ifSis finite.

    We consider a finite-state Markov chain in this section with the state space

    S={1,2,…,N}

    and the probability transition matrix

    For a finite-state Markov chain, it is well-known that ifP, or the Markov chain, is irreducible then there exists a unique stationary probability vector (distribution)

    π=(π1,π2,…,πN)

    satisfying

    Writing out in detail, the equationπ=πPis equivalent to the followingNequations (referred to as steady-state, or equilibrium, or stationary equations):

    (2.1)

    The focus of the GTH algorithm is to numerically compute the stationary probability vector. The basic GTH algorithm consists of two portions: forward eliminations and back substitutions.

    It can be directly verified that

    (2.2)

    is a stochastic matrix, or a new Markov chain.

    We then repeat the above elimination process to eliminateπN-1,πN-2, …,πnto have the following coefficients

    andπjsatisfy the following equation:

    (2.3)

    The matrix of these coefficients:

    (2.4)

    defines a Markov chain.

    π1=π1·1.

    Backsubstitutions: To find the solution forπj, the GTH performs the back substitution. Define

    r1=1,rj=πj/π1,j=2,3,…,N.

    Since one of the two equations is redundant, we take the second one to have

    Recall thatr=(r1,r2,…,rN) andπ=(π1,π2,…,πN) are different only by a constant, andπis a probability vector, we can easily normalizerto have

    (2.5)

    It is not difficult to see the mathematical equivalence between the GTH algorithm and Gaussian elimination. As indicated earlier, Gaussian elimination is usually numerically unstable whenNis large, say 10,000 or larger, while the GTH algorithm is very stable.

    3 Censored Markov chains

    The GTH algorithm has probabilistic interpretations. During the forward elimination, each step results in a new Markov chain with the state space one state fewer than the previous state space. In fact, each of these Markov chains is a so-called censored Markov chain, which will be discussed in this section.

    The censored process is also referred to as a watched process since it is obtained by watchingXnonly when it is inE. It is also referred to as an embedded Markov chain since the time (or the state space) of the censored process is embedded in the time (or the state space) of the original process. The following lemma is a summary of some basic properties of the censored process.

    (iii) IfE1andE2are two non-empty subsets of the state spaceSandE2is a subset ofE1, then

    PE2=(PE1)E2.

    The concept of the censored Markov chain was first introduced and studied by Lévy [16,17,18]. It was then used by Kemeny, Snell and Knapp [13] for proving the uniqueness of the invariant vector for a recurrent countable-state Markov chain. This embedded Markov chain was an approximation tool in the book by Freedman [3] for countable-state Markov chains. When the censored Markov chainis used to approximate the stationary distribution, Zhao and Liu [33] proved that it has the smallest error inl1-norm among all possible approximations.

    Now, we discuss the connection between the GTH algorithm and the censored Markov chain. First, it is easy to check that if we letEn={1,2,…,n}, then the Markov chainPN-1in (2.2) is the censored Markov chainPEN-1, andPnin (2.4) is the censored Markov chainPEn-1according to Lemma 3.1. The expression for the stationary distribution given in (2.5) is an immediate consequence of Lemma 3.1-(ii). More probabilistic interpretations for the GTH algorithms can be provided:

    4 RG-factorization

    Mathematically, the GTH algorithm is equivalent to Gaussian elimination, which in turn is equivalent to an LU-factorization (or UL-factorization). In this section, we discussion the RG-factorization for Markov chains and show that the GTH algorithm is equivalent to the RG-factorization.

    The RG-factorization discussed here is one of the versions of the so-called Wiener-Hopf-type factorization. This version of factorization is given in terms of the dual measures, the RG-measures, of the Markov chain. People who are interested in this topiccould refer to the literature references, including Heyman [9], Zhao, Li and Braun [31], Zhao [30], Li and Zhao [20,21,22].

    Consider an irreducible countable-state Markov chain with its probability transition matrixPon the state spaceS={1,2,3,…}, given by

    (4.1)

    Define a pair of dual measures as follows: for 1≤i≤j, defineri,jto be the expected number of visits to statejbefore hitting any statej≥1, definegi,jto be the probability of hitting statejfor the first time, given that the process starts in statei.

    One of the most important properties for the RG-measures is the invariance under censoring, which is stated in the following theorem.

    (4.2)

    and for given1≤j

    (4.3)

    The RG-factorization of the Markov chainPis given in the following theorem.

    Theorem 4.2(RG-factorization, Theorem 13 in [30]) For the Markov chain defined by (4.1), we have

    I-P=[I-RU][I-ΨD][I-GL],

    (4.4)

    where

    ΨD=diag(ψ1,ψ2,…,ψN)

    The RG-factorization of the GTH algorithm is an immediate consequence of the above theorem and the invariance of the RG-measures under censoring.

    Corollary 4.1(RG-factorizationofGTHalgorithm)TheGTHalgorithmisequivalenttothefollowingRG-factorization:

    I-P=[I-RU][I-ΨD][I-GL],

    where

    ΨD=diag(ψ1,ψ2,…,ψN),

    and

    Specifically,forn=1,2,…,N,

    5 Extending GTH to countable-state Markov chains

    Gaussian elimination is a method in linear algebra for solving a system of finitely many linear equations. Since linear algebra deals with linear spaces with a finite dimension, there is no Gaussian elimination version for a system consisting of infinitely many linear equations. The RG-factorization, together with the censored Markov chain, can be treated as an extended version of the GTH algorithm, since the UL-factorization formally allows us to perform forward eliminations and back substitutions to compute the stationary vectorπ. However, in order to practically start the elimination, we need a start state, not the infinite, which leads to various truncation methods.

    An augmentation is a method using a non-negative matrixANsuch that

    (5.1)

    is stochastic. Popular augmentations include the censored Markov chain, the last column augmentation (add the missing probabilities to the last column), the first column augmentation (add the missing probability to the first column), and more generally (than the last and first column augmentations), the linear augmentation (add the missing probabilities linearly to the firstNcolumns).

    This lemma says that if the sequenceEn(not necessarily equal to {1,2,…,n}) of subsets of the state space converges to the state spaceS, then the sequence of the censored Markov chains converges to the original chain.

    Theorem 5.1(Theorem 7 in [30]) LetP=(pi,j)i,j=1,2,…be the transition matrix of a recurrent Markov chain on the positive integers. For an integerω>0, letP(ω)=(pi,j(ω))i,j=1,2,…be a matrix such that

    pi,j(ω)=pi,j, fori,j≤ω

    andP(ω) is either a stochastic or a substochastic matrix. For any fixedn≥0, letEn={1,2,…,n} be the censoring set. Then,

    (5.2)

    This theorem provides us with many options to construct an infinite stochastic matrixP(ω) with the same northwest cornerTωsuch that the censored Markov chainPEN(ω) can be easily obtained. Then, we can apply the GTH algorithm to the finite-state Markov chainPEN(ω) to compute the stationary probability vectorπNfor the censored Markov chainPEN(ω). According to the above theorem (Theorem 5.1),πNis an approximation toπ. This procedure also results in an approximation with an “approximate” minimal error in the sense ofl1-form based on the main result in Zhao [33]. We provide a brief discussion here.

    It is worthwhile to comment here that not all augmentations are convergent. For example, the popular last column augmentation may not be convergent (see for example, [4]).

    The following result guarantees a minimal error sum for the censored Markov chain.

    Theorem 5.2(Best augmentation, [33]) The censored Markov chain is an augmentation method such that the error suml1(K,∞) is the minimum.

    The first column augmentation is the worst under thel1-norm and the last column augmentation, if it is convergent, is the best under thel∞-norm (see also [9]). Other references on augmentations include [14,23,25,29], and references therein.

    6 Concluding words

    This review paper is dedicated to Dr. Winfried Grassmann, who is my Ph.D. supervisor, who directed me to the area of queueing theory and applied/computational probability. The GTH algorithm is one of his celebrated contributions to applied probability, and it is now a standard textbook content for computations of Markov chains.

    日韩av免费高清视频| 久久免费观看电影| 免费女性裸体啪啪无遮挡网站| 黄频高清免费视频| 欧美日韩综合久久久久久| 国产乱人偷精品视频| 精品亚洲成国产av| 日本av手机在线免费观看| 婷婷色综合www| 青春草国产在线视频| 国产精品香港三级国产av潘金莲 | 亚洲美女搞黄在线观看| 九草在线视频观看| 搡女人真爽免费视频火全软件| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影小说| 午夜精品国产一区二区电影| 亚洲,欧美,日韩| 国产av码专区亚洲av| 国产极品天堂在线| 日韩av不卡免费在线播放| 女人久久www免费人成看片| 18禁国产床啪视频网站| 成人午夜精彩视频在线观看| 午夜免费男女啪啪视频观看| 99re6热这里在线精品视频| 国产高清不卡午夜福利| av网站免费在线观看视频| 日韩av不卡免费在线播放| 五月伊人婷婷丁香| 国产精品亚洲av一区麻豆 | 精品第一国产精品| 大片免费播放器 马上看| 亚洲国产色片| 女性被躁到高潮视频| 欧美日韩精品网址| 午夜日韩欧美国产| 热re99久久国产66热| 天天躁日日躁夜夜躁夜夜| 欧美 日韩 精品 国产| 亚洲,欧美,日韩| 国产精品偷伦视频观看了| 黑人猛操日本美女一级片| 欧美国产精品va在线观看不卡| 日本91视频免费播放| 最近中文字幕2019免费版| 99热网站在线观看| av电影中文网址| 亚洲国产精品国产精品| 成年美女黄网站色视频大全免费| 最近最新中文字幕免费大全7| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 日韩人妻精品一区2区三区| 欧美中文综合在线视频| 久久人人爽人人片av| 免费黄频网站在线观看国产| 亚洲三级黄色毛片| 秋霞伦理黄片| 国产亚洲av片在线观看秒播厂| 国产精品蜜桃在线观看| 国产一级毛片在线| 女人高潮潮喷娇喘18禁视频| 午夜免费男女啪啪视频观看| 午夜福利在线免费观看网站| 麻豆av在线久日| 免费播放大片免费观看视频在线观看| 大片电影免费在线观看免费| 久久综合国产亚洲精品| 午夜老司机福利剧场| 麻豆精品久久久久久蜜桃| 九九爱精品视频在线观看| 亚洲视频免费观看视频| 婷婷色综合大香蕉| av电影中文网址| 婷婷成人精品国产| 亚洲av在线观看美女高潮| 国产日韩欧美视频二区| av女优亚洲男人天堂| 少妇熟女欧美另类| 九九爱精品视频在线观看| 女性生殖器流出的白浆| 日韩三级伦理在线观看| 一级黄片播放器| 午夜福利,免费看| 如日韩欧美国产精品一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲精品成人av观看孕妇| 女的被弄到高潮叫床怎么办| 男女午夜视频在线观看| 国产野战对白在线观看| 性高湖久久久久久久久免费观看| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 少妇的逼水好多| freevideosex欧美| 亚洲成人手机| 久热这里只有精品99| 亚洲精品视频女| 国产视频首页在线观看| 国产爽快片一区二区三区| 久久久国产精品麻豆| 日本vs欧美在线观看视频| 中文字幕精品免费在线观看视频| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 中文字幕精品免费在线观看视频| 成人午夜精彩视频在线观看| av福利片在线| 欧美 亚洲 国产 日韩一| 男人添女人高潮全过程视频| 日韩av在线免费看完整版不卡| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 黄频高清免费视频| 亚洲情色 制服丝袜| 欧美日韩亚洲高清精品| 欧美最新免费一区二区三区| 国产精品三级大全| 久久精品久久久久久久性| 大香蕉久久网| 少妇的丰满在线观看| 亚洲欧美中文字幕日韩二区| 久久久精品免费免费高清| 欧美日韩成人在线一区二区| 99久久综合免费| 午夜影院在线不卡| 亚洲精品中文字幕在线视频| 精品一品国产午夜福利视频| 久久99精品国语久久久| 久久午夜福利片| 一级爰片在线观看| 国产黄频视频在线观看| 国产日韩一区二区三区精品不卡| 亚洲一区中文字幕在线| tube8黄色片| 九九爱精品视频在线观看| 天堂8中文在线网| av在线播放精品| 亚洲av综合色区一区| 午夜福利一区二区在线看| 精品酒店卫生间| 精品国产乱码久久久久久男人| 精品国产乱码久久久久久小说| 国产片内射在线| 婷婷色综合www| 在线观看一区二区三区激情| 大陆偷拍与自拍| 免费不卡的大黄色大毛片视频在线观看| 久久韩国三级中文字幕| 三级国产精品片| 国产日韩欧美在线精品| 国产av精品麻豆| 成人国语在线视频| 亚洲婷婷狠狠爱综合网| 国产在线一区二区三区精| 亚洲成av片中文字幕在线观看 | 日韩制服骚丝袜av| www.熟女人妻精品国产| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| 女性生殖器流出的白浆| 哪个播放器可以免费观看大片| 国产人伦9x9x在线观看 | av在线观看视频网站免费| av一本久久久久| 狂野欧美激情性bbbbbb| 亚洲精品久久成人aⅴ小说| 亚洲一码二码三码区别大吗| 成年女人毛片免费观看观看9 | 另类精品久久| 久久这里有精品视频免费| 国产成人精品久久二区二区91 | 久久精品久久久久久噜噜老黄| 亚洲国产精品一区三区| 国产乱来视频区| 成人午夜精彩视频在线观看| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 一级黄片播放器| 尾随美女入室| 国产精品无大码| xxxhd国产人妻xxx| 啦啦啦啦在线视频资源| 人妻一区二区av| 国产精品无大码| 天美传媒精品一区二区| 亚洲av综合色区一区| 亚洲第一av免费看| 99re6热这里在线精品视频| 视频在线观看一区二区三区| 97在线视频观看| 国产片特级美女逼逼视频| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜制服| 国产成人免费观看mmmm| 天天躁日日躁夜夜躁夜夜| 日韩制服丝袜自拍偷拍| 黄色一级大片看看| 99香蕉大伊视频| 看免费av毛片| 国产一级毛片在线| 深夜精品福利| 国产一区有黄有色的免费视频| 亚洲精品美女久久久久99蜜臀 | 人妻系列 视频| 亚洲视频免费观看视频| 久久99精品国语久久久| 久久热在线av| 少妇 在线观看| 一个人免费看片子| 精品福利永久在线观看| 成人国语在线视频| 一级毛片我不卡| tube8黄色片| 大话2 男鬼变身卡| 久久久久国产一级毛片高清牌| 热99国产精品久久久久久7| 波多野结衣av一区二区av| 中文字幕另类日韩欧美亚洲嫩草| av片东京热男人的天堂| 精品国产国语对白av| 亚洲美女搞黄在线观看| 亚洲国产日韩一区二区| 一区在线观看完整版| av国产精品久久久久影院| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 亚洲美女视频黄频| 久久韩国三级中文字幕| 亚洲图色成人| 人体艺术视频欧美日本| 欧美日韩一级在线毛片| 热re99久久国产66热| 精品人妻一区二区三区麻豆| 亚洲第一区二区三区不卡| 午夜激情久久久久久久| 亚洲精品第二区| 中文字幕人妻丝袜一区二区 | 免费人妻精品一区二区三区视频| 9色porny在线观看| 国产精品久久久久久久久免| 成人亚洲精品一区在线观看| 成人国产麻豆网| 欧美成人午夜免费资源| 日本黄色日本黄色录像| 午夜日本视频在线| 久久99热这里只频精品6学生| 欧美亚洲日本最大视频资源| 大香蕉久久网| 一本色道久久久久久精品综合| 在现免费观看毛片| 一区福利在线观看| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美日韩在线播放| 在线天堂中文资源库| 中文字幕人妻熟女乱码| 国产免费一区二区三区四区乱码| 国产一区有黄有色的免费视频| 制服丝袜香蕉在线| 午夜久久久在线观看| 日韩一区二区三区影片| 欧美日本中文国产一区发布| 精品国产一区二区久久| 免费观看无遮挡的男女| 国产日韩欧美亚洲二区| 男的添女的下面高潮视频| 人人澡人人妻人| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人爽人人夜夜| 亚洲av.av天堂| 水蜜桃什么品种好| 久久亚洲国产成人精品v| 观看av在线不卡| 天美传媒精品一区二区| 国产日韩欧美亚洲二区| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 精品国产超薄肉色丝袜足j| 国产成人精品福利久久| 久久久久视频综合| 国产成人aa在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本wwww免费看| 亚洲欧美清纯卡通| 久久这里有精品视频免费| 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频| 一级,二级,三级黄色视频| 中国国产av一级| 狠狠精品人妻久久久久久综合| videosex国产| 成年女人毛片免费观看观看9 | 国产淫语在线视频| 久久精品亚洲av国产电影网| 热re99久久国产66热| 成年女人在线观看亚洲视频| 2022亚洲国产成人精品| 免费观看无遮挡的男女| 亚洲欧美色中文字幕在线| 最新的欧美精品一区二区| av在线播放精品| 亚洲国产毛片av蜜桃av| 欧美激情高清一区二区三区 | 久久热在线av| 纯流量卡能插随身wifi吗| 午夜福利在线观看免费完整高清在| 伦理电影免费视频| 飞空精品影院首页| 大陆偷拍与自拍| 国产人伦9x9x在线观看 | 亚洲第一青青草原| 亚洲天堂av无毛| 精品国产国语对白av| 一区二区日韩欧美中文字幕| 一区在线观看完整版| 一级毛片我不卡| 日韩精品免费视频一区二区三区| 91aial.com中文字幕在线观看| 精品国产国语对白av| 在线观看免费视频网站a站| 91国产中文字幕| 又黄又粗又硬又大视频| 一区二区日韩欧美中文字幕| 欧美人与性动交α欧美精品济南到 | 精品一品国产午夜福利视频| 90打野战视频偷拍视频| 777米奇影视久久| 日韩 亚洲 欧美在线| 亚洲成色77777| 国产激情久久老熟女| 久久久久久久大尺度免费视频| 国产成人精品久久久久久| 亚洲av电影在线观看一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 天堂中文最新版在线下载| 久久99热这里只频精品6学生| 日本欧美视频一区| 亚洲美女黄色视频免费看| 毛片一级片免费看久久久久| 老女人水多毛片| 如日韩欧美国产精品一区二区三区| 久久综合国产亚洲精品| 在线观看人妻少妇| 久久精品亚洲av国产电影网| 好男人视频免费观看在线| 国产精品国产av在线观看| 精品一区二区三区四区五区乱码 | 国产av码专区亚洲av| 成人18禁高潮啪啪吃奶动态图| 乱人伦中国视频| freevideosex欧美| 日日摸夜夜添夜夜爱| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 啦啦啦中文免费视频观看日本| 成年女人在线观看亚洲视频| 国产极品粉嫩免费观看在线| 中文乱码字字幕精品一区二区三区| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 麻豆乱淫一区二区| 精品国产露脸久久av麻豆| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 最新的欧美精品一区二区| 亚洲欧美一区二区三区久久| 少妇被粗大的猛进出69影院| 亚洲欧美成人综合另类久久久| 97人妻天天添夜夜摸| 国产成人精品福利久久| av一本久久久久| av在线app专区| 国产极品天堂在线| 久久国内精品自在自线图片| 午夜福利,免费看| 天天躁日日躁夜夜躁夜夜| 欧美老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 中文字幕亚洲精品专区| 亚洲激情五月婷婷啪啪| 好男人视频免费观看在线| 中文字幕人妻丝袜一区二区 | 丰满迷人的少妇在线观看| 在线观看人妻少妇| 日本色播在线视频| 国产精品熟女久久久久浪| 看免费成人av毛片| 一边亲一边摸免费视频| 丝瓜视频免费看黄片| 超色免费av| 午夜老司机福利剧场| 久久久久精品人妻al黑| 久久久久视频综合| 国产成人欧美| 亚洲一码二码三码区别大吗| 国产片内射在线| tube8黄色片| 久久精品国产自在天天线| 久久精品夜色国产| 美女脱内裤让男人舔精品视频| 日本爱情动作片www.在线观看| 日韩欧美一区视频在线观看| 成人国产av品久久久| 日韩三级伦理在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 80岁老熟妇乱子伦牲交| 亚洲av.av天堂| 亚洲成人一二三区av| 国产成人精品久久二区二区91 | 少妇的丰满在线观看| 在线亚洲精品国产二区图片欧美| 满18在线观看网站| 久久热在线av| 成年女人在线观看亚洲视频| 成人国产麻豆网| 欧美成人午夜精品| 在线看a的网站| 丰满少妇做爰视频| 伦精品一区二区三区| 熟女少妇亚洲综合色aaa.| 精品人妻一区二区三区麻豆| 波多野结衣一区麻豆| 欧美日韩精品网址| 免费观看在线日韩| 看免费av毛片| 亚洲视频免费观看视频| 又粗又硬又长又爽又黄的视频| 亚洲伊人色综图| 五月伊人婷婷丁香| 少妇人妻精品综合一区二区| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 搡女人真爽免费视频火全软件| 天堂俺去俺来也www色官网| 国产成人精品无人区| 嫩草影院入口| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 欧美日韩亚洲高清精品| 亚洲精品自拍成人| 欧美人与性动交α欧美软件| 成人免费观看视频高清| 精品少妇久久久久久888优播| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 高清在线视频一区二区三区| 免费观看a级毛片全部| 国产精品嫩草影院av在线观看| 国产av精品麻豆| 精品少妇内射三级| 九草在线视频观看| 激情五月婷婷亚洲| av在线老鸭窝| 精品久久久久久电影网| 中文字幕亚洲精品专区| 91国产中文字幕| 韩国av在线不卡| 天天操日日干夜夜撸| 美国免费a级毛片| 国产一区二区激情短视频 | 久久久久网色| 久久女婷五月综合色啪小说| 亚洲精品久久午夜乱码| kizo精华| 欧美另类一区| 青春草视频在线免费观看| 亚洲成国产人片在线观看| 日韩制服丝袜自拍偷拍| 日本色播在线视频| 青春草国产在线视频| 一级片免费观看大全| 亚洲精品日本国产第一区| 欧美激情高清一区二区三区 | 久久97久久精品| 亚洲,欧美,日韩| av一本久久久久| h视频一区二区三区| 在线观看三级黄色| 老女人水多毛片| 亚洲伊人久久精品综合| 三上悠亚av全集在线观看| 香蕉国产在线看| 国产精品国产三级国产专区5o| 国产成人精品久久二区二区91 | 成人漫画全彩无遮挡| 考比视频在线观看| 多毛熟女@视频| 亚洲三级黄色毛片| av又黄又爽大尺度在线免费看| videos熟女内射| 日韩一卡2卡3卡4卡2021年| 丰满饥渴人妻一区二区三| 超碰97精品在线观看| 香蕉国产在线看| 亚洲成人一二三区av| 如日韩欧美国产精品一区二区三区| 麻豆精品久久久久久蜜桃| 国产黄频视频在线观看| 韩国av在线不卡| 国产精品偷伦视频观看了| 青春草国产在线视频| 国产一区二区三区av在线| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 亚洲一区中文字幕在线| 亚洲一码二码三码区别大吗| 99久国产av精品国产电影| 国产免费福利视频在线观看| av电影中文网址| 精品国产乱码久久久久久男人| 午夜91福利影院| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 国产高清不卡午夜福利| 一本久久精品| 成人亚洲欧美一区二区av| 亚洲婷婷狠狠爱综合网| 久久久国产精品麻豆| 天天躁日日躁夜夜躁夜夜| 99精国产麻豆久久婷婷| 中文字幕精品免费在线观看视频| 一级毛片黄色毛片免费观看视频| 亚洲成人手机| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 亚洲av日韩在线播放| 777久久人妻少妇嫩草av网站| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 超色免费av| 亚洲国产成人一精品久久久| 日本wwww免费看| 国产一区有黄有色的免费视频| 一边亲一边摸免费视频| 18+在线观看网站| 日本av手机在线免费观看| 欧美日本中文国产一区发布| 精品少妇内射三级| 香蕉丝袜av| 亚洲国产色片| 欧美亚洲 丝袜 人妻 在线| 晚上一个人看的免费电影| 亚洲国产av新网站| 免费黄频网站在线观看国产| 中文精品一卡2卡3卡4更新| 国产午夜精品一二区理论片| 我的亚洲天堂| 精品酒店卫生间| 午夜91福利影院| 亚洲一码二码三码区别大吗| 国产 精品1| 中文欧美无线码| 久久精品国产亚洲av天美| av片东京热男人的天堂| 亚洲第一av免费看| 国产精品一区二区在线不卡| 日本黄色日本黄色录像| 午夜日韩欧美国产| 大话2 男鬼变身卡| 国产日韩欧美视频二区| 观看av在线不卡| 国产野战对白在线观看| 大片电影免费在线观看免费| 免费看不卡的av| 免费观看性生交大片5| 老司机影院毛片| 不卡av一区二区三区| 久久免费观看电影| 另类精品久久| 亚洲国产av影院在线观看| 欧美在线黄色| 国产精品一区二区在线不卡| 国产欧美亚洲国产| 日韩免费高清中文字幕av| 国产精品 国内视频| 成人二区视频| 搡女人真爽免费视频火全软件| 一级爰片在线观看| 伦理电影免费视频| 久久久久国产网址| 精品卡一卡二卡四卡免费| 亚洲第一区二区三区不卡| 在线免费观看不下载黄p国产| 欧美人与性动交α欧美精品济南到 | 999精品在线视频| 日韩一卡2卡3卡4卡2021年| 久久婷婷青草| 日本av手机在线免费观看| 国产av精品麻豆| 日韩 亚洲 欧美在线| 婷婷色综合大香蕉| 国产日韩欧美亚洲二区| 男女边吃奶边做爰视频| 不卡视频在线观看欧美| 天天躁日日躁夜夜躁夜夜| 国产成人精品久久二区二区91 | 欧美 亚洲 国产 日韩一| 欧美xxⅹ黑人| 建设人人有责人人尽责人人享有的| 国产国语露脸激情在线看| 天天影视国产精品| 久久久久人妻精品一区果冻| 在线天堂中文资源库| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲综合精品二区| 一级,二级,三级黄色视频| 晚上一个人看的免费电影| 精品久久蜜臀av无| 人妻一区二区av|