• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variants of Alternating Minimization Method with Sublinear Rates of Convergence for Convex Optimization

    2020-06-04 06:42:42ChengLizhiZhangHui
    數(shù)學理論與應用 2020年2期

    Cheng Lizhi Zhang Hui

    Abstract The alternating minimization (AM) method is a fundamental method for minimizing convex functions whose variables consist of two blocks. How to efficiently solve each subproblem when applying the AM method is the most concerned task. In this paper we investigate this task and design two new variants of the AM method by borrowing proximal linearized techniques. The first variant is suitable for the case where one of the subproblems is hard to solve and the other can be directly computed. The second variant is designed for parallel computation. Theoretically, with the help of proximal operators, we first formulate the AM variants into a unified form, and then show sublinear convergence results under some mild assumptions.

    Key words Alternating minimization Sublinear rate of convergence Convex optimization

    1 Introduction

    The alternating minimization (AM) method is a fundamental algorithm for solving the following optimization problem:

    (1)

    whereΨ(x,y) is a convex function. Starting with a given initial point (x0,y0), the AM method generates a sequence {(xk,yk)}k∈Nvia the scheme

    xk+1∈argmin{H(x,yk)+f(x)},

    (2a)

    yk+1∈argmin{H(xk+1,y)+g(y)}.

    (2b)

    In the literature, lots of work existed concerning its convergence with certain assumptions. To obtain stronger convergence results for more general settings, the recent paper [1] proposed an augmented alternating minimization (AAM) method by adding proximal terms, that is

    (3a)

    (3b)

    whereck,dkare positive real numbers. From practical computational perspective, the authors in another recent paper [5] suggested the proximal alternating linearized minimization (PALM) scheme:

    (4a)

    (4b)

    In this paper, we concern both of the computational and theoretical aspects of the AM method. On the computational hand, we follow the proximal linearized technique employed by the PALM method and propose two new variants of the AM method, called AM-variant-I and AM-variant-II. They read as follows respectively:

    (5a)

    (5b)

    and

    (6a)

    (6b)

    AM-variant-I can be viewed as a hybrid of the original AM method and the PLAM method. The proximal linearized technique is only employed to update thex-variable, and the updating ofy-variable is as same as the original AM method. The idea lying in AM-variant-I is mainly motivated by the iteratively reweighted least square (IRLS) method where the subproblem with respective to (w.r.t.) they-variable can be easily computed but the subproblem w.r.t. thex-variable might greatly benefit from proximal linearized techniques. AM-variant-II is very similar to the PALM method. The only difference is that we use ?yH(xk,yk) rather than ?yH(xk+1,yk) when update they-variables. The biggest merit of this scheme is that it is very suitable for parallel computation.

    The rest of this paper is organized as follows. In section 2, we list some basic properties and formulate all AM-variants into uniform expressions by using the proximal operator. In section 3, we first list all the assumptions that needed for convergence analysis, and then state the main convergence results with a proof sketch. The proof details are postponed to section 6. In section 4, we introduce two applications to show the motivation and advantages of AM-variant-I for some special convex optimization problem. Future work is briefly discussed in section 5.

    2 Mathematical Preliminaries

    In this section, we layout some basic properties about the gradient-Lipschitz-continuous functions and the proximal operator, and then formulate all AM-variants into uniform expressions based on the proximal operator.

    2.1 Basic properties

    Lemma 1([7]) Leth:Rn→R be a continuously differentiable function and assume that its gradient ?his Lipschitz continuous with constantLh<+∞:

    Then, it holds that

    and

    Letσ:Rn→(-∞,+∞] be a proper and lower semicontinuous convex function. For givenx∈Rnandt>0, the proximal operator is defined by:

    (7)

    The following characterization about proximal operators is very important for convergence analysis and will be frequently used later.

    Lemma 2([4]) Letσ:Rn→(-∞,+∞] be a proper and lower semicontinuous convex function. Then

    if and only if for anyu∈domσ:

    σ(u)≥σ(w)+t.

    (8)

    The next result was established in [5]; its corresponding result in the convex setting appeared in an earlier paper [3].

    Lemma 3([5]) Leth:Rn→R be a continuously differentiable function and assume that its gradient ?his Lipschitz continuous with constantLh<+∞ and letσ:Rn→R be a proper and lower semicontinuous function with infRnσ>-∞. Fix anyt>Lh. Then, for anyu∈domσand anyu+∈Rndefined by

    we have

    2.2 Uniform AM-variant expressions

    In what follows, we express all AM-variants in a uniform way.

    AM-variant-I:

    (9a)

    (9b)

    AM-variant-II:

    (10a)

    (10b)

    The AAM method:

    (11a)

    (11b)

    The PALM method:

    (12a)

    (12b)

    These expressions can be easily derived by the first order optimality condition and the following basic fact:

    We omit all the deductions here.

    3 Main results

    For convenience, we letz=(x,y)∈Rn1×Rn2andK(x,y)=f(x)+g(y). With these notations, the objective function in problem (1) equals toK(x,y)+H(x,y) orK(z)+H(z), andzk=(xk,yk).

    3.1 Assumptions and convergence results

    Before stating main results, we make the following basic assumptions throughout the paper:

    Assumption 1The functionsf:Rn1→(-∞,+∞] andg:Rn2→(-∞,+∞] are proper and lower semicontinuous convex function satisfying infRn1f>-∞ and infRn2g>-∞. The functionH(x,y) is a continuously differentiable convex function over domf×domg. The functionΨsatisfies infRn1×Rn2Ψ>-∞.

    Assumption 2The minimizer set of (1), denoted byZ*, is nonempty, and the corresponding minimum is denoted byΨ*. The level set

    S={z∈domf×domg:Ψ(z)≤Ψ(z0)}

    is compact, wherez0is some given initial point.

    Besides these two basic assumptions, we need additional assumptions to analyze different AM-variants.

    Assumption 3For any fixedy, the gradient ?xH(x,y) is Lipschitz continuous with constantL1(y):

    Assumption 4For any fixedx, the gradient ?yH(x,y) is Lipschitz continuous with constantL2(x):

    Assumption 5For any fixedy, the gradient ?yH(x,y)w.r.t. the variablesxis Lipschitz continuous with constantL3(y):

    Assumption 6For any fixedx, the gradient ?xH(x,y)w.r.t. the variablesyis Lipschitz continuous with constantL4(x):

    Assumption 7?H(z) is Lipschitz continuous with constantL5.

    (13a)

    (13b)

    (13c)

    Theorem 1(The convergence rate of AM-variant-I) Suppose that Assumptions 3 and 8 hold. Takeck=γ·L1(yk) withγ>1 and let {(xk,yk)}k∈Nbe the sequence generated by AM-variant-I. Then, for allk≥2,

    Theorem 3(The convergence rate of the AAM method) Suppose that Assumptions 6 and 8 hold. Letck,dkbe positive real numbers such thatρ1=inf{ck,dk:d∈N}>0 andρ2=sup{ck,dk:k∈N}<+∞. Let {(xk,yk)}k∈Nbe the sequence generated by the AAM method. Then, for allk≥2,

    Theorem 4(The convergence rate of the PALM method) Suppose that Assumptions 3, 4, 5, and 8 hold. Takeck=γ·L1(yk) anddk=γ·L2(xk+1) withγ>1. Let {(xk,yk)}k∈Nbe the sequence generated by the PALM method. Then, for allk≥2,

    3.2 Sketch of the proof

    In the light of [2], we describe a theoretical framework under which all the theorems stated above can be proved. Assume that a generic algorithmAgenerates a sequence {zk}k∈Nfor solving the problem (1). Our aim is to show that

    Our proof mainly consists of two steps:

    (a) Find a positive constantτ1such that

    Ψ(zk)-Ψ(zk+1)≥τ1·d(zk,zk+1)2,k=0,1,2,…

    whered(·,·) is some distance function.

    (b) Find a positive constantτ2such that

    Ψ(zk+1)-Ψ*≤τ2·d(zk,zk+1),k=0,1,2,…

    (Ψ(zk)-Ψ*)-(Ψ(zk+1)-Ψ*)≥α·(Ψ(zk+1)-Ψ*)2,k=0,1,2,…

    All the theorems directly follow by invoking the following lemma:

    Lemma 4([2]) Let {Ak}k≥0be a nonnegative sequence of real numbers satisfying

    Then, for anyk≥2,

    4 Applications

    In this part, we first explain our original motivation of proposing AM-variant-I by studying a recent application of the IRLS method; and then we apply AM-variant-I to solving a composite convex model. We begin with the general problem of minimizing the sum of a continuously differentiable function and sum of norms of affine mappings:

    (14)

    whereXis a given convex set,Aiandbiare given matrices and vectors, ands(x) is some continuously differentiable convex function. This problem was considered and solved in [2] by applying the IRLS method to its smoothed approximation problem:

    (15)

    or equivalently, by applying the original AM method to an auxiliary problem

    (16)

    where for a given setZthe indicator functionδ(x,Z) is defined by

    (17)

    (18a)

    (18b)

    In [2], the author first established the sublinear rate of convergence for the AM method and hence the same convergence result for the IRLS method follows. However, in many cases the subproblem of updatingxkis very hard to solve and even prohibitive for large-scale problems. It is just this drawback motivating us to propose AM-variant-I. Now, applying AM-variant-I and with some simple calculation, we at once obtain a linearized scheme of the IRLS method, that is

    (19a)

    (19b)

    wherePXis the projection operator ontoX. IfPXcan be easily computed, then the linearized scheme becomes very simple. In addition, its sublinear rate of convergence can be guaranteed by Theorem 1. Nevertheless, we would like to point out that the scheme (34) can also be obtained by applying the proximal forward-backward (PFB) method [6] to the following problem

    (20)

    (21)

    whereA∈Rm×nand the proximal operators offandgcan be easily computed. In [2], the author applied the AM method to its auxiliary problem

    (22)

    and obtained the following scheme:

    (23a)

    (23b)

    Because the entries of vectorxare coupled byAx, the updating ofxkis usually very hard for large-scale problems. AM-variant-I fixes this problem and generates the following simple scheme:

    (24a)

    (24b)

    5 Discussion

    In this paper, we discussed a group of variants of the AM method and derived the sublinear rates of convergence under very minimal assumptions. Although we restricted our attention onto convex optimization problems, these variants for nonconvex optimization problems might obtain computational advantages over the AM method as well. Because our theory is limited to convex optimization, the convergence of AM-variant-I and AM-variant-II for general cases is unclear at present. In future pursuit, we will analyze the convergence of AM-variant-I and AM-variant-II under the nonconvex setting.

    6 Proof details

    6.1 Proof of Theorem 1

    (25a)

    (25b)

    On the other hand, sinceyk+1minimizes the objectiveH(xk+1,y)+g(y), it holds that

    (26)

    By summing up the above two inequalities, we obtain

    (27)

    Step 2: prove the property (b). By Lemma 1, we have that

    (28)

    By the convexity ofH(z), it follows thatH(zk)-H(z*)≤?H(zk),zk-z*. Thus,

    (29)

    f(x*)≥f(xk+1)+ckxk-xk+1,x*-xk+1+

    (30)

    and

    g(y*)≥g(yk)+.

    (31)

    By summing up the above two inequalities, we obtain

    (32)

    Combining inequalities (48) and (51) and noticingγ>1, we have that

    (33)

    From inequalities (25b) and (26), it follows that

    (34)

    (35)

    6.2 Proof of Theorem 2

    Step 1: prove the property (a). Sincexk+1andyk+1are the minimizers to the subproblems in (6) respectively, we get that

    (36)

    and

    (37)

    By summing up the above two inequalities, we obtain

    (38)

    By the convexity ofH(z), it follows that

    H(zk)-H(zk+1)≥.

    (39)

    By summing up the above two inequalities, we get

    (40)

    By Assumption 7, it holds that

    (41)

    (42)

    Now, combining inequalities (40), (41) and (42), we finally get that

    (43)

    Step 2: prove the property (b). By Assumption 7 and Lemma 1, we have

    (44)

    The convexity ofH(z) impliesH(zk)-H(z*)≤. Thus, we get

    (45)

    Applying Lemma 2 to (10), we obtain that

    f(x*)≥f(xk+1)+ck+

    (46)

    and

    g(y*)≥g(yk+1)+dk+.

    (47)

    By summing the above two inequalities, we get

    K(z*)≥K(zk+1)+ck+dk
    +.

    (48)

    Combining inequalities (45) and (48), we have

    (49)

    (50)

    (51)

    6.3 Proof of Theorem 3

    Step 1: prove the property (a). Sincexk+1andyk+1are the minimizers to the subproblems in (18) respectively, we get that

    (52)

    and

    (53)

    By summing up the above two inequalities, we obtain

    (54)

    Sinceρ1=inf{ck,dk:k∈N}>0, we have

    (55)

    Thus, we finally get

    (56)

    Step 2: prove the property (b). Applying Lemma 2 to (18), we obtain that

    f(x*)≥f(xk+1)+ck+

    (57)

    and

    g(y*)≥g(yk+1)+dk+.

    (58)

    By summing up the above two inequalities and letting

    we obtain

    (59)

    By the convexity ofH(z), it follows that

    H(zk+1)-H(z*)≤.

    (60)

    Thus, combining (59) and (60) yields

    By Assumptions 6 and 8, we deduce that

    (61a)

    (61b)

    (61c)

    By the Cauchy-Schwartz inequality and the notationρ2=sup{ck,dk:k∈N}, we have

    (62)

    (63a)

    (63b)

    This completes the proof.

    6.4 Proof of Theorem 4

    Step 1: prove the property (a). The following proof appeared in [5]. For completion, we include it here. Applying Lemma 3 to the scheme (12), we derive that

    (64a)

    (64b)

    and

    (65a)

    (65b)

    By summing up the above two inequalities, we obtain that

    (66)

    By Assumption 8, we finally get that

    (67)

    Step 2: prove the property (b). Applying Lemma 2 to (12), we obtain that

    f(x*)≥f(xk+1)+ck+

    (68)

    and

    g(y*)≥g(yk+1)+dk+.

    (69)

    By summing up the above two inequalities and letting

    we obtain that

    (70)

    By Assumption 4 and Lemma 1, we have that

    (71a)

    (71b)

    By Assumption 3 and Lemma 1 and the convexity ofH(z), we derive that

    (72a)

    (72b)

    By summing up inequalities (71) and (72), we get

    (73)

    Together with (70) and utilizing Assumption 5 and the factγ>1, we derive that

    (74a)

    (74b)

    (74c)

    (74d)

    (74e)

    av播播在线观看一区| 日本wwww免费看| 欧美国产精品一级二级三级 | 一个人免费看片子| 欧美最新免费一区二区三区| av福利片在线| 中文字幕av电影在线播放| 啦啦啦视频在线资源免费观看| 国产亚洲一区二区精品| 精品一品国产午夜福利视频| 久久热精品热| 在线观看三级黄色| 下体分泌物呈黄色| 国产伦精品一区二区三区四那| 亚洲欧美一区二区三区黑人 | 久久狼人影院| 两个人的视频大全免费| 国产精品三级大全| 国产黄色视频一区二区在线观看| 欧美高清成人免费视频www| 国产免费福利视频在线观看| 免费久久久久久久精品成人欧美视频 | videos熟女内射| 免费av不卡在线播放| av福利片在线| av卡一久久| 18禁动态无遮挡网站| 久久久欧美国产精品| .国产精品久久| 两个人的视频大全免费| 美女大奶头黄色视频| 免费观看在线日韩| 五月开心婷婷网| 精品酒店卫生间| 亚洲成色77777| 国产黄片美女视频| 成人毛片60女人毛片免费| 只有这里有精品99| 亚洲综合色惰| 日韩强制内射视频| 久久国产亚洲av麻豆专区| 一本大道久久a久久精品| 免费黄色在线免费观看| 99热这里只有精品一区| 国产探花极品一区二区| 日韩精品有码人妻一区| 夜夜骑夜夜射夜夜干| 中文在线观看免费www的网站| 精品酒店卫生间| 久久精品久久久久久噜噜老黄| 又粗又硬又长又爽又黄的视频| 综合色丁香网| 亚洲精品第二区| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 只有这里有精品99| 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 国产黄片美女视频| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 久久久久久人妻| 久久久久久久久久久免费av| 草草在线视频免费看| 一二三四中文在线观看免费高清| 又爽又黄a免费视频| 大陆偷拍与自拍| 极品人妻少妇av视频| 一区二区三区四区激情视频| 精华霜和精华液先用哪个| 成人18禁高潮啪啪吃奶动态图 | 成年av动漫网址| 三级经典国产精品| 国产一区亚洲一区在线观看| 色婷婷久久久亚洲欧美| 国产成人精品一,二区| 精品熟女少妇av免费看| 精品午夜福利在线看| 在线 av 中文字幕| 建设人人有责人人尽责人人享有的| 欧美高清成人免费视频www| av在线观看视频网站免费| 欧美性感艳星| 中文字幕免费在线视频6| 国产在线免费精品| 欧美日韩在线观看h| 精品少妇久久久久久888优播| 久热久热在线精品观看| 高清午夜精品一区二区三区| 少妇的逼好多水| 欧美xxxx性猛交bbbb| 少妇被粗大的猛进出69影院 | 亚洲无线观看免费| 视频区图区小说| 国产免费一区二区三区四区乱码| 亚洲三级黄色毛片| av播播在线观看一区| 91在线精品国自产拍蜜月| 中文字幕亚洲精品专区| 夜夜看夜夜爽夜夜摸| 国产亚洲91精品色在线| 欧美丝袜亚洲另类| 精品酒店卫生间| 极品人妻少妇av视频| 久久国内精品自在自线图片| 久久久欧美国产精品| 黄片无遮挡物在线观看| 亚洲国产最新在线播放| 国产午夜精品一二区理论片| 精品国产乱码久久久久久小说| 大片免费播放器 马上看| 91成人精品电影| 制服丝袜香蕉在线| 亚洲国产精品一区三区| 伊人久久国产一区二区| 美女大奶头黄色视频| 亚洲av电影在线观看一区二区三区| 色视频www国产| 国产伦理片在线播放av一区| 少妇人妻久久综合中文| 国内精品宾馆在线| 亚洲,欧美,日韩| 又大又黄又爽视频免费| 中文乱码字字幕精品一区二区三区| 精品一品国产午夜福利视频| 国产一区二区在线观看日韩| 老司机亚洲免费影院| 午夜免费男女啪啪视频观看| 日韩不卡一区二区三区视频在线| 简卡轻食公司| 国产成人freesex在线| 日本wwww免费看| 欧美 亚洲 国产 日韩一| 两个人免费观看高清视频 | 免费黄网站久久成人精品| 色网站视频免费| 亚洲国产欧美在线一区| 极品教师在线视频| 人妻夜夜爽99麻豆av| 噜噜噜噜噜久久久久久91| 妹子高潮喷水视频| 免费观看在线日韩| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 男人舔奶头视频| av国产精品久久久久影院| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 成人18禁高潮啪啪吃奶动态图 | 丰满饥渴人妻一区二区三| 伦精品一区二区三区| 久久精品久久久久久噜噜老黄| 欧美日韩国产mv在线观看视频| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 久久人人爽av亚洲精品天堂| 十八禁高潮呻吟视频 | 国产精品久久久久成人av| 成人综合一区亚洲| 哪个播放器可以免费观看大片| 99久久综合免费| 国产日韩欧美在线精品| 日本av免费视频播放| 六月丁香七月| 一级毛片aaaaaa免费看小| 久久久亚洲精品成人影院| 天堂8中文在线网| 免费黄网站久久成人精品| 日本-黄色视频高清免费观看| 亚洲欧洲日产国产| 国产乱来视频区| 伊人久久精品亚洲午夜| 亚洲自偷自拍三级| 亚洲国产欧美日韩在线播放 | 午夜91福利影院| 老女人水多毛片| 久久久亚洲精品成人影院| 日本av手机在线免费观看| 乱人伦中国视频| 日本-黄色视频高清免费观看| 欧美少妇被猛烈插入视频| 啦啦啦啦在线视频资源| av.在线天堂| 午夜久久久在线观看| 啦啦啦啦在线视频资源| 午夜福利,免费看| 22中文网久久字幕| 天堂8中文在线网| 精品人妻熟女av久视频| 国产成人精品福利久久| 亚洲欧美成人综合另类久久久| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 搡女人真爽免费视频火全软件| 久久午夜福利片| 精品视频人人做人人爽| 99热网站在线观看| 国产一级毛片在线| 在线观看av片永久免费下载| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕| 久久久午夜欧美精品| 国产精品久久久久久av不卡| 国产精品国产av在线观看| 少妇人妻 视频| 水蜜桃什么品种好| 亚洲国产最新在线播放| 久久精品国产亚洲av涩爱| 十分钟在线观看高清视频www | 中文天堂在线官网| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| 最近最新中文字幕免费大全7| 国产视频内射| av.在线天堂| 少妇裸体淫交视频免费看高清| 老女人水多毛片| 中文欧美无线码| 国产精品久久久久成人av| 99re6热这里在线精品视频| 日韩三级伦理在线观看| 国产爽快片一区二区三区| 欧美精品人与动牲交sv欧美| 性色avwww在线观看| 亚洲国产精品999| 日韩大片免费观看网站| 久久久久久人妻| 日韩av不卡免费在线播放| 美女内射精品一级片tv| 内射极品少妇av片p| 亚洲精品色激情综合| 亚洲精品中文字幕在线视频 | 丰满少妇做爰视频| 日本黄色日本黄色录像| 日韩av免费高清视频| 国产爽快片一区二区三区| 久久久亚洲精品成人影院| 精品国产国语对白av| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 亚洲精品中文字幕在线视频 | 热re99久久国产66热| 国产在线男女| 亚洲av福利一区| 成年av动漫网址| 久久久午夜欧美精品| 一本大道久久a久久精品| 免费看光身美女| 亚洲av.av天堂| 国产亚洲一区二区精品| 日韩av在线免费看完整版不卡| 一区二区三区乱码不卡18| 高清视频免费观看一区二区| 97在线视频观看| 又爽又黄a免费视频| 少妇人妻一区二区三区视频| 国产成人aa在线观看| 黑丝袜美女国产一区| 国产综合精华液| 欧美97在线视频| 美女主播在线视频| 成年人午夜在线观看视频| av有码第一页| 校园人妻丝袜中文字幕| 另类亚洲欧美激情| 97超视频在线观看视频| 中文字幕免费在线视频6| 亚洲av中文av极速乱| 最近手机中文字幕大全| 国产白丝娇喘喷水9色精品| 国产精品欧美亚洲77777| 一级av片app| 美女大奶头黄色视频| 亚洲婷婷狠狠爱综合网| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 精品一区二区三卡| 中国三级夫妇交换| 亚洲图色成人| 免费观看av网站的网址| 国产精品免费大片| 国产精品99久久99久久久不卡 | 久久久国产一区二区| 国产片特级美女逼逼视频| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 高清不卡的av网站| 在线观看人妻少妇| 精品人妻偷拍中文字幕| 成人漫画全彩无遮挡| 又爽又黄a免费视频| 中文字幕人妻丝袜制服| 国产精品一区二区在线不卡| 国产精品99久久99久久久不卡 | 亚洲精品久久午夜乱码| 六月丁香七月| 黑人巨大精品欧美一区二区蜜桃 | 国产日韩欧美亚洲二区| 亚洲真实伦在线观看| 18禁在线无遮挡免费观看视频| 日韩视频在线欧美| 国产黄色免费在线视频| 大片电影免费在线观看免费| 国产美女午夜福利| 中文资源天堂在线| 在线观看av片永久免费下载| 六月丁香七月| 久久久久久久久久成人| 日韩制服骚丝袜av| 少妇人妻精品综合一区二区| 九九在线视频观看精品| 国产日韩一区二区三区精品不卡 | 亚洲欧美清纯卡通| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 欧美少妇被猛烈插入视频| 久久久久久人妻| 伊人亚洲综合成人网| 国产免费视频播放在线视频| tube8黄色片| 只有这里有精品99| 国产精品久久久久久av不卡| 久久精品熟女亚洲av麻豆精品| 日本色播在线视频| 亚洲国产色片| 国产av精品麻豆| 噜噜噜噜噜久久久久久91| 精品一区二区三区视频在线| 国产亚洲一区二区精品| 国产又色又爽无遮挡免| freevideosex欧美| 久久午夜福利片| 国产精品人妻久久久久久| 国产永久视频网站| 久久ye,这里只有精品| av在线app专区| a级毛片在线看网站| 国产成人a∨麻豆精品| 中文资源天堂在线| 一级a做视频免费观看| 如何舔出高潮| 成年美女黄网站色视频大全免费 | 亚洲av成人精品一二三区| 下体分泌物呈黄色| 国产av码专区亚洲av| 国产av国产精品国产| 中文字幕人妻熟人妻熟丝袜美| 女人久久www免费人成看片| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美国产在线视频| 国产成人午夜福利电影在线观看| av免费观看日本| 极品人妻少妇av视频| 日韩一区二区三区影片| 日本黄大片高清| 日日摸夜夜添夜夜爱| 国产av一区二区精品久久| 免费播放大片免费观看视频在线观看| 男人爽女人下面视频在线观看| 黄色配什么色好看| 少妇的逼好多水| 老熟女久久久| 国产黄色免费在线视频| 一区二区三区乱码不卡18| 亚洲性久久影院| 丰满人妻一区二区三区视频av| 韩国高清视频一区二区三区| 精品熟女少妇av免费看| 免费观看性生交大片5| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 国产精品一区二区性色av| 插阴视频在线观看视频| 大香蕉久久网| 国产国拍精品亚洲av在线观看| 乱码一卡2卡4卡精品| 桃花免费在线播放| 成人综合一区亚洲| av一本久久久久| 亚洲精华国产精华液的使用体验| 青春草亚洲视频在线观看| 尾随美女入室| 中文字幕av电影在线播放| 女人久久www免费人成看片| av卡一久久| www.av在线官网国产| 久久97久久精品| av有码第一页| 亚洲综合精品二区| 我的老师免费观看完整版| 人妻少妇偷人精品九色| 亚洲精品乱码久久久久久按摩| 亚洲精品成人av观看孕妇| 国产极品天堂在线| 美女视频免费永久观看网站| 亚洲情色 制服丝袜| 久久久久久久亚洲中文字幕| 九色成人免费人妻av| 日韩一区二区视频免费看| 国国产精品蜜臀av免费| 18+在线观看网站| 偷拍熟女少妇极品色| 久久久久久久久久成人| 毛片一级片免费看久久久久| 熟女电影av网| 麻豆成人午夜福利视频| 两个人的视频大全免费| 国模一区二区三区四区视频| 日本黄色日本黄色录像| 国产精品国产三级国产av玫瑰| 老司机亚洲免费影院| 成人美女网站在线观看视频| 最近最新中文字幕免费大全7| 欧美 日韩 精品 国产| 日本黄大片高清| 青青草视频在线视频观看| 亚洲精品乱码久久久v下载方式| 亚洲电影在线观看av| 成人影院久久| 亚洲精品一区蜜桃| 国产极品天堂在线| 精品少妇内射三级| 久久狼人影院| 婷婷色综合大香蕉| 乱系列少妇在线播放| 五月开心婷婷网| 国产国拍精品亚洲av在线观看| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 亚洲色图综合在线观看| 99久久精品一区二区三区| 亚洲综合色惰| 美女视频免费永久观看网站| 亚洲精品aⅴ在线观看| 91精品国产国语对白视频| 99久久精品一区二区三区| 99久久精品热视频| 国产中年淑女户外野战色| 欧美区成人在线视频| 亚洲情色 制服丝袜| 黄色欧美视频在线观看| 观看av在线不卡| 91精品国产九色| 中文欧美无线码| 特大巨黑吊av在线直播| 欧美最新免费一区二区三区| 啦啦啦视频在线资源免费观看| 国产在线免费精品| av播播在线观看一区| 成人18禁高潮啪啪吃奶动态图 | 高清欧美精品videossex| 国产高清不卡午夜福利| 美女福利国产在线| 国产精品99久久久久久久久| 97在线视频观看| 久久狼人影院| 亚洲自偷自拍三级| 又爽又黄a免费视频| 一区二区av电影网| 午夜精品国产一区二区电影| 黄片无遮挡物在线观看| 久久人人爽人人片av| 22中文网久久字幕| 女性被躁到高潮视频| 天堂中文最新版在线下载| 一级片'在线观看视频| 欧美一级a爱片免费观看看| 久久ye,这里只有精品| 国产欧美亚洲国产| 亚洲欧美日韩另类电影网站| 欧美精品亚洲一区二区| 人体艺术视频欧美日本| 卡戴珊不雅视频在线播放| 女性生殖器流出的白浆| 日日爽夜夜爽网站| 国产午夜精品一二区理论片| 国产亚洲午夜精品一区二区久久| 又爽又黄a免费视频| 美女主播在线视频| 99热6这里只有精品| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 亚洲无线观看免费| 亚洲av成人精品一二三区| 女的被弄到高潮叫床怎么办| 2022亚洲国产成人精品| 国产黄色视频一区二区在线观看| 天天躁夜夜躁狠狠久久av| 国产中年淑女户外野战色| 两个人的视频大全免费| 卡戴珊不雅视频在线播放| 欧美日本中文国产一区发布| 久久人人爽av亚洲精品天堂| 国产精品不卡视频一区二区| 久久久久人妻精品一区果冻| 18+在线观看网站| 精品一区在线观看国产| 久久国产精品男人的天堂亚洲 | 亚洲成人一二三区av| 美女脱内裤让男人舔精品视频| 嫩草影院入口| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 亚洲国产日韩一区二区| 欧美性感艳星| 国产精品不卡视频一区二区| 搡老乐熟女国产| 亚洲欧美日韩东京热| 亚洲四区av| 黄片无遮挡物在线观看| 少妇精品久久久久久久| 99九九线精品视频在线观看视频| 精品国产露脸久久av麻豆| 久久精品夜色国产| 九九久久精品国产亚洲av麻豆| 国产伦精品一区二区三区四那| 亚洲欧美日韩卡通动漫| 日韩欧美 国产精品| 特大巨黑吊av在线直播| 日韩av免费高清视频| 免费大片黄手机在线观看| 国产精品嫩草影院av在线观看| 国产真实伦视频高清在线观看| 久久久a久久爽久久v久久| 成人18禁高潮啪啪吃奶动态图 | 成人毛片a级毛片在线播放| 亚洲av综合色区一区| 免费不卡的大黄色大毛片视频在线观看| 免费看不卡的av| 国产免费一区二区三区四区乱码| 这个男人来自地球电影免费观看 | 亚洲av国产av综合av卡| 老熟女久久久| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片| 国产精品人妻久久久久久| 一区二区三区免费毛片| 日韩av在线免费看完整版不卡| 国产深夜福利视频在线观看| 黑人猛操日本美女一级片| 久久女婷五月综合色啪小说| 国产中年淑女户外野战色| 日本vs欧美在线观看视频 | 亚洲成人手机| freevideosex欧美| 精品亚洲成国产av| 少妇裸体淫交视频免费看高清| 天堂中文最新版在线下载| 性色av一级| 国产成人免费观看mmmm| 麻豆成人av视频| 啦啦啦中文免费视频观看日本| 国产成人精品久久久久久| 欧美 日韩 精品 国产| 国产男女内射视频| 亚洲av二区三区四区| 久久人人爽人人片av| 七月丁香在线播放| 久久久久久久久久成人| 女性被躁到高潮视频| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 国模一区二区三区四区视频| 2022亚洲国产成人精品| 少妇精品久久久久久久| 一区二区三区四区激情视频| 男的添女的下面高潮视频| 久久精品国产亚洲av天美| 亚洲欧洲精品一区二区精品久久久 | 99久久精品热视频| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的| 午夜av观看不卡| 极品少妇高潮喷水抽搐| 国产男人的电影天堂91| 日韩欧美一区视频在线观看 | 午夜视频国产福利| 少妇裸体淫交视频免费看高清| 国产精品.久久久| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 国产精品久久久久久精品古装| 国产伦精品一区二区三区视频9| 午夜影院在线不卡| 亚洲精品国产色婷婷电影| 亚洲欧美日韩东京热| 99久久综合免费| 我的老师免费观看完整版| 99热这里只有是精品在线观看| 欧美bdsm另类| 丝袜喷水一区| 男女国产视频网站| 黄色一级大片看看| 性色avwww在线观看| 国内少妇人妻偷人精品xxx网站| 日本黄色片子视频| 亚洲伊人久久精品综合| 精品一品国产午夜福利视频| 少妇裸体淫交视频免费看高清| h日本视频在线播放| 在现免费观看毛片| 亚洲激情五月婷婷啪啪| 久久人人爽人人片av| 亚洲美女黄色视频免费看| 国产亚洲一区二区精品| 国产一区二区在线观看日韩| 美女中出高潮动态图| 高清不卡的av网站| 欧美精品一区二区大全|