• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption

    2017-12-21 09:09:06YAOChanLIGuoYanXUYanHong
    物理化學(xué)學(xué)報(bào) 2017年9期
    關(guān)鍵詞:共軛羧酸基團(tuán)

    YAO Chan LI Guo-Yan XU Yan-Hong,2,*

    ?

    Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption

    YAO Chan1LI Guo-Yan1XU Yan-Hong1,2,*

    (1;2)

    Polar groups in the skeletons of conjugated microporous polymers (CMPs) play an important role in determining their porosity and gas sorption performance. Understanding the effect of the polar group on the properties of CMPs is essential for further advances in this field. To address this fundamental issue, we used benzene, the simplest aromatic system, as a monomer for the construction of two novel CMPs with multi-carboxylic acid groups in their skeletons (CMP-COOH@1 and CMP-COOH@2). We then explored the profound effect the amount of free carboxylic acid in each polymer had on their porosity, isosteric heat, gas adsorption, and gas selectivity. CMP-COOH@1 and CMP-COOH@2 showed Brunauer-Emmett-Teller (BET) surface areas of 835 and 765 m2?g?1, respectively, displaying high potential for carbon dioxide storage applications. CMP-COOH@1 and CMP-COOH@2exhibited CO2capture capabilities of 2.17 and 2.63 mmol?g?1(at 273 K and 1.05 × 105Pa), respectively, which were higher than those of their counterpart polymers, CMP-1 and CMP-2, which showed CO2capture capabilities of 1.66 and2.28mmol?g?1, respectively. Our results revealed that increasing the number of carboxylic acid groups in polymers could improve their adsorption capacity and selectivity.

    Conjugated microporous polymers; Carboxylic acid; Pore; Gas adsorption;selectivity

    1 Introduction

    Carbon dioxide is one of the main greenhouse gases that cause global issues, such as climate warming and increases in sea level and ocean acidity. Modern climate science predicts that the accumulation of greenhouse gases in the atmosphere will contribute to an increase in surface air temperature of 5.2 °C between the years 1861 and 2100. Carbon capture and sequestration (CCS), a process of CO2separation and concentration can contribute to solve. For this aim, the use of porous materials tailored for selective CO2absorption is energetically efficient and technically feasible. Among the numerous and diversified examples of novel porous materials, such as metal-organic frameworks1,2, zeolites3,4, and purely organic materials5,6are a class of porous organic materials that allow an elaborate design of molecular skeletons and a fine control of nanopores.

    Conjugated microporous polymers (CMPs) are a unique class of porous organic materials that combine π-conjugated skeletons with permanent nanopores7–10, which is rarely observed in other porous polymers. CMPs have emerged as a powerful platform for synthesizing functional materials that exhibit excellent functional applications, such as heterogeneous catalysts11,12, guest encapsulation13–15, super-capacitive energy storage devices16,17, light-emitting materials18,19, and fluorescent sensors20,21and so on. Recently, CMPs have emerged as a designable material for the adsorption of gases, such as hydrogen, carbon dioxide, and methane22–24. Although great achievements in synthesizing CMPs have been realized, extremely high Brunauer-Emmet-Teller specific surface areas as high as 6461 m2·g?125, the other pore parameters, such as pore volume, pore size, and pore size distribution, are important in determining the gas sorption performance26,27. Moreover, previous work has shown the surface modification of porous polymers with polar group can significantly enhance their CO2binding energy, resulting in enhancement in CO2uptake and/or CO2selectivity28–30. Carboxylic-rich framework interaction is expected due to hydrogen bonding and/or dipole-quadrupole interactions between CO2and the functional groups of porous polymers31,32. Cooper.33,34reported increasing the heat of adsorption through the introduction of tailored binding functionalities could have more potential to increase the amount of gas adsorbed. Their results demonstrated that carboxylic groups functionalised polymer showed the higher isosteric heat of sorption for CO2. Torrisi35predicted that the incorporation of carboxylic groups would lead to the higher isosteric heat, challenging the current research emphasis in the literature regarding amine groups for CO2capture.

    Herein, we report the synthesis and characterization two high carboxylic groups of porous polymers and investigate their performances in CO2storage application under high pressure and cryogenic conditions (Scheme 1, CMP-COOH@1 and CMP-COOH@2). The CMPs are highly efficient in the uptake of CO2by virtue of a synergistic structural effect, and that the carboxylic units improve the uptake, the high porosity provides a large interface, and the swellable skeleton boosts the capacity.

    2 Experimental and computational section

    2.1 Materials and Measurements

    1,3,5-Triethynylbenzene (98%) was purchased from TCI, 2,5-dibromobenzoic-3-carboxylic acid (97%) and 2,5-dibromoterephthalicacid(97%) were purchased from Alfa. Tetrakis(4-ethynylphenyl)methane was synthesized according to the literature36. Tetrakis(triphenylphosphine)palladium(0), copper(I) iodide (CuI) and tetra(4-bromophenyl)methane (97%) were purchased from Aladdin.,-Dimethylformamide (DMF) (99.9%), triethylamine (99%), methanol (95%) and acetone (95%) were purchased from Aladdin.

    Scheme 1 Schematic representation of synthesis of carboxylic polymers.

    1H NMR spectra were recorded on Bruker Avance III models HD400 NMR spectrometers, where chemical shifts () were determined with a residual proton of the solventas standard.Fourier transform Infrared (FT-IR) spectra were recorded on a Perkin-Elmer spectrum one model FT-IR-frontier infrared spectrometer.The UV-visible analyzer was used for shimadzu UV-3600. Field-emission scanning electron microscopy (FE-SEM) images were performed on a JEOL model JSM-6700 operating at an accelerating voltage of 5.0 kV. The samples were prepared by drop-casting a tetrahydrofunan (THF) suspension onto mica substrate and then coated with gold.High-resolution transmission electron microscopy (HR-TEM) images were obtained on a JEOL model JEM-3200 microscopy.Powder X-ray diffraction (PXRD) data were recorded on a Rigaku model RINT Ultima III diffractometer by depositing powder on glass substrate, from 2= 1.5° up to 2= 60° with 0.02° increment. The elemental analysis was carried out on a EuroEA-3000. TGA analysis was carried out using a Q5000IR analyzer with an automated vertical overhead thermobalance. Before measurement, the samples were heated at a rate of 5 °C min?1under a nitrogen atmosphere. Nitrogen sorption isotherms were measured at 77 K with ASIQ (iQ-2) volumetric adsorption analyzer.Before measurement, the samples were degassed in vacuum at 150 °C for 12 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas and pore volume. BET surface areas were calculated over the relative pressure (/0) range of 0.015–0.1. Nitrogen NLDFT pore size distributions were calculated from the nitrogen adsorption branch using a cylindrical pore size model. Carbon dioxide, methane and nitrogen sorption isothermswere measured at 298 or 273 K with a Bel Japan Inc. model BELSORP-max analyzer, respectively. In addition, carbon dioxide sorption isotherms were measured at 318 K and 5 × 106Pa with a iSorb HP2 analyzer. Before measurement, the samples were also degassed in vacuum at 120 °C for more than 10 h.

    2.2 Synthetic procedures

    2.2.1 Synthesis of CMP containing carboxylic groups

    All of the polymer networks containing multi-carboxylic groups were synthesized by palladium(0)-catalyzed cross-coupling polycondensation. All the reactions were carried out at a fixed reaction temperature and reaction time (120 °C/48 h).

    2.2.2 Synthesis of CMP-COOH@1 and CMP-COOH@2

    2,5-Dibromoterephthalic acid (107 mg, 0.33 mmol) and 1,3,5-triethynylbenzene (50 mg, 0.33 mmol) (CMP-COOH@1)/tetrakis(4-ethynylphenyl)methane (104 mg, 0.25 mmol) (CMP-COOH@2) were put into a 50 mL round-bottom flask, the flask exchanged three cycles under vacuum/N2. Then added to 2 mL,-dimethylformamide (DMF) and 2 mL triethylamine (Et3N), the flask was degassed by threefreeze-pump-thaw cycles, purged with N2. When the solution had reached reaction temperature, a slurry of tetrakis(triphenylphosphine)palladium(0) (23.11 mg, 0.02 mmol) in the 1 mL DMF and copper(I) iodide (4.8 mg, 0.025 mmol) in the 1 mL Et3N (CMP-COOH@1)/(CMP-COOH@2) was added respectively, and the reaction was stirred at 120 °C under nitrogen for 48 h. The solid product was collected by filtration and washed well with hot reaction solvent for 4 times with THF, methanol, acetone, and water, respectively. Further purification of the polymer was carried out by Soxhlet extraction with methanol, and THF for 24 h, respectively, to give CMP-COOH@1(claybank solid, 98 mg, 94% yield), CMP-COOH@2(olivine solid, 142 mg, 90% yield). Elemental Analysis (%) Calcd. (Actual value for an infinite 2D polymer), (CMP-COOH@1) C 67.61, H 2.35. Found: C 64.84, H 2.05. (CMP-COOH@2) C 73.03, H 3.02. Found: C 70.02, H 2.19.

    3 Results and discussion

    Carboxylic-CMP was synthesized by the Sonogashira- Higihara reaction of 1,3,5-triethynylbenzene, tetrakis(4- ethynylphenyl)methane and 2,5-dibromoterephthalic acid in the presence of Pd(0) as catalyst. These two samples were unambiguously characterized by elemental analysis confirmed that the weight percentages of C and H contents are close to the calculated values expected for an infinite 2D polymer. The CMPs were further characterized by infrared spectroscopy (Fig.1). Band soft he primary bromo and borate groups of 2,5-dibromoterephthalic acid at about 598 and 1368 cm?1are absent, respectively. From 2900 to 3200 cm?1aromatic C―H stretching bands appear. A C=C stretching mode at 1600 cm?1is also observed. All networks show the typical C≡C and COOH stretching mode at about 2200and 1700 cm?1, respectively, indicating the successful incorporation of the carboxylic and alkynyl groups into the polymer materials.

    Fig.1 FT-IR spectra of 2,5-dibromoterephthalic acid (blue), CMP-COOH@1 (green) and SCMP-COOH@2 (red).

    Fig.2 FE-SEM images of (a) CMP-COO H@1 and (b) CMP-COOH@2.

    Field-emission scanning electron microscopy (FE-SEM) displayed that the CMPs adopt a spherical shape with sizes of 100–500 nm (Fig.2). High-resolution transmission electron microscopy (HR-TEM) revealed the homogeneous distribution of nanometer-scale pores in the textures (Fig.S1 (Supporting Information)). Powder X-ray diffraction (PXRD) revealed no diffraction, implying that all the polymers are amorphous (Fig.S2 (Supporting Information)). The TGA results show that the polymers have a good thermal stability, and the thermal degradation temperature is up to ca. 300 °C (Fig.S3 (Supporting Information)). The weight loss below 100 °C is generally attributed to the evaporation of adsorbed water and gas molecules trapped in the micropores.

    The conjugated polymer networks were dispersed in THF to obtain UV/Vis spectra (Fig.S4 (Supporting Information)). The polymer CMP-COOH@1 shows mainly one wide absorption peak at about 396 nm. Compared to monomer 1,3,5-triethynylbenzene, with narrow absorption maxima at 305 nm, the polymer networks exhibit a large bathochromic shift of around 111 nm. CMP-COOH@2 show similar phenomenon, compared to tetrakis(4-ethynylphenyl)methane monomer, with absorption maxima at 325 and 345 nm, the polymer frameworks display a large bathochromic shift of around 68 and 48 nm, respectively. This indicates the effective enlargement of the-conjugated system through the polycondensation reaction.

    The porosity of the polymer networks was probed by nitrogen sorption at 77 K. According to the IUPAC classi?cation37, adsorption/desorption isotherms of two polymers showed mainly a type I isotherms. As seen in Fig.3(a), remarkably, the two polymer samples exhibit a steep uptake at a relative pressure of/0< 0.1, suggesting that these samples have micropores. There is a sharp rise in the isotherm for the CMP-COOH@1 at higher relative pressures (/0> 0.8), which indicates the presence of meso/macropores in the samples. These textural meso/macropores can be also found in the corresponding FE-SEM images (Fig.2(a)). However, the shape of the isotherm for the CMP-COOH@2 is significantly different from that of CMP-COOH@1, which displays a significant H2 type hysteresis loop in the desorption branch, characteristic of nanostructured materials with a mesoporous structure (Fig.3(a)). These meso/macropores can be ascribed mostly to interparticulate porosity that exists between the highly aggregated nanoparticles38.

    The pore size distribution calculated from nonlinear density functional theory (NLDFT) shows that the two polymer networks have relatively broad pore size distribution (Fig.3(b)). CMP-COOH@1 and CMP-COOH@2 showed apparent peaks in the size range 0–2 nm, whereas small fluctuations can be observed at 2–12 nm regions. The pore size distribution curves agree with the shape of the N2isotherms (Fig.3(a)) and imply the presence of both micropores and mesopores in the two polymers. The contribution of microporosity to the networks can be calculated as the ratio of the micropore volume (micro), over the total pore volume (total). The microporosities of CMP-COOH@1 and CMP-COOH@2 are around 50.8% and 52.3%, respectively. This result indicates that the two carboxylic networks are predominantly microporous. In addition, the BET surface area of CMP-COOH@1 and CMP-COOH@2 were calculated to be 835 and 765 m2·g?1in the relative pressure range 0.015–0.1, respectively. The decreased surface area of CMP-COOH@2 compared to CMP-COOH@1 could be due to the CMPs constructed with longer connecting struts have lower BET surface areas39,40.

    In view of the fact that the CMPs possess two key properties generally associated with high CO2uptake capacity, e.g., good porosity and abundant COOH sites, the CO2adsorption of the polymers were investigated up to 1.05 × 105Pa at both 298 K and 273 K (Fig.4(a, b)), respectively. Remarkably, CMP-COOH@1 and CMP-COOH@2 showed the CO2adsorption capacities of 1.61 and 1.92 mmol·g?1at 298 K and 1.05 × 105Pa, respectively (Fig.4(a)). When the temperature was elevated to 273 K, the polymers CMP-COOH@1 and CMP-COOH@2 displayed the higher CO2capture of 2.17 and 2.63 mmol·g?1(Fig.4(b)), respectively, which were comparable to that of other microporous hydrocarbon networks41. Despite CMP-COOH@2 with a lower surface area, but which adsorbed more CO2probably due to it has a higher pore volume. In addition, the isosteric heat of adsorption (st) of the polymers was calculated from the CO2uptake data at 273 K and 298 K by using Clausius-Clapeyron equation (Fig.4(c)). The two polymer networks show the isosteric heats of CO2adsorption around 35.5 and 30.9 kJ·mol?1. Because there is less carboxylic acid in the structural unit, the CO2stof CMP-COOH@2 is lower than that of CMP-COOH@1, which is consistent with that of the previous reported polymers33,34. Moreover, the high pressure CO2sorption properties of the two polymers were also investigated at 5 × 106Pa and 318 K. As seen in Fig.4(d), CMP-COOH@1 and CMP-COOH@2 show a nearly linear increase with the increasing pressure no obviously turning point. CMP-COOH@1 and CMP-COOH@2 show the higher CO2capture capacity of 498 and 434 mg·g?1at 318 K and 5 × 106Pa, respectively (Fig.4(d)). These results indicated that the CO2uptake in these networks at high pressures is not dependent solely on the surface area, pore volume or polar groups in the skeletons, but also the measuring pressure have a large effect on the uptake of gas.

    Fig.3 (a) Nitrogen sorption curves (filled circles: adsorption, open circles: desorption, STP=standard temperature pressure) and (b) pore size distribution.

    In order to investigate the amount of carboxylic group in the network whether affects CO2adsorption capacity of polymers. We synthesized another two carboxylic conjugated polymer with relatively low amount of carboxylic groups (scheme S1, CMP@1 and CMP@2 (Supporting Information)) based on 2,5-dibromobenzoic acid, 1,3,5-triethynylbenzene and tetrakis(4-ethynylphenyl)methane. They show the BET surface area of 979 and 876 m2·g?1(Fig.S5 (Supporting Information)), respectively, which is higher to that of counterpart CMP-COOH@1 and CMP-COOH@2. CMP@1 and CMP@2 showed the main pore size of 0.8–2.0 nm (Fig.S6 (Supporting Information)). The decreased surface area of CMP-COOH@1 compared to CMP@1 could be due to the volume of 2,5-dibromoterephthalic acid in CMP-COOH@1 is obviously larger than 2,5-dibromobenzoic acid in CMP@1, which made the bulky benzen–carboxylic moieties in CMP-COOH@1 occupy more cavity space. The similar phenomenon can be also observed in CMP-COOH@2 and CMP@2 system. As shown in Fig.4(b), at 273 K and 1.05 × 105Pa, polymers CMP@1 and CMP@2 show the CO2capture capacity of 1.66 and 2.28 mmol·g?1, respectively. The CO2uptake value of CMP-COOH@1 and CMP-COOH@2 is 1.31 and 1.15-times that of the counterpart CMP@1 and CMP@2, respectively, indicating that increasing amount of carboxylic groups in the CMP networks can improve CO2uptake. In addition, we calculated the isosteric heats of these polymers, they showed the following order (Fig.4(c)): CMP-COOH@1 > CMP-COOH@2 > CMP@1 > CMP@2. Because there is less carboxylic groups in the structural units of CMP@1 and CMP@2, the CO2stof CMP@1 and CMP@2 is lower than that of CMP-COOH@1 and CMP-COOH@2, respectively33,42. In addition, CMP-COOH@1 and CMP-COOH@2 show the higher CO2capture capacity than that of CMP@1 (447 mg·g?1) and CMP@2 (402 mg·g?1) at 318 K and 5 × 106Pa, respectively (Fig.4(d)). These results imply the amount of carboxylic groups effects BET surface area, pore volume and isosteric heats lead to different the uptake of gas.

    As for carbon dioxide capture, high separation properties towards CH4and N2are also necessary and important in gas separation applications. In order to investigate the gas adsorption selectivity of the microporous polymer networks, CO2, N2, and CH4sorption properties were measured by volumetric methods at 273 K and 1.05 × 105Pa. It was found that the two porous polymer networks show significantly higher CO2uptake ability than N2and CH4in the whole measurement pressure range (Fig.S7 (Supporting Information)). CO2/CH4and CO2/N2selectivity was first evaluated by using the initial slope ratios estimated from Henry′s law constants for single-component adsorption isotherms. The CO2/CH4selectivity of CMP-COOH@1 and CMP-COOH@2 are calculated to be 6.9 and 6.2, respectively (Table S1 and Fig.S8 (Supporting Information)). In addition, two polymers exhibited the CO2/N2adsorption selectivity is 48.2 and 39.5, respectively (Table S1 and Fig.S9 (Supporting Information)). Meanwhile, the gas selective capture was also supported by the results from the ideal adsorbed solution theory (IAST), which has been widely used to predict gas mixture adsorption behavior in the porous materials43,44. Under simulated natural gas conditions (CO2/CH4, 50/50), the experimental CO2and CH4isotherms collected at 273 K for carboxylic CMP were fitted to the dual-site Langmuir model and the single-site Langmuir model, respectively (Fig.S10 (Supporting Information)). The calculated IAST data for carboxylic CMP are shown in Table S1. At 273 K and 1.05 × 105Pa, CMP-COOH@1 and CMP-COOH@2 exhibit an appreciably high selectivity of CO2over CH4 under natural gas conditions (5.5 and 5.2) (Fig.S10 (Supporting Information)), which is comparable to some reported MOPs, such as A6CMP (5.1)45, SCMP (4.4–5.2)30, and P-G1-T (5)46. Furthermore, the CO2/N2adsorption selectivities for CMP-COOH@1 and CMP-COOH@2 are calculated to be 45.4 and 37.8 at 273 K and 1.05 × 105Pa (Table S1 and Fig.S11 (Supporting Information)), respectively, which is comparable to some reported MOPs, such as ALP-1(35)38, PCN-TA (33)47, and PCN-DC (48)47. These excellent CO2selective capture performance of carboxylic CMPs evaluated by IAST are consistent with the results calculated from the initial slopes method. In addition, in light of the amount of carboxylic group effect for the uptake of gas, we reasoned that it might be effective for CO2/CH4and CO2/N2separations. At 273 K and 1.05 × 105Pa, CMP@1 and CMP@2 exhibit the selectivities of CO2/CH4(4.7 and 4.1) and CO2/N2(32.1 and 30.5) under natural gas conditions via the IAST method (Figs.S10 and S11 (Supporting Information)), respectively, which are lower that of counterpart CMP- COOH@1 and CMP-COOH@2. This result indicates that the amount of carboxylic groups effects selectivity of polymers. These data implys that increasing the amount of carboxylic unit of polymers can improve the adsorption capacity and selectivity of the materials, which suggested the possibility for the surface properties of microporous polymers to be controlled to interact with a specific gas by post-modification.

    Fig.4 CO2 adsorption isotherms of CMP-COOH polymers collected at 298 K (a) and (b) 273 K, (c) Isosteric heats of adsorption of the CMP-COOH polymers, (d) CO2 adsorption isotherms of CMP-COOH polymers collected at 318 K at 5 × 106 Pa.

    4 Conclusions

    In summary, two carboxylic CMPs with relatively high surface area have been synthesized. The clean energy applications of the polymers have also been investigated and it was found that CMP-COOH@1 and CMP-COOH@2 can adsorb 2.17 and 2.63 mg·g?1of carbon dioxide at 1.05 × 105Pa and 273 K, respectively, which can be competitive with the reported results for porous organic polymers under the same conditions. The free carboxylicacid functionalized polymers show that increasing the amount of carboxylic group of polymers can improve the adsorption capacity and selectivity of the materials under the same conditions, which is a promising candidate for the separation and purification of CO2from various CO2/CH4mixtures such as natural gas and land-fill gas by adsorptive processes.

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Baeand, T. H.; Long, J. R.2012,, 724. doi: 10.1021/cr2003272

    (2) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W.2012,, 782. doi: 10.1021/cr200274s

    (3) Coudert, F. X.; Kohen, D.2017,, 2724. doi: 10.1021/acs.chemmater.6b03837

    (4) Jensen, N. K.; Rufford, T. E.; Watson, G.; Zhang, D. K.; Chan, K. I.; May, E. F.2012,, 106. doi: 10.1021/je200817w

    (5) Tan, L.; Tan, B.2017, doi: 10.1039/C6CS00851H

    (6) Ghanem, B.S.; Hashem, M.; Harris, K. D. M.; Msayib, K. J.; Xu, M.; Budd, P. M.; Chaukura, N.; Book, D.; Tedds, S.; Walton, A.; McKeown, N. B.2010,, 5287. doi: 10.1021/ma100640m

    (7) Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D.2013,, 8012. doi:10.1039/C3CS60160A

    (8) Cooper, A. I.2009,, 1291. doi: 10.1002/adma.200801971

    (9) Thomas, A.; Kuhn, P.; Weber, J.; Titirici, M. M.; Antonietti, M.2009,, 221. doi: 10.1002/marc.200800642

    (10) Dawson, R.; Cooper, A. I.; Adams, D. J.. 2012,, 530. doi:10.1016/j.progpolymsci.2011.09.002

    (11) Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F.2013,, 1432. doi: 10.1002/anie.201207163

    (12) Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W.2011,, 2056. doi:10.1021/ja109166b

    (13) Li, A.; Sun, H. X.; Tan, D. Z.; Fan, W. J.; Wen, S. H.; Qing, X. J.; Li, G. X.; Li, S. Y.; Deng, W. Q.2011,, 2062. doi: 10.1039/C1EE01092A

    (14) Wang, X. S.; Liu, J.; Bonefont, J. M.; Yuan, D. Q.; Thallapally, P. K.; Ma, S. Q.2013,, 1533. doi: 10.1039/C2CC38067F

    (15) Bhunia, A.; Vasylyeva, V.; Janiak, C.2013,, 3961. doi: 10.1039/C3CC41382A

    (16) Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D.2011,, 8753. doi: 10.1002/anie.201103493

    (17) Zhuang, X.; Zhang, F.; Wu, D.; Forler, N.; Liang, H.; Wagner, M.; Gehrig, D.; Hansen, M. R.; Laquai, F.; Feng, X.2013,, 9668. doi: 10.1002/anie.201304496

    (18) Xu, Y.; Nagai, A.; Jiang, D.2013,, 1591. doi: 10.1039/C2CC38211C

    (19) Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D.2011,, 17622. doi: 10.1021/ja208284t

    (20) Liu, X.; Xu, Y.; Jiang, D.2012,, 8738. doi: 10.1021/ja303448r

    (21) Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D.2014,, 4850. doi: 10.1002/anie.201402141

    (22) Liao, Y.; Weber, J.; aul, C. F. J.2014,, 8002. doi: 10.1039/C4CC03026E

    (23) Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H. C.2012,, 7480. doi: 10.1002/anie.201202176

    (24) Xiang, Z.; Cao, D.; Wang, W.; Yang, W.; Han, B.; Lu, J.2012,, 5974. doi: 10.1021/jp300137e

    (25) Yuan, D.; Lu, W.; Zhan, D.; Zhou, H.2011,, 3723. doi: 10.1002/adma.201101759

    (26) Pu, L.; Sun, Y.; Zhang, Z.2010,, 10842. doi: 10.1021/jp103331a

    (27) Babarao, R.; Jiang, J. W.2008,, 6270. doi; 10.1021/la800369s

    (28) Islamoglu, T.; Rabbani, M. G.; El-Kaderi, H. M.2013,, 10259. doi: 10.1039/C3TA12305G

    (29) Hasmukh, A. P.; Ferdi, K.; Ali, C.; Joonho, P.; Erhan, D.; Yousung, J.; Mert, A.; Cafer, T. Y.2012,, 8431. doi: 10.1039/c2jm30761h

    (30) Qin, L.; Xu, G.; Yao, C.; Xu, Y.2016,, 4599. doi: 10.1039/C6PY00666C

    (31) Rabbani, M. G.; El-Kaderi, H.2011,, 1650. doi: 10.1021/cm200411p

    (32) Arab, P.; Rabbani, M. G.; Sekizkardes, A. K.; ?sllamo?lu, T.; El-Kaderi, H. M.2014,, 1385. doi: 10.1021/cm403161e

    (33) Dawson, R.; Adams, D. J.; Cooper, A. I.2011,, 1173. doi: 10.1039/C1SC00100K

    (34) Dawson, R.; Cooper, A. I.; Adams, D.2013,, 345. doi:10.1002/pi.4407

    (35) Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G.2010,, 044705. doi: 10.1063/1.3276105

    (36) Li, P. Z.; Wang, X. J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y.2016,, 2142. doi: 10.1021/jacs.5b13335

    (37) Rose, M.; Klein, N.; Bohlmann, W.; Bohringer, B.; Fichtner, S.; Kaskel, S.2010,, 3918. doi: 10.1039/C003130E

    (38) Chen, Q.; Luo, M.; Hammershoj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C. G.; Han, B. H.2012,, 6084. doi: 10.1021/ja300438w

    (39) Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.2008,, 7710.doi: 10.1021/ja8010176

    (40) Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I.2011,, 1777. doi: 10.1039/C1SC00329A

    (41) Meng, B.; Li, H.; Mahurin, S. M.; Liu, H.; Dai, S.2016,, 110307. doi: 10.1039/C6RA18307G

    (42) Ma, H.; Ren, H.; Zou, X.; Meng, S.; Sun, F.; Zhu, G.2014,, 144. doi; 10.1039/C3PY00647F

    (43) Obrien, J. A.; Myers, A. L.1988,, 2085. doi: 10.1039/C3PY00647F

    (44) Wang, K.; Qiao, S. Z.; Hu, X. J.2000,, 243. doi: 10.1016/S1383-5866(00)00087-3

    (45) Qin, L.; Xu, G.; Yao, C.; Xu, Y.2016,, 12602. doi: 10.1039/C6CC05097B

    (46) Qiao, S.; Wang, T.; Huang, W.; Jiang, J. X.; Du, Z.; Shieh, F.; Yang, R.2016,, 1281. doi: 10.1039/C5PY01767J

    (47) Shen, C.; Yan, J.; Deng, G.; Zhang, B.; Wang, Z.2017,, 1074. doi: 10.1039/C6PY02050J

    富羧酸基團(tuán)的共軛微孔聚合物:結(jié)構(gòu)單元對(duì)孔隙和氣體吸附性能的影響

    姚 嬋1李國(guó)艷1許彥紅1,2,*

    (1吉林師范大學(xué),環(huán)境友好材料制備和應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130103;2吉林師范大學(xué),功能材料物理與化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,吉林 四平 136000)

    共軛微孔聚合物(CMPs)骨架中的孔和極性基團(tuán)對(duì)聚合物的氣體吸附性能起著重要作用。闡明聚合物中極性基團(tuán)的效果對(duì)該領(lǐng)域的進(jìn)一步發(fā)展是必不可少的。為了解決這個(gè)根本問(wèn)題,我們使用最簡(jiǎn)單的芳香系統(tǒng)-苯作為建筑單體,構(gòu)筑了兩個(gè)新穎的富羧酸基團(tuán)的CMPs (CMP-COOH@1,CMP-COOH@2),并探討了CMPs中游離羧酸基團(tuán)的量對(duì)其孔隙、吸附焓、氣體吸附和選擇性的深遠(yuǎn)影響。CMP-COOH@1和CMP-COOH@2顯示的BET比表面積分別為835和765 m2?g?1。這兩種聚合物在二氧化碳存儲(chǔ)方面顯示了高潛力。在273 K和1.05 × 105Pa條件下,CMP-COOH@1和CMP-COOH@2的CO2吸附值分別為2.17和2.63 mmol?g?1。我們的研究結(jié)果表明,在相同的條件下增加聚合物中羧基基團(tuán)的含量可以提高材料對(duì)氣體的吸附容量和選擇性。

    共軛微孔聚合物;羧酸;孔;氣體吸附;選擇性

    O647

    10.3866/PKU.WHXB201705112

    April 6, 2017;

    May 3, 2017;

    May 11, 2017.

    . Email: xuyh@jlnu.edu.cn; Tel: +86-431-81765151.

    The project was supported by the National Natural Science Foundation of China (21501065), Science and Technology Program of Jilin Province, China (20160101319JC), Science and Technology Research Program of the Education Department of Jilin Province (2015229), and Science and Technology Program of Siping City (2015057).

    國(guó)家自然科學(xué)基金(21501065),吉林省科技發(fā)展計(jì)劃(20160101319JC),吉林省教育廳科學(xué)技術(shù)研究項(xiàng)目 (2015229),四平市科技發(fā)展計(jì)劃項(xiàng)目(2015057)資助項(xiàng)目

    猜你喜歡
    共軛羧酸基團(tuán)
    一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    攪拌對(duì)聚羧酸減水劑分散性的影響
    巧用共軛妙解題
    一種自適應(yīng)Dai-Liao共軛梯度法
    R基團(tuán)篩選技術(shù)用于HDACIs的分子設(shè)計(jì)
    芳烴ArCOR的構(gòu)象分析和基團(tuán)對(duì)親電取代反應(yīng)的定位作用
    內(nèi)含雙二氯均三嗪基團(tuán)的真絲織物抗皺劑的合成
    復(fù)合羧酸鑭對(duì)PVC熱穩(wěn)定作用研究
    中文字幕制服av| 97人妻精品一区二区三区麻豆| 一级黄色大片毛片| 国产高潮美女av| 亚洲精品aⅴ在线观看| 欧美区成人在线视频| 嫩草影院新地址| 黑人高潮一二区| 国产不卡一卡二| 草草在线视频免费看| 久久久久久久久久黄片| 久久久久久久午夜电影| 久久精品久久精品一区二区三区| 久久久久九九精品影院| 综合色丁香网| 久久精品国产99精品国产亚洲性色| 午夜视频国产福利| 麻豆久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 日本免费a在线| 中文乱码字字幕精品一区二区三区 | 精品久久久久久久久亚洲| 国产精品精品国产色婷婷| 国产精品久久久久久精品电影小说 | 欧美高清成人免费视频www| av在线蜜桃| 国产精品,欧美在线| 亚洲五月天丁香| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 久久久久精品久久久久真实原创| 午夜福利在线观看吧| 国产日韩欧美在线精品| 边亲边吃奶的免费视频| 免费播放大片免费观看视频在线观看 | 午夜激情福利司机影院| 国产淫语在线视频| 精品人妻偷拍中文字幕| 丰满人妻一区二区三区视频av| 国模一区二区三区四区视频| 天堂网av新在线| 精品国产露脸久久av麻豆 | 久久这里有精品视频免费| 偷拍熟女少妇极品色| 亚洲精品色激情综合| 自拍偷自拍亚洲精品老妇| 国产av一区在线观看免费| av黄色大香蕉| 男人狂女人下面高潮的视频| 午夜久久久久精精品| 国产在线男女| 国产白丝娇喘喷水9色精品| 熟女电影av网| 亚洲国产精品专区欧美| 校园人妻丝袜中文字幕| 18禁动态无遮挡网站| 如何舔出高潮| 色尼玛亚洲综合影院| 欧美潮喷喷水| 免费av不卡在线播放| 1000部很黄的大片| 亚洲欧洲国产日韩| 我的女老师完整版在线观看| 男女国产视频网站| 国产视频首页在线观看| 成年版毛片免费区| 最近最新中文字幕大全电影3| 国产免费又黄又爽又色| 国产精品乱码一区二三区的特点| 白带黄色成豆腐渣| 波野结衣二区三区在线| 汤姆久久久久久久影院中文字幕 | 伦理电影大哥的女人| 国产一区二区在线观看日韩| 卡戴珊不雅视频在线播放| 国产91av在线免费观看| .国产精品久久| 精品一区二区免费观看| 性插视频无遮挡在线免费观看| 女的被弄到高潮叫床怎么办| 伦精品一区二区三区| 精华霜和精华液先用哪个| 一二三四中文在线观看免费高清| 中文字幕人妻熟人妻熟丝袜美| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 插阴视频在线观看视频| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 淫秽高清视频在线观看| 99在线视频只有这里精品首页| 久久精品国产鲁丝片午夜精品| 亚洲国产精品专区欧美| 国产视频首页在线观看| 一本久久精品| 成年免费大片在线观看| 国产淫语在线视频| 全区人妻精品视频| 久久婷婷人人爽人人干人人爱| 免费看美女性在线毛片视频| 韩国高清视频一区二区三区| 夜夜爽夜夜爽视频| 插逼视频在线观看| 久久久久久久久久久免费av| 日韩一本色道免费dvd| 亚洲成人中文字幕在线播放| 亚洲欧洲国产日韩| 国产精品日韩av在线免费观看| 一级毛片久久久久久久久女| 午夜老司机福利剧场| 久久久久性生活片| 久久人妻av系列| 黄色配什么色好看| 国产一区二区三区av在线| 长腿黑丝高跟| 一级毛片我不卡| a级毛色黄片| 国内精品一区二区在线观看| 精品午夜福利在线看| 国产黄色视频一区二区在线观看 | 国产一区二区在线av高清观看| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 亚洲成人中文字幕在线播放| 男人和女人高潮做爰伦理| 国产精品电影一区二区三区| 黄片wwwwww| 两个人视频免费观看高清| 色尼玛亚洲综合影院| 国产极品精品免费视频能看的| 男女边吃奶边做爰视频| 晚上一个人看的免费电影| 曰老女人黄片| 91精品三级在线观看| 日韩精品有码人妻一区| 丝袜脚勾引网站| 国产成人一区二区在线| av片东京热男人的天堂| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看| 一级毛片电影观看| 18禁动态无遮挡网站| 全区人妻精品视频| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 久久久久国产网址| 国产成人精品婷婷| 欧美亚洲日本最大视频资源| 久久99一区二区三区| 青春草亚洲视频在线观看| 赤兔流量卡办理| 日本av免费视频播放| 亚洲欧美日韩卡通动漫| 久久狼人影院| 日本午夜av视频| 午夜91福利影院| 日韩电影二区| 欧美人与性动交α欧美精品济南到 | 一级a做视频免费观看| 欧美精品亚洲一区二区| 美女中出高潮动态图| 日本黄大片高清| 边亲边吃奶的免费视频| 久热久热在线精品观看| 国产xxxxx性猛交| 不卡视频在线观看欧美| 亚洲一码二码三码区别大吗| 精品久久久久久电影网| 国产1区2区3区精品| 黄网站色视频无遮挡免费观看| h视频一区二区三区| 国产成人精品久久久久久| 国产男女内射视频| 我要看黄色一级片免费的| 成人综合一区亚洲| av免费观看日本| 一本久久精品| 高清视频免费观看一区二区| 777米奇影视久久| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 搡老乐熟女国产| 中文字幕免费在线视频6| videosex国产| 91久久精品国产一区二区三区| 亚洲精品国产av蜜桃| 人体艺术视频欧美日本| 青青草视频在线视频观看| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 日韩av在线免费看完整版不卡| 熟女av电影| 亚洲人成77777在线视频| 这个男人来自地球电影免费观看 | 国产淫语在线视频| 国产成人精品无人区| 久久久国产一区二区| 免费日韩欧美在线观看| 国产xxxxx性猛交| 国产成人精品在线电影| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 午夜激情av网站| 久久久精品免费免费高清| 国产福利在线免费观看视频| 精品午夜福利在线看| 在现免费观看毛片| 97在线人人人人妻| 国产欧美亚洲国产| 日本wwww免费看| 大片免费播放器 马上看| 免费黄网站久久成人精品| 九草在线视频观看| 日韩伦理黄色片| 91精品伊人久久大香线蕉| 九九爱精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 国产国语露脸激情在线看| 午夜福利影视在线免费观看| 又黄又爽又刺激的免费视频.| 中文字幕人妻丝袜制服| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 男女边吃奶边做爰视频| 精品亚洲乱码少妇综合久久| 午夜福利在线观看免费完整高清在| 国产精品女同一区二区软件| 久久久久久久亚洲中文字幕| 国产精品秋霞免费鲁丝片| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费| 人人妻人人添人人爽欧美一区卜| 国产一区有黄有色的免费视频| 丝袜人妻中文字幕| 99久国产av精品国产电影| 国产欧美亚洲国产| 国产精品女同一区二区软件| 国产淫语在线视频| 亚洲成国产人片在线观看| 麻豆乱淫一区二区| 22中文网久久字幕| av卡一久久| 久久毛片免费看一区二区三区| 久久久久久伊人网av| 久久久精品区二区三区| 交换朋友夫妻互换小说| 美国免费a级毛片| 国产探花极品一区二区| av一本久久久久| 国产色爽女视频免费观看| 波多野结衣一区麻豆| 下体分泌物呈黄色| 中文字幕另类日韩欧美亚洲嫩草| 91精品国产国语对白视频| 一区二区日韩欧美中文字幕 | 亚洲精品中文字幕在线视频| 汤姆久久久久久久影院中文字幕| 97人妻天天添夜夜摸| 国产精品一区二区在线观看99| 久久久久人妻精品一区果冻| 秋霞伦理黄片| 精品午夜福利在线看| 日韩制服丝袜自拍偷拍| 日本色播在线视频| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| av不卡在线播放| 在线天堂中文资源库| 久久久精品94久久精品| 夜夜爽夜夜爽视频| av免费在线看不卡| 99久久人妻综合| 亚洲美女黄色视频免费看| 国产 精品1| 你懂的网址亚洲精品在线观看| 久久 成人 亚洲| 国产精品人妻久久久久久| 少妇的丰满在线观看| 午夜精品国产一区二区电影| 五月伊人婷婷丁香| 香蕉精品网在线| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 国产精品久久久久久久电影| videossex国产| 国产探花极品一区二区| 在线观看国产h片| 久久国产精品男人的天堂亚洲 | 午夜免费观看性视频| 女人精品久久久久毛片| 亚洲图色成人| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| 婷婷色综合大香蕉| 美女视频免费永久观看网站| 中文欧美无线码| 纯流量卡能插随身wifi吗| 亚洲人成77777在线视频| 国国产精品蜜臀av免费| 国产免费一区二区三区四区乱码| 一本久久精品| 国产乱人偷精品视频| 人体艺术视频欧美日本| 亚洲综合色惰| 国产成人aa在线观看| 高清视频免费观看一区二区| 亚洲伊人久久精品综合| 久久久久网色| h视频一区二区三区| 中文字幕人妻熟女乱码| 少妇猛男粗大的猛烈进出视频| 欧美成人精品欧美一级黄| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 人妻少妇偷人精品九色| 亚洲,欧美,日韩| 美女国产视频在线观看| 亚洲欧美日韩另类电影网站| 国产在线免费精品| 国产精品欧美亚洲77777| 国产精品蜜桃在线观看| 国产免费福利视频在线观看| 1024视频免费在线观看| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 久久女婷五月综合色啪小说| 日本av免费视频播放| av不卡在线播放| 高清视频免费观看一区二区| 十分钟在线观看高清视频www| a级毛色黄片| 日本免费在线观看一区| 亚洲国产精品一区三区| 久久久a久久爽久久v久久| 日本色播在线视频| 美女福利国产在线| 99热这里只有是精品在线观看| 午夜福利影视在线免费观看| 日本欧美视频一区| 一区二区av电影网| 婷婷成人精品国产| 男女啪啪激烈高潮av片| 夫妻午夜视频| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 国产在视频线精品| 亚洲国产欧美日韩在线播放| 大陆偷拍与自拍| av天堂久久9| 乱人伦中国视频| 少妇被粗大的猛进出69影院 | 91国产中文字幕| 一区二区三区乱码不卡18| 国产精品国产av在线观看| 国产一区二区在线观看av| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 国产视频首页在线观看| 国产高清三级在线| 日韩不卡一区二区三区视频在线| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 9191精品国产免费久久| 热99久久久久精品小说推荐| 亚洲伊人久久精品综合| 蜜桃国产av成人99| 久久久亚洲精品成人影院| 王馨瑶露胸无遮挡在线观看| 免费在线观看完整版高清| 大片电影免费在线观看免费| 韩国精品一区二区三区 | 99热全是精品| 最近最新中文字幕大全免费视频 | 久热久热在线精品观看| 久久99一区二区三区| 亚洲精品色激情综合| 欧美亚洲日本最大视频资源| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 热99久久久久精品小说推荐| 美女国产视频在线观看| 亚洲成人一二三区av| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 国产又色又爽无遮挡免| 中国三级夫妇交换| 天堂俺去俺来也www色官网| 伊人亚洲综合成人网| 欧美 亚洲 国产 日韩一| www.av在线官网国产| 久久久精品94久久精品| 青春草视频在线免费观看| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 丰满饥渴人妻一区二区三| 大话2 男鬼变身卡| 日韩欧美精品免费久久| 国产在线免费精品| 久久午夜综合久久蜜桃| 日韩一区二区视频免费看| www.色视频.com| 婷婷成人精品国产| 这个男人来自地球电影免费观看 | 超色免费av| 大香蕉97超碰在线| 中国美白少妇内射xxxbb| 一本色道久久久久久精品综合| 女的被弄到高潮叫床怎么办| freevideosex欧美| 亚洲国产精品成人久久小说| 国产熟女欧美一区二区| 亚洲,一卡二卡三卡| 亚洲人成网站在线观看播放| 精品久久蜜臀av无| 97在线人人人人妻| 欧美人与性动交α欧美精品济南到 | 日本黄大片高清| 天堂8中文在线网| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 免费黄色在线免费观看| 制服丝袜香蕉在线| 91精品国产国语对白视频| 亚洲久久久国产精品| 国产成人91sexporn| 国产爽快片一区二区三区| 久久99精品国语久久久| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 99久久精品国产国产毛片| 赤兔流量卡办理| 久久人人爽人人爽人人片va| 丁香六月天网| 蜜臀久久99精品久久宅男| 我要看黄色一级片免费的| 色94色欧美一区二区| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 精品第一国产精品| 另类亚洲欧美激情| 日韩精品有码人妻一区| 国产69精品久久久久777片| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 伊人亚洲综合成人网| 汤姆久久久久久久影院中文字幕| 人人澡人人妻人| 欧美变态另类bdsm刘玥| 99热网站在线观看| 国产精品久久久av美女十八| 国产精品一区二区在线不卡| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 你懂的网址亚洲精品在线观看| 国产精品一区www在线观看| 国产精品成人在线| 久久精品久久久久久久性| 婷婷色麻豆天堂久久| 亚洲五月色婷婷综合| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 成年人午夜在线观看视频| 寂寞人妻少妇视频99o| 王馨瑶露胸无遮挡在线观看| 黄色一级大片看看| 丰满迷人的少妇在线观看| 赤兔流量卡办理| www.熟女人妻精品国产 | 亚洲精品视频女| 欧美 亚洲 国产 日韩一| 免费观看av网站的网址| 大香蕉97超碰在线| 亚洲av日韩在线播放| 国产片特级美女逼逼视频| 久久99精品国语久久久| 亚洲伊人色综图| 日韩中文字幕视频在线看片| 免费在线观看完整版高清| 嫩草影院入口| 日韩人妻精品一区2区三区| 热re99久久精品国产66热6| 婷婷色综合大香蕉| 国产xxxxx性猛交| 两个人看的免费小视频| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 69精品国产乱码久久久| 亚洲国产毛片av蜜桃av| 丰满乱子伦码专区| 久久久久久久久久久免费av| 下体分泌物呈黄色| 久久精品国产自在天天线| 国产又爽黄色视频| 午夜免费鲁丝| 国产成人精品久久久久久| 久久人人爽人人片av| 久久久久精品久久久久真实原创| 精品视频人人做人人爽| 国产av国产精品国产| 日本黄大片高清| 国产无遮挡羞羞视频在线观看| 七月丁香在线播放| 国产又色又爽无遮挡免| 9191精品国产免费久久| 这个男人来自地球电影免费观看 | 亚洲av综合色区一区| 日日撸夜夜添| a级片在线免费高清观看视频| 国产成人a∨麻豆精品| 国产免费福利视频在线观看| 国产成人欧美| 啦啦啦在线观看免费高清www| 熟女av电影| 一级毛片我不卡| 亚洲激情五月婷婷啪啪| 天天躁夜夜躁狠狠躁躁| 日本猛色少妇xxxxx猛交久久| 国产欧美亚洲国产| 亚洲国产色片| 日韩伦理黄色片| 成年动漫av网址| 黄色怎么调成土黄色| 精品国产露脸久久av麻豆| 三级国产精品片| 久久久久久伊人网av| 宅男免费午夜| 国产免费视频播放在线视频| 久久久亚洲精品成人影院| 韩国精品一区二区三区 | videosex国产| 久久精品夜色国产| 日本vs欧美在线观看视频| 蜜桃在线观看..| 丰满少妇做爰视频| 亚洲精品,欧美精品| 亚洲少妇的诱惑av| 美女xxoo啪啪120秒动态图| 你懂的网址亚洲精品在线观看| 激情视频va一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产成人一区二区在线| 国产精品久久久久成人av| 男人操女人黄网站| 免费人成在线观看视频色| 久久国产亚洲av麻豆专区| 久久久亚洲精品成人影院| 国产在线一区二区三区精| 国产高清国产精品国产三级| 在线天堂最新版资源| 超碰97精品在线观看| 各种免费的搞黄视频| 久久精品国产亚洲av涩爱| 2021少妇久久久久久久久久久| 亚洲精品,欧美精品| 国产精品久久久av美女十八| av在线播放精品| 一级片免费观看大全| 国产在线一区二区三区精| 成人18禁高潮啪啪吃奶动态图| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲日本最大视频资源| 国产男女内射视频| 国产在线免费精品| 在线免费观看不下载黄p国产| 搡女人真爽免费视频火全软件| 午夜视频国产福利| 18禁在线无遮挡免费观看视频| 蜜臀久久99精品久久宅男| 国产精品麻豆人妻色哟哟久久| 激情五月婷婷亚洲| 你懂的网址亚洲精品在线观看| 国产一级毛片在线| √禁漫天堂资源中文www| 久久久久久久久久人人人人人人| 久久精品久久久久久久性| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻熟女毛片av久久网站| 欧美国产精品va在线观看不卡| 国产熟女午夜一区二区三区| 免费人成在线观看视频色| 亚洲婷婷狠狠爱综合网| 中文欧美无线码| 日韩精品免费视频一区二区三区 | 免费看光身美女| 日韩 亚洲 欧美在线| 我的女老师完整版在线观看| a级片在线免费高清观看视频| 亚洲av免费高清在线观看| 免费观看a级毛片全部| 久久久精品免费免费高清| 国语对白做爰xxxⅹ性视频网站| 日本av免费视频播放| 秋霞伦理黄片| 人妻人人澡人人爽人人| 五月伊人婷婷丁香| 国产成人午夜福利电影在线观看| 国产精品久久久久成人av| 国产极品粉嫩免费观看在线| 国产又色又爽无遮挡免| 日本欧美国产在线视频| 又大又黄又爽视频免费| 亚洲,欧美精品.| 一区二区三区乱码不卡18| 婷婷色综合大香蕉| 国产不卡av网站在线观看| 欧美国产精品va在线观看不卡| 成人国产麻豆网| 亚洲,欧美,日韩| 国产黄色视频一区二区在线观看| 18禁裸乳无遮挡动漫免费视频| 精品酒店卫生间|